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 This paper considers the dynamics of a system in a coupled 

Duffing and Ratchet potentials in a range of the position 

coordinates that captures a complete behaviour for the system so 

that anything outside this range will only be a repetition because 

of the periodicity of the system. Due to computational difficulty of 

the ratchet potential a power series approximation method is 

applied to transform this part of the potential function to a very 

closely fitting polynomial so that the entire potential gradient can 

be uniformly expressed by a polynomial. The positions of all the 

equilibrium points are evaluated in the range under consideration 

and the stabilities of all the equilibrium points are obtained from 

the computation of their eigenvalues. Analytic solutions for the 

forced and unforced system is found by using two time variable 

expansion method. The frequency response curve for the system is 

evaluated for the frequency in the range of [0.0-5.0] the result 

show stable and unstable response amplitudes obtained by using 

simple graphical analysis.  Regions where only a single response 

amplitude are found and region where multi-valued response 

amplitude’s are also seen along with hysteresis and jump 

phenomenon region. The nature of the solutions for the forced 

system is seen from the simple graphical analysis of the frequency 

response equation showing how the system will move around the 

equilibrium points. The work also show how the equilibrium 

points move as the forcing amplitude is varied for the undamped 

case , showing how a pair of equilibrium points move toward each 

other collide and disappear through a reverse saddle-node 

bifurcation leaving only a single equilibrium point which remain 

for all the forcing amplitudes considered. Leading to the 

conclusion that for the Duffing–ratchet system considered the 

dynamical behaviour found is very similar to that of the purely 

Duffing only that for this system   there are more  equilibrium 

points  in particular two more saddle equilibrium points come up 

as a result of more potential wells of the system. As a result  a 

more complicated dynamical behaviour is seen. Consequently the 

advantages obtained from complex dynamics of the Duffing 

system can be better obtained in this Duffing–ratchet system. 

 

 

Received 4 March 2024 

Revised   17 May 2024 

Accepted 22 May 2024 

Available online 26 June 2024 

 
https://doi.org/10.5281/zenodo.12560325 

 

ISSN-2682-5821/© 2024 NIPES Pub. All 

rights reserved. 

 

1. Introduction 

A lot of attention has been directed toward coupled oscillators [1-20] due the fact that it provides 

the fundamentals to the modelling of various systems consisting of physical, chemical and biological 

systems. Work has been done on coupled van der Pol oscillators [1-8], coupled Duffing oscillators 
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[1, 6, and 11, 17-20] and coupled oscillators for the potential of the Ratchet type has been studied 

in [21-25]. To our knowledge work has not been done on the system that combines all the Duffing–

ratchet potentials, so the aim here is to look into the coupling of the Duffing coupled to a potential 

of the ratchet type. The system to be considered is of the form with the equation of motion given 

by: 

 
3

0 0( (2 cos(2 ( )) cos(4 ( )))) cos( )x x x x x x x x F t     + + − + − + − =     (1) 

The overall potential ( )V x  is given by 
2 4

( ) ( )
2 4

x x
V x U x

 
= − + 

 

          (2) 

Where 
0 0( ) [sin(2 ( )) 0.25sin(4 ( ))]U x c x x x x = − − + −   

is the Ratchet potential. Where 0x  is an adjustment parameter to make the minima of the ratchet 

potential to be at integer values and place one of the minima be at the origin [26]            

 

2.0  The autonomous system 

The equation of motion of the autonomous system is given by 
3

0 0( (2 cos(2 ( )) cos(4 ( )))) 0x x x x x x x x    + + − + − + − =     (3) 

In the interval of x from (-1.0, 1.0) the negative potential gradient  
dV

dx
 is given by 

3

0 0( (2 cos(2 ( )) cos(4 ( ))))
dV

x x x x x x
dx

    = − + − + −      (4) 

 
Figure 1: Top figure show the potential gradient as the particle position from -1 to 1 

 Bottom figure show the slope field for the potential gradient to indicate the nature of equilibrium 

points 
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Calculations show that in the interval of [-1.0, 1.0] the system has five EP’s at the points given in 

Table 1. 

The Equilibrium points (EQ) for the system under consideration. 5 EQs are seen, their positions   

and velocities are given in the table. 

Table 1: EQ 

No x  v  

1 -0.99024 0.0000 

2 -0.36068 0.0000 

3 0.010696 0.0000 

4 0.617278 0.0000 

5 1.009740 0.0000 

 

  

The nature of these equilibrium points (EQ) can also be obtained from the eigenvalues of the 

Jacobian matrix for around the EQ equilibrium points. The Jacobian matrix denoted by J is given 

by 

1 1

2 2 2 2

0 1

(1 3 4 (sin(2 ( 0.82)) sin(4 ( 0.82)))) 0

f f

x v

f f

x v

J
x x x    

 

 

 

 

   
= =   

− + − + −  
  (5) 

The eigenvalues is given in Table 2. 

To their positions and velocities given in Table 1.0 their eigenvalues are added in this table showing 

centers and saddle EQ’s as seen in the slope field in Figure 1. 

 

Table 2: Eigenvalues 

No x  v  Eigenvalues 

1 -0.99024 0.0000 ±5.473260 

2 -0.36068 0.0000 ±5.690990i 

3 0.010696 0.0000 ±5.724550 

4 0.617278 0.0000 ±5.48336i 

5 1.009740 0.0000 ±5.462760 

 

 

From the Table 2, the eigenvalues computed in the interval [-1.0, 1.0] show three saddle equilibrium 

points (EQ) and two center equilibrium points (EQ) are seen at the points -0.36068 and 0.617278 

where the eigenvalues are purely imaginary which are the centers, while the three points with x 

values at -0.99024, 0.010696 and 1.00974 have real eigenvalues equal in magnitude but opposite in 

their signs indicating saddle EQ’s.  Agreeing with the slope field given in the bottom figure of Figure 

1. 

3.0  The nonautonomous system 

The equation of motion for the system with a small perturbing parameter ϵ can be written as a system 

of three first order equations given by: 

3

0 0( ( (2 cos[2 ( )] cos[4 ( ])) cos

x v

v x x x x x x x F z

z

    



=

= − + − + − + − +

=

   (6) 

Where z t=  

The forcing term is a 2π periodic function in z. so without loss generality it can be started at the 

value of ωt = 0.5π and α = 0.5 

Whose equilibrium points (EQ) is obtained from the roots of the equations 
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  (7) 

 

 

3.1 Two Variable Expansion Method 

In this section perturbation method is applied to study the dynamical behaviour for the system for a 

small perturbing parameter ϵ. The method involves two time scales: Scale for the periodic motion 

itself and a slower time scale involving the approach to the periodic motion. Which can be 

represented by   t =  and t =  called the stretch and slow times respectively. Application of 

such a method will require a potential function  that can be easily manipulated, as it is the potential 

consists of two parts the Duffing part and the ratchet part the Duffing part causes no difficulty for it 

involves only a polynomial, but the ratchet part as it is will cause computational difficulty in the 

sense that for the two variable expansion to be applicable it will lead to the expansion a composite 

function of a trigonometric function with the two variable expansion, which will involve 

approximating the trig function in terms of power series then substituting the two variable expiation 

into the obtained series approximation. This computational difficulty can be shorten by first writing 

the ratchet form of the potential gradient by a suitable polynomial just as the Duffing part and apply 

the two variable expansion uniformly. The ratchet potential gradient is replaced by a polynomial 

that is obtained using the power series expansion method, the fitting is made to as close as 

computationally possible. The polynomial so obtained is given by: 
19 18 17 16 15 14

13 12 11 10 9 8

7 6 5 4 3 2

( ) -1871.49 -1989.10 9723.30 9808.23 -23639.73 22031.03

35780.72 29779.45 -36902.54 -26370.03 26096.23 15254.78 -

12094.01 -5352.75 3392.26 953.11 -516.81 -52.65

f x x x x x x x

x x x x x x

x x x x x x

= + + +

+ + + +

+ + 32.07 -0.34x+

 (8) 

The comparison of the ratchet potential gradient and the approximating polynomial is shown in 

Figure 2 for the x values in the range [-1, 1]. 

 

 
Figure 2: The exact potential gradient (PG) for the system under consideration shown along with 

the power series representation of the PG  

Graph of dv/dx and f(x) drawn on the same axis to show the level of agreement. 

The error involved in the computation of the exact potential gradient (PG) and the polynomial 

approximation for the PG by computing the relative absolute error for x in the interval [-1:1] 

3

0

( ( (2 cos[2 ( 0.82)] cos[4 ( 0.82)]))) cos 0

v

x x x x x F z    

=

− − − + − + − + =
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Figure 3: The graph of relative absolute error for the exact PG and the approximate potential 

gradient  

Figure 3 show less than 0.05% relative absolute error everywhere except in a very small interval at 

the two edges (±1) and at the origin. 

Consider now the two variable exposition method with the stretch time to be given by  t =  while 

the slow time to be given by t = , these definitions to the first and the second derivatives result 

in  

2 2 2 2

2 2 2

2 22

d ddx x x x x
dt dt dt d

d x x x x

dt

 

   

  



 

   
  

  
  

= + = +

= +  +
        (9) 

Substituting these results into the equation of motion result in 

 
2 2 2

2 2

2 2 32 ( ) ( 0.5( )) cosx x x x xx c x x u F
    

        
    

+  + + + + − − + = (10) 

Where 4
( ) cos(2 ( 0.82)) cos(4 ( 0.82))u x x x  = − + −   

Expand x  and ω in power series: 

0 0

1

( , ) ( , ) ( , )

1

x x x     

 

= + +

= + +
                (11) 

Substitution and neglecting terms of O (ϵ2) results in 
2

0

2

2 22
0 0 01

2 2

0

3

1 1

0

2 2 ( ( )) cos( )

x

x x xx

x

x c x x u x F



   
  





  

   

+ =

+ = − − − − − − +
           (12) 

The general solution of the first equation of (12) can take the form 

0 ( , ) ( ) cos( ) ( )sin( )x A B     = +               (13) 

Where A and B are arbitrary functions of the slow time scale ρ 

Substituting into the 2nd equation results in  
2

1

2 1 ( )sin ( )cos
x

x


 



+ = +  + nonresonant terms             (14) 

The coefficients of the cos and sin are given respectively by  
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2

1

3
2 2 0

4

dA
cA B BC

d
 


+ + − =                              (15)  

2

1

3
2 2

4

dB
cB A AC F

d
 


+ − + =                (16) 

Where 

 

2 18 16 2 14 4 12 6 10 8 8 1046189 415701 415701 969969 2909907 2909907
131072 141072 32768 32768 65536 65536

6 12 4 14 2 16 18969969 415701 415701 46189
32768 32768 141072 131072

C A A B A B A B A B A B

A B A B A B B

= + + + + +

+ + + +
         (17) 

The equilibrium points for the slow flow correspond to the periodic motion for the system under 

consideration. Which can be obtained by setting 0
dA dB

d d 
= =  

Resulting in  

2

1

3
2 0

4
cA B BC + − =  

2

1

3
2

4
cB A AC F − + =                (18) 

 

Multiplying the first equation by B and adding it 2nd equation multiplied by A results in 
2cR BF=                   (19) 

 Where 
2 2 2( )R A B= +   

Again by multiplying the 1st equation by A and subtracting if from the 2nd equation multiplied by B 

results in 

           

 2 2 2

1

3
2

4
R C R AF − =                                                    (20) 

 

Adding the squares of the two equations above result in 
2

2 4 4 2 2 2

1

3
2

4
c R R C R F 

 
+ − = 

 
                 (21) 

( )
2

2
2 2

1 2
2

F
c C

R
 + − =  

2
2 2

1 2

1 3

2 4

F
C c

R
 

 
= − 

 
 

                 (22) 

⸫ 

2
2 2

2

3 1
1

8 2

F
C c

R
 = +   −                 (23) 

From (15) if the forcing function F and the damping coefficient c are set to zero, then the angular  

frequency ω is a single valued function, while for both F and c positive and R < F/c ω is double 

valued function of R. 

From (18) and (19) the equilibrium for the undamped system can written as  

2

1

2

1

3
2 0

8

2 0

B BC

A AC F

 

 

− + =

− + =

                           (24) 

From which it can be found that,  
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2

1

0

3

8 2

B

A R

F
C

R
 

=

= 

= 

                  (25) 

With 2

11 1 ( )
2

F
C

R
  = + = +                  (26) 

 
Figure 4: The frequency response curve R on the y axis as function of the forcing frequency ω 

ranging in the range of 0.0 to 2.0 on the x axis 

 

 
Figure 5:With κ1 =3.0, F = 2.0 and α = 100 showing three equilibrium points at A = -0.8825, B = -

0.3335 and C = 0.9216  

The frequency response equation as a function of the response amplitude A, the function f here is 

given by: 

2

1

3
( ) 2

4
f A F A AC = + −                  (27) 
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From (16) the equilibrium solution with zero damping is plotted against the response amplitude as 

shown in Figure 5. Qualitatively from the graph the nature of the equilibrium points are obtained 

from the graphical analysis, i.e. from figure 5.0 it is seen that f(x) to the left of A is positive 

indicating any particle to left of A move to the right, and to the right of A, f(x) is negative indicating 

that any particle placed a little to the right of A will move to the left toward A indicating that the 

point A is a stable center. Similar argument can be applied to the points B and C to see that B is 

unstable saddle point while the point C is another stable center fixed point. 

 

 
Figure 6:With κ1 =3.0, F is varied to show how the two fixed points move with F 

 

4.0. Conclusion  

The dynamics of the coupled Duffing-ratchet system is considered for the position coordinate  x 

ranging from  -0.99 < x < 1.01  the potential gradient was computed and graphed as shown in the 

top part of Figure 1  along with the slope fields of the equilibrium points (EQP) in the bottom part 

of the figure. Showing five EQP at the points P1(-0.99,0.0),P2(-0.36,0.0),P3(-0.01,0), P4(0.62,0) and 

P5(1.01,0). The points P1, P3 and P5 are saddle equilibrium points while the points P2 and P4 are 

centers, contrary to the Duffing system for the same x range of values where only 3 EQP are seen 

with saddle at the origin and centers at the endpoints (±1). Obviously the increase in the EQP is due 

to the increase in the potential wells in the Duffing–ratchet system, in particular the appearance two 

new saddle points leads to a more complex dynamics. The frequency response curve (FRC) for the 

forced system with no damping is evaluated, the FRC show a dynamical behaviour similar to the 

purely Duffing system in the sense that the backbone curve start from ω = 1 only that for this system 

the Duffing-ratchet the jump phenomenon seen is so sudden with a very wide range of hysteresis 

region, implying that the response amplitude vary greatly only in a very small region for ω = 0.8 to 

ω =1.2 where the response amplitude jump from 0.2 to 1.0. As seen in figure 4.0. The variation of 

the FRC for ω = 0.0 to ω = 5.0 is presented from which it is seen that for the upper arm the response 

amplitude vary from 0.04 to 0.2 for ω = 0.0 to ω = 0.8 then comes the sudden jump region i.e. for ω 



 
   Usman A. Marte, Sabastine Patrick/ Journal of Science and Technology Research 

6(2) 2024 pp. 250-259 

258 

 

= 0.8 to ω =1.2, where the response amplitude jump from 0.2 to 1.0. Then for ω from the value of 

1.2 to 5.0 the response amplitude vary slowly from 1.05 to the maximum value of 1.2 

asymptotically. For the lower arm two response amplitudes are seen, for ω from the value of 1.1 to 

1.5 there is sudden drop in the response amplitude from a value of about 0.99 to about 0.04 then 

further increase in ω results in an asymptotic decay of the response amplitude from 0.04 to 0.0. In 

the lower arm another unstable response amplitude is also seen from the figure for ω ranging from 

1.1 to 5.0 the response amplitude grow from 0.99 to the value of 1.2 asymptotically. From figure 

5.0 and simple graphical analysis of the Duffing-ratchet system for  κ1 =3.0, F = 2.0 and α = 100 

there are two stable EQPs at A = -0.8825, and C = 0.9216 while an unstable EQP at the point B = -

0.3335. Which can be generalized to the response amplitude shown in figure 4.0 i.e. for the region 

for multi response amplitude the upper and the lower branches are stable EQPs while the middle 

branch is an unstable EQP.  

Finally, it is seen that as the forcing amplitude is increased uniformly from 1.0 to 4.0 the two of the 

three fix points move toward each other that is the saddle fixed point at B and the center fixed point 

at C merge and disappear through the so called the reverse saddle-node bifurcation just like the 

Duffing system leaving only the center EQP at C. From this work it can be seen that the Duffing-

ratchet system is very similar to that of the Duffing system only that the complexity for this system 

is higher due the fact that two additional saddle EQM appear in the system which will mean that in 

areas where the advantage of complex dynamics is required the Duffing-ratchet system will make a 

better choice.  
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