

Journal of Science and Technology Research 6(2) 2024 pp. 214-228 ISSN-2682-5821

214

Text Encryption Using Advanced Encryption Standard (AES) Algorithm

1Akwukwuma, V.V.N., 1Chete F.O., 1Oshioluamhe, M.N. and 2Okpako A.E.
1Department of Computer Science, University of Benin, Benin City, Nigeria
2 Department of Cybersecurity, University of Delta, Agbor, Delta State

Corresponding author: odichet@yahoo.com

Article Info Abstract

Keywords: Advanced Encryption

Standard, encryption, decryption,

ciphertext, algorithm

 With the increasing importance of data security in the digital age,

the need for robust encryption techniques has become paramount.

The Advanced Encryption Standard (AES) is regarded as one of

the safest encryption techniques currently in use. The AES

encryption algorithm is a symmetric block cipher algorithm with

a block/chunk size of 128 bits. These distinct blocks are converted

using keys that are 128, 192, and 256 bits long. The ciphertext is

created by joining these blocks together once they have been

encrypted. The decryption is done in the reverse order. This study

discusses the implementation of text encryption using the AES

algorithm. The Graphical User Interface of the text encryption

system was built using python library Tkinter while the encryption

and decryption algorithm were programmed using python and its

libraries. The tools used for the implementation were the text

editor and python Integrated Development Environment (IDE).

Received 4 March 2024

Revised 17 May 2024

Accepted 22 May 2024

Available online 26 June 2024

https://doi.org/ 10.5281/zenodo.12558923

ISSN-2682-5821/© 2024 NIPES Pub. All

rights reserved.

1. Introduction

Text encryption is a fundamental concept in the field of cryptography, which focuses on protecting

information by changing it into an unintelligible form. It is essential in preserving the

confidentiality, integrity, and authentication of sensitive data. Encryption is done to reduce the

chances of unauthorized individual(s) to decipher encrypted data without possessing the required

key [1]. The basis of encryption is encryption algorithms. They choose the precise procedures and

actions needed to convert plaintext into ciphertext and vice versa. These algorithms frequently use

confusion, mixing, permutation, and substitution operations. Advanced Encryption Standard (AES),

introduced by the National Institute of Standards and Technology (NIST) in 2001, is a symmetric

block cipher which overcomes the key size weakness of Data Encryption Standard (DES) [2]. The

selection of Rijndael as the AES, after a rigorous evaluation process by NIST, was based on its

robustness, efficiency, and broad applicability [3], [6]. The algorithm comes with variable key sizes

i.e. 128-bit key, 192-bit key and a 256-bit key [2]. The AES encryption algorithm is a symmetric

block cipher algorithm with a block/chunk size of 128 bits. These distinct blocks are converted using

keys that are 128, 192, and 256 bits long. Once it encrypts these blocks, it joins them together to

form the ciphertext [3].

The need for AES arose as an improvement for existing Data Encryption Standard (DES), which

exhibited vulnerabilities to emerging computing power and cryptanalysis [4]. Cryptanalysis is the

process of decrypting and analysing codes, encrypted material or ciphers [5]. The field

covers deciphering encrypted messages without having access to the key that was used during

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

215

encryption [5]. The current industry standard for secret key encryption is called Advanced

Encryption Standard (AES) [5].

The strength of AES is its resistance to various cryptographic attacks, such as differential and linear

cryptanalysis, which were major concerns for DES [4]. The cryptographic community has closely

examined AES, but no real weaknesses have been found yet. It is thought to be computationally safe

against brute-force attacks and satisfies the security requirements for secrecy and integrity [6], [4].

AES is renowned for its efficient implementation and computational speed. It is well-suited for a

wide range of computing platforms, including hardware and software-based systems.

With the growing volume of digital data and the need to protect sensitive information, encryption is

critical to data security. Passwords, personal information, financial records, and secret

communications all require strong encryption technologies. Implementing AES encryption in

Python can address these security concerns, which are motivated by the requirement for safe textual

data storage, transfer, and processing.

Text encryption using AES algorithm is a highly secure algorithm, which provides data

confidentiality and protection. Python is a well-known and versatile programming language with an

extensive ecosystem of libraries and frameworks. AES encryption libraries for Python are widely

accessible, making it simple to include AES encryption features into existing Python programs.

Python's widespread support for AES simplifies development and supports the adoption of secure

data encryption procedures. This study implements text encryption using AES algorithm in python

to provide secure and comprehensive data protection in the face of growing risks and weaknesses,

supporting confidentiality, and integrity in digital conversations and information transmission

[7] implemented AES in Python using PyCryptodone. By using the pycryptodone library in python,

encrypting a password took three lines of code, while decryption was just as simple. However,

depending on the cypher used, different elements like tags, nonce, initialization vectors, MAC, etc.

would need to be stored.

[8] implemented AES encryption and decryption in Java .To implement input string encryption, a

secret key was generated, thereafter, an instance from the Cipher class was created by using the

getInstance() method. Additionally, a cipher instance was configured using the init() method with a

secret key, and encryption mode. Finally, the input string was encrypted by invoking the doFinal()

method. This method gets bytes of input and returns ciphertext in bytes. For decrypting an input

string, the cipher was initialized using the DECRYPT_MODE to decrypt.

[9] implemented AES encryption and decryption using the Java Cryptography Architecture (JCA)

within the JDK. The study discussed how to encrypt and decrypt input data like strings, files, objects,

and password-based data using the AES algorithm in Java. For the password based data, the AES

encryption and decryption was done using the secret key derived from a given password. For

generating a secret key, the getKeyFromPassword() method was used. Thereafter, the encryption

was performed by using the instantiated cipher and the provided secret key. To encrypt a Java object,

the SealedObject class was used. The encrypted object was later decrypted using the correct cipher.

For files, encryption was done by encrypting a buffer at a time. To decrypt a file, similar steps were

used and the cypher was initialized using DECRYPT_MODE. Again for encrypting and decrypting

a text file, the baeldung.txt file was read from the test resource directory, then encrypted into a file

called baeldung.encrypted, and thereafter decrypted the file into a new file.

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

216

[10] used the symmetric key to encrypt and decrypt data in C#. The same key was used for both

encryption and decryption in the system security cryptographic namespace by having a predefined

AES class. An initialization vector IV) which is 16 bytes was also used, while the algorithm's block

size. IV is optional. Implementation codes were then written in the Main method inside the

Program.cs file.

[11] used two scripts in Python to encrypt/decrypt using the 128 bits AES algorithm, ECB mode

with hex "00" as padding for each character. For the encryption, an ASCII plaintext file was taken

as the input, and then an encrypted hex file was outputted. For the decryption, a ciphertext hex file

was taken as the input, and then a decrypted ASCII file was outputted.

[12] presented an Image Encryption and Decryption algorithm using Advance Encryption Standard

(AES) which accepted an image as input to both the AES encryption and decryption module. The

design used the iterative approach with block size of 128 bit and key size of 256 bit. The numbers

of round for key size of 256 bits is 14. The study underscore the unmet potential of using image in

data encryption and key generation for diverse areas of information security where sensitive and

confidential data needs to be transmitted along with the image.

2. Methodology

The implementation of the text encryption using AES algorithm in python was done with python,

its libraries and tools such as the tkinter (“TK Interface”), which is the standard Graphic User

interface library for python. Python was used for the implementation because of its simplicity and

vast collection of libraries to make complex nature of the encryption algorithm looks easy by

masking the complexity with a user interface. So, everything from the UML to the user interface

design was done to make it intuitive and user friendly. A 128 bit AES algorithm was implemented

using Python to provide a user friendly interface which was tested and well validated. The

encryption module made use of 10 rounds for the processing of the 128 bit keys while the block

cipher mode of operation was implemented using the Electronic Code Book(ECB) mode (which is

one of the easiest and fastest algorithm to implement) ; that breaks the plaintext into blocks and uses

the key to encrypt them individually. The study employed AES to encrypt text-based data such as

strings or plaintext files. This involves encrypting critical messages, passwords, and other textual

data. The implementation focused on encrypting the input text using the AES algorithm. This

involved applying AES-specific operations, such as substitution, permutation, and mixing, to

transform the plaintext into ciphertext. Thus, the study provided a user-friendly interface for AES

encryption in python, then tested and validated the AES implementation. The study also made use

of open source codes from Github for implementation.

2.1 Systems Analysis and Design

2.1.1 The Present System

The AES is a symmetric key-block cypher which uses the same key for encryption and decryption

and operates on a fixed data blocks of 128 bits and supports key sizes of 128, 192 and 256 bits, each

with increasing complexity [4]. The larger the key sizes, the harder it is to break that key through

brute –force attacks [4]. The encryption process is repeated multiple times, with the number of

repetitions depending on the key size. AES uses a substitution-permutation network to shuffle the

data, making it harder to crack [13]. In addition to performing multiple rounds of processing during

encryption and decryption, the algorithm is resistance to modern attacks such as linear and

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

217

differential cryptanalysis [4]. AES is fast, efficient, has a flexible key size, resistant to known

attacks and widely used and supported by most modern cryptographic libraries [13]. The algorithms

versatility and efficiency and robust security makes it an essential tool for protecting sensitive data

across various industries, businesses and military communications [4]. The security of this

algorithm, however, does depend on some factors such as the implementation, key management and

the overall security of the system in which it is used [4]. Although, AES, as a symmetric encryption

method does have significant performance benefits over asymmetric encryption, it has the drawback

that it relies on a single key that must remain secret [4]. In addition, the encryption and decryption

process is resource-intensive and can be slow on low-end devices [13]. Furthermore, AES can be

vulnerable to side-channel attacks, where an attacker can observe the physical characteristics of the

device performing the encryption or decryption process to gain information about the key [13].

2.1.2 The Proposed System

In the proposed system, the AES encryption system is implemented on a GUI, making it easier to

use compared to encryption on terminals. No technical knowhow is needed as it was made to be as

intuitive as possible. All the user needs to do is just enter the message and a passphrase, and then

the system does the rest. The system uses the advantage of GUI over command line such as user

friendliness, visual interaction, etc. Another advantage is that it is offline and internet access not

required. Our proposed system has the following advantages over existing systems:

a) The system uses UI design to mask the complexities (Which makes it easy to use).

b) The system doesn’t need the passphrase to be exactly 16 bits; it can be 16 bits or lower thus

allowing flexibility of choice of passphrase

c) It can be used offline (without internet), which makes it different from the website that can

do the AES encryption

d) It saves the stress of creating files when running on terminal.

e) It is easier to copy the ciphertext/plaintext than on terminal

f) It is simple to use, as the UI design is user friendly and a page on how to use it has been

created.

g) It is easily accessible as it can be gotten from GitHub.

The Graphical User Interface (GUI) implementation of Text encryption system using AES

algorithm in python contains the following features:

i. Main page: This feature contains buttons that lead you to other pages.

ii. How to use page: This feature contains a simple instruction on how to efficiently use the

GUI.

iii. Encryption page: This feature allows the user enter the plaintext and the key to produce the

ciphertext.

iv. Decryption page: This feature allows the user enter the ciphertext and the key to produce the

plaintext.

2.2 System Requirements

The system requirements are divided into two categories, the functional requirements and the non-

functional requirements.

2.2.1 Functional Requirements

A functional requirement is an explanation of the service that the program needs to provide. It

explains a system or an aspect of it. The functional requirement for this system is designed in a way

that the interface meets the needs of the users.

The requirements include:

i. Input plaintext and key

ii. Copying of the ciphertext.

iii. Encryption of the plaintext

iv. Decryption of the ciphertext

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

218

2.2.2Non-Functional Requirements

The non-functional requirement is a specification that outlines the operational capabilities of the

system and the constraints that improve its functionality. The non-functional requirements for this

system include:

a. Performance and scalability requirements: This illustrates how quickly the system can

provide results and how much a higher workload will change performance. It includes how

the system performs given a large number of texts.

b. Usability requirements: This relates to how user-friendly the system is for the client. They

include:

i. The user interface (UI) is easy to understand

ii. In order to prevent users from straining their eyes, the user interface was designed with

good colours.

c. Compatibility requirements: This deals on how the hardware, operating systems and their

versions of this GUI run. . They include:

i. Python is cross-platform and will work on all Windows, MAC and Linux.

ii. The program was built by efficiently using libraries, which reduces load time.

2.3 System Design

Here, we describe the architecture of the proposed GUI implementation of Text encryption system

using AES algorithm in python throughout the system design phase.

2.3.1 Architecture of proposed system

 We outline the system's components and libraries as we show the architecture of the proposed GUI

implementation of Text encryption system using AES algorithm in python.

i. User Interface (GUI): Tkinter was used to build the GUI. Tkinter is a built-in option and is

easy to use for beginners.

ii. Encryption and Decryption Module: Implementation of the AES encryption and

decryption logic using Python libraries like ‘math’ and an external library called ‘bit vector’

was used.

iii. Text Input and Output Widgets: these are widgets for users to input the text they want to

encrypt and display the encrypted text after encryption.

iv. Key Management: describes the methods for generating, storing, and managing encryption

keys securely. The method used in this system was for the user to enter a 16 bit or less key.

2.4 Design Model

For the GUI implementation of Text encryption system using AES algorithm in python, this was

done with the use of UML (Unified Modeling Language) and user interface designs. Unified

Modeling Language (UML) is a common modeling language used in software engineering that

allows software systems, their parts, and their interactions to be visually represented and

documented.

The following UML was used:

i. Sequence diagram

ii. Activity diagram.

iii. Use case diagram.

2.4.1 Sequence diagram

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

219

In a sequence diagram an object's interactions are arranged chronologically. It depicts the

participants in the scenario as well as the flow of messages between them that is necessary for the

scenario to work. Figure 1 shows the design of the sequence diagram for the user.

Figure 1 Sequence diagram for the user

2.4.2 Activity diagram

An activity diagram in UML (Unified Modeling Language) is a form of behavioral diagram that

depicts the movement of activities and actions inside a system, process, or use case. It is employed

to depict a system's dynamic components and is especially helpful for illustrating workflow,

business processes, and the order of operations within a software program.

Figure 2 shows the design of the Activity diagram for the user to navigate the GUI .

2.4.3 Use case diagram

A use case diagram represents potential user interactions with a system graphically. The use cases

for this system are the administrators and the user. Figure 3 shows the design of the use case

diagram.

2.5 User Interface Designs

 This is the method used by designers to create user interfaces for software and electronic devices

while putting an emphasis on aesthetics.

This section shows the design for the interfaces for the users when interacting with the system.

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

220

Figure 2: Activity diagram for the user to navigate the GUI

Figure 3: Use case diagram for the users

2.5.1 Home page design

This is the first page the user visit to open the program. The page contains buttons that lead to the

“How To Use”, “Encryption” and “Decryption” pages respectively. The following codes were used

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

221

for the design. These codes, depicted in Figure 1, show the design for the home page, including how

the page is linked to the other pages.

from tkinter import *

import os

root= Tk()

root.title("AES ENCRYPTION AND DECRYPTION GUI")

root.geometry("600x400")

def run1():

os.system("Encrypttk.py")

def run2():

os.system("Decrypttk.py")

def run3():

os.system("HowToUse.py")

button1= Button(root,text="HOW TO USE",command=run3, height=5, width= 30)

button1.pack(pady = 20)

button2= Button(root,text="Encryption",command=run1,height=5, width= 30)

button2.pack(pady = 20)

button3= Button(root,text="Decryption",command=run2, height=5, width= 30)

button3.pack(pady = 20)

root.mainloop()

Figure 4 shows the design of the home page.

Figure 4: Interface design of Home page

2.5.2 Encryption page design

Here, the user encrypts the text. The user fills in the plaintext and key details and produces the

ciphertext as the result.

The Encrypt Function: The encrypt function depicts where the encryption occurs. This part of the

code shown shows the specification for the passphrase, which should not be more than 16 characters,

if less it would be filled until it’s 16 characters. Reason for 16 characters is because 16 characters *

8 bits = 128 bits strength. The codes are depicted in Figure 2.

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

222

def aesEncrypt(PassPhrase, message):

 while(len(PassPhrase)!=16):

 if(len(PassPhrase)<16):#check if less than 16 characters, if so add one space character until 16

chars

 while(len(PassPhrase)!=16):

 PassPhrase=PassPhrase+"\00"

 if(len(PassPhrase)>16):#check if bigger than 16 characters, if so then truncate it to be only 16

chars from [0:16]

 print("Your passphrase was larger than 16, truncating passphrase.")

 PassPhrase=PassPhrase[0:16]

Fig2: codes for the encryption page

Fig 5 shows the design of the encryption page.

Figure 5: Interface design of Encryption page

2.6.3 Decryption page design

Here, the user decrypts the text. The user fills in the ciphertext and key details and produces the

plaintext as the result.

The Decrypt Function: The decrypt function is where the decryption occurs. This part of the code

depicts the checking of the passphrase to make sure it is 16 characters. If it is less than 16 characters,

\00 is added. The codes are depicted in Figure3.

def decrypt(PassPhrase,message):

 while(len(PassPhrase)!=16):

 if(len(PassPhrase)<16):#check if less than 16 characters, if so add one space character until 16

chars

 while(len(PassPhrase)!=16):

 PassPhrase=PassPhrase+"\00"

 if(len(PassPhrase)>16):#check if bigger than 16 characters, if so then truncate it to be only 16

chars from [0:16]

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

223

 print("Your passphrase was larger than 16, truncating passphrase.")

 PassPhrase=PassPhrase[0:16]

Fig3: Codes for the decryption

Figure 6 shows the design of the decryption page

Figure 6: Interface design of Decryption page

2.6.4 How to use page design

This page provides instruction on how to use the GUI

Fig 7 shows the design of the ‘how to use page’.

Figure 7: Interface design of How to use page

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

224

3. Implementation and Testing

3.1 Implementation Tools

The Graphical User Interface was built using Python and its libraries such as Tkinter, and Math.

a. Python: Python is a high-level, versatile, and dynamically-typed programming language

known for its simplicity and readability. Python is a popular high-level, multipurpose

programming language that is easy to learn and comprehend. Python has been incredibly

popular in a number of fields, such as artificial intelligence, web development, and other

areas.

b. Math Library (math module): Python's math library, represented by the `math` module,

is part of the Python Standard Library. It provides a comprehensive set of mathematical

functions and constants for various mathematical operations. These operations include

elementary arithmetic, trigonometry, logarithmic functions, and more.

c. Tkinter Library: A common Python package for designing graphical user interfaces (GUIs)

is called Tkinter. It offers a collection of widgets and tools for creating windows, dialog

boxes, buttons, menus, and other graphical user interface elements. The Tk GUI toolkit,

which is frequently used to create cross-platform GUI applications, is the foundation of

Tkinter.

d. Bitvector Library: This is an external library created by Avinash Kak. The main function

of this Library is to manipulate Binary, Hexadecimal and Decimal values to give you your

desired result. For example. get_bivector_in_hex() returns the result in Hexadecimal.

e. Visual Studio Code: The Visual Studio Code also known as VS Code is a popular and

versatile code editor developed by Microsoft. Because of its lightweight design, extensible

nature and support for a wide range of programming languages, it has becoming increasingly

popular among developers.

e. Python IDE (Integrated Development Environment): A Python is a software application

that provides developers and programmers with a comprehensive and integrated environment

for writing, testing, debugging, and managing Python code. It offers a range of tools and features

to streamline the software development process and enhance productivity.

3.2 System Implementation

3.2.1 Home page

This is the first page the user visit when he opens the program. The page contains buttons that lead

to the “How to Use”, “Encryption” and “Decryption” pages respectively.

Figure 8: shows a snapshot of the home page.

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

225

Figure 8: Home page

3.2.2 Encryption page

This is where the user encrypts the text. The user fills in the plaintext and key details and produces

the ciphertext as the result.

Figure 9 shows a snapshot of the encryption page.

Figure 9: Encryption page

3.2.3 Decryption page

This page is where the user decrypts the text. The user fills in the ciphertext and key details and

produces the plaintext as the result.

Figure 10 shows a snapshot of the decryption page.

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

226

Figure 10: Decryption page

3.2.4 How to use page

This page is where the user learns how to use the GUI (Graphical User Interface). It provides

instruction on how to use the GUI (Graphical User Interface).

Figure 11 shows a snapshot of the how to use page.

Figure 11: How to use page

3.3. Testing

The testing of the Graphical User Interface was carried out during programming and

implementation. Each page of this web application was tested in isolation before it was integrated

to form the system. The system is initialized with a test case, the expected outcome was achieved,

and errors debugged. Figure 12 and Figure 13 shows the testing of the encryption system and the

decryption system.

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

227

Figure 12: Testing the encryption system

Figure 13: Testing the decryption system

4. Conclusion

Data security and cryptography have received wide publicity owing to its diverse application in

securing confidential information/data. A key development in the field of data security and

cryptography is the effective application of the Text Encryption System utilizing the AES algorithm.

This method tends to prove to be an invaluable resource for people and businesses looking to

safeguard their confidential text data easily without using online encryptors/decryptors.The

complexities of its implementation make it not easily adopted and used by several users. Simplifying

and masking these complexities from the users through design of good user friendly interface will

be a panacea in encouraging the adoption and use of the algorithms by non-technical users.

 Akwukwuma, V.V.N et al. / Journal of Science and Technology Research

6(2) 2024 pp. 214-228

228

This research work presents an implementation of a Text Encryption using AES algorithm in python

that provides users with a convenient secured method for encrypting and decrypting text. The

requirements for the design and development of the implemeted system were explored and

identified during the course of this research. No software is flawless or error-free, even though the

bulk of the requirements for implementation of a Text Encryption using the AES algorithm were

satisfied. Future work will delve into increasing the length of the key from 128 to 192 or 256 to give

user enough choice when using the algorithm. Also, other alternatives to Electronic Code Book

(ECB) will be explored for a more secure block cipher mode of operation. Any improvement will

be straightforward to incorporate because the program is designed with agile framework. To

enhance Text Encryption using the AES algorithm, new modules or functions may be added,

existing modules altered, or both.

References
[1] D. R. Stinson (2005). Cryptography: Theory and Practice. CRC Press.

[2] Binary Terms (2024). Advanced Encryption Standard (AES). Retrieved March 10, 2024 from

http://binaryterms.com

[3] J. Daemen and V. Rijmen (2001). AES Proposal: Rijndael. Retrieved September10, 2023 from

https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-

development/rijndael-ammended.pdf

[4] J. Sha (2023). What is AES Encryption? The complete guide. Retrieved March 12, 2024 from

https://www.1kosmos.com/authentication/aes-encryption/

[5] K Amrita, N. Gupta and R. Mishra (2018). An Overview of Cryptanalysis on AES. International Journal of

Advance Research in Science and Engineering. Vol7, special issue 01, April 2018.

 Retrieved April 10, 2024. http://www.ijarse.com/images/fullpdf/1522563469_BIT836ijarse.pdf

[6] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti and E. Roback (2001). Report on the

Development of the Advanced Encryption Standard (AES). J Res Natl Inst Stand Technol. 2001 May-Jun;

106(3): 511–577, doi: 10.6028/jres.106.023

[7] Basile (2022).AES Encryption and Decyption in Python: Implementation, Modes and Key Management.

Retrieved April 10, 2024 from http://onboard base.com

[8] D. Sirohi (2022) Java AES Encryption and Decryption Retrieved May 10, 2024 from

https://medium.com/@deepak.sirohi9188/java-aes-encryption-and-decryption-1b30c9a5d900

[9] H. R. Sharifi and J. Cook (2024) Java AES Encryption and Decryption Retrieved May 12, 2024 from

https://www.baeldung.com/java-aes-encryption-decryption

[10] V. Kumar (2023). Encryption and Decryption Using a Symmetric Key in C#. Retrieved May 20, 2024 from

https://www.c-sharpcorner.com/article/encryption-and-decryption-using-a-symmetric-key-in-c-sharp/

[11] GitHub (2024) . AES Encryption Python. Retrieved May 20, 2024 from https://github.com/topics/aes-

encryption-python

[12] S. Vashistha, K. Soni and V. Jethani (2019). Implementation of Advanced Encryption Standard (AES)

Algorithm for Image Encryption. Retrieved April 15, 2024 from

https://www.researchgate.net/publication/380178538

[13] K. Nagaraj (2023) Advanced Encryption Standard (AES): A Secure and Efficient Symmetric Encryption

Algorithm : Understanding AES Encryption, Key Generation, and Applications. Retrieved May 22, 2024 from

https://infosecwriteups.com/advanced-encryption-standard-aes-a-secure-and-efficient-symmetric-encryption-

algorithm-319eedb49905?gi=636fd374d24f

https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
http://www.ijarse.com/images/fullpdf/1522563469_BIT836ijarse.pdf
https://pubmed.ncbi.nlm.nih.gov/?term=Nechvatal%20J%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Barker%20E%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Bassham%20L%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Burr%20W%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Dworkin%20M%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Foti%20J%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Roback%20E%5BAuthor%5D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863838/
https://doi.org/10.6028%2Fjres.106.023
http://onboard/
https://medium.com/@deepak.sirohi9188?source=post_page-----1b30c9a5d900--------------------------------
https://medium.com/@deepak.sirohi9188/java-aes-encryption-and-decryption-1b30c9a5d900
https://www.baeldung.com/author/hamidreza
https://www.baeldung.com/editor/jonathan-cook
https://www.baeldung.com/java-aes-encryption-decryption
https://github.com/topics/aes-encryption-python
https://github.com/topics/aes-encryption-python
https://www.researchgate.net/scientific-contributions/Karuna-Soni-2280316989
https://www.researchgate.net/scientific-contributions/Vivek-Jethani-2280327799

