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 This study is aimed at reducing false alarms in Geregu gas power plant 

by integrating an Artificial Neural Network (ANN) with the 

conventional calibrated detectors to improve their performance. The 

impact of industrial gas leakage to human and environment has 

necessitated the use of detectors to monitor their presence and 

concentration. However, the inability of the detectors to differentiate 

actual gas leaks from unanimous gas figments results to false alarms. 

Primary causes of false alarms were identified with ambient seasonal 

factors and human errors as leading indicators among others. An ANN 

with five inputs, two hidden layers of six and two neurons with an 

output was developed, trained and validated using the plants historical 

alarm data from 2019 to 2024. The results obtained shows false alarms 

occurred almost 100% in January and December which indicates the 

great influence of ambient condition during harmattan periods. Slight 

traces of human operation error were also observed. With an epoch of 

65, the ANN produced an almost 92.2% output matching with a mean 

absolute error (MAE) of 0.371, root mean square error (RMSE) of 

0.304 and R2 representation of 87%. The model thus, demonstrate the 

effectiveness of gas detectors integrating with artificial intelligence 

(AI) to predict true gas leak from unanimous causes of false alarm. The 

ANN, however, cannot completely take the place of conventional 

calibrators, but will improve the overall system performance.  
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1.0. Introduction 

Gas leakage in industries, public or residential premises is one of the sources of harmful air pollution 

and climatic degradation. It creates emission hotspots, significant public human health impacts and 

environmental issues. Carter [1], gave an example, the effects of methane leakage, which is a very 

potent greenhouse gas, was estimated to be more than 80 times the warming potential of CO2 over 

a twenty year period. This is partly due to none established standard systems for estimation of the 

quantity of gas leakage to the immediate environment. Climate Nexus [2], presents a life cycle gas 

leakage rate for 71 cities in United States – US, and it shows that a huge gap exists between annual 

reports and the true values of leakage, which were determined to be four folds higher in some cases. 

This claim has a very serious concern as CO2 is responsible for 60% of the greenhouse effect, and 

four times that value is a huge escalation. Honeywell [3] reported an example that more fatality is 

recorded from gas exposure from leakage, compared to that from explosions. Tabuchi [4] and 

Climate Nexus [2] asserted that at a global level, it takes as small as 0.2% of obnoxious gas leakage 

to produce a global impact as high as the effect from the use of coal in stoker combustion without 

retrofitted flue gas control. Most gas leak rates are measured with flow meter having an accuracy of 

about +2%. Compared to Climate Nexus and Hiroko’s assertions, such instrument will lead to about 
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10 times of actual leak than indicated. This is why routine monitoring of gas leakage in the plant is 

compulsory to prevent severe injuries, fatalities and significant damage to property as mentioned by 

Oloche et al., [5].  

In many industrial establishments, gas leakage is monitored using gas detectors. Honeywell [3] 

listed the typical sectors that require gas detection to include industrial processes involving the use 

of and manufacture of highly dangerous substances particularly toxic and combustible gases, 

petrochemical industries and thermo-fluid plants especially in electricity generation plants.  In 

power generation plants, gas detectors are mounted around turbine bearing seals and housings, 

boilers and burners. Gas detectors are devices that sense the presence of gases in an area often as 

part of a safety system. Their capabilities often include detection of combustible, flammable and 

toxic gases and oxygen depletion in built environments, where an early level of gas detection from 

0% up to lower explosive limits are set to initiate alarms and activate shut down procedure [6, 7, 8]. 

Common available gas leak detectors include Infra-red point sensors, Ultra-sonic detectors, Electro-

chemical gas sensors and semi-conductor sensors [7, 8, 9]. 

In operation, Infra-red imaging detectors scan a laser across field of view and look for back scattered 

light at the absorption line depending on the wavelength of a specific target gas, Muda [10]. The 

ultra-sonic detectors use the acoustic emission created when pressured gas expands in low pressure 

area through a small orifice. On the other hand, electro-chemical detectors use the principles of gas 

diffusion through porous membrane to an electrode where it is chemically oxidized or reduced, [8, 

9, 10]. Gas detection systems are extremely important in power plants because of the need for 

continuous monitoring without human presence. The adoption of fixed-point gas detectors is the 

best fit for such applications like in gas turbine engine for electricity generation power plants, [7, 9, 

11, 12, 13]. 

Infra-red gas detectors are one of the most widely used fixed-point detectors for gas turbine 

applications, [7, 14, 15].  [7, 12, 13] outlined the qualities of Infra-red detectors that make them 

attractive for power gas turbine applications to include fast response time, ability to work in inert 

atmosphere and ability to detect several gases.  [16 - 19] reported that sensors and detectors tend to 

drift when exposed to high concentration of gases and vapour, or extreme conditions such as 

high/low humidity with mass concentration of air borne particles. Such extreme conditions are 

prevalent in vicinities where gas turbine detectors are commonly mounted in power generation 

companies. To improve the sensitivity of detectors, regular calibration is required especially for 

flammable and combustible gases to ensure the accuracy, reliability and functionality of the gas 

detectors, [20, 21, 22]. The overall performance of a gas turbine is also linked with the proper 

performance of gas detectors in operation mostly achieved through regular calibrations, [23, 24, 25]. 

The calibration of gas detectors conventionally requires the use of a standardized known 

concentration test gas for a particular brand and type of detector, [3, 26, 27].  

Failure to detect and quantify gas leaks in power plant industries like gas turbines for power 

generation is disastrous. However, false alarms of gas leak could lead to plant shutdowns, emotional 

destabilization and overall reduction in productivity. Though different types of gas leak detectors 

are used to protect people, equipment, immediate environment with negligible errors, the need to 

predict and mitigate false alarm has become a productivity dependent factor that must be reduced if 

not completely eradicated. The sensors lack means of discerning some leak gases features from the 

figments of similar environmental conditions in the vicinity of power plants. This gap can be filled 

using artificial neural network – ANN comparator, as elaborated by [28, 29] to differentiate false 

gas situation from real leak features in order to minimize the occurrence of false alarms and their 

https://www.researchgate.net/scientific-contributions/Boniface-Oloche-2176583193?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24ifX0
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attendant effects. The significance of integrating an ANN comparator with the current detectors is 

to improve system reliability and plant productivity through the establishment of actual maintenance 

and calibration frequencies.  

 

2.0 Material and Method 

2.1 Materials 

2.1.1 Geregu Gas Power Plant System was used for the study.  The main components that are 

susceptible to gas leak in the plant are:  

i. Gas storage facility receives and stores natural gas momentarily to allow for steady and 

continuous gas supply. Two infrared detectors are mounted for quick leak detection. 

ii. Fuel Combustion Chamber ports: The fuel gas system comprises of dual arms with turbo-

annular combustion chambers - left and right. On each arm is mounted two infra-red type gas 

detectors.  

iii. The fuel gas skid: this is a fuel gas conditioning system that screen solid and liquid content from 

getting into the combustion chamber and provides the required thermodynamic state that is suitable 

for the downstream equipment and emission criteria.  

iv. Combustion Chamber Exhaust:  like every other exhaust, it serves as the passage for 

combusted gas to escape the combustion chamber. In the event of incomplete combustion, which is 

always the case with several degree of efficiency, CO, CO2, hydrocarbons and particulate maters 

are released. 

2.1.2 Instrumentation: The gas turbine instrumentations that are applicable to gas leak detection 

include: 

i. Gas detectors: these are devices that sense the presence of gases in an area which may be in 

a closed or open built environment within a gas power plant. The infrared detectors installed in 

Geregu power plants have the following specifications: 3.0 watts transmitter relay module with 

nominal voltage range of 18-30 vdc with an output signal current from the transmitter is in the range 

of 4 to 20 mA, [3].  

In each location stated earlier, two gas detectors are installed with their sensors connected to potable 

calibrators via a cable network from a junction box as shown Figure 1.  

 
Figure 1: Infrared Detectors used in Geregu Power Plants  

(a) Fixed detector in place. (b)  Detector panels with location numbering. 
 

ii. The gas detection panel: It receives output signal from the transmitter of the gas detector 

sensor. On the panel is screen indicator from which detector gas leakage alarm source can be 

accessed. Typical panel installed in Geregu power plant is shown in Figure 1b. 

iii. Gas detector calibrator: A potable Zellweger analytic type of calibrator is used in Geregu 

power plant with operating temperature of -40 to 40oC [3, 30], 0 to 50% lower explosive limit (LEL), 

with a resolution of 1% (1 ppm), detectable range of 0 to 500 ppm and response time of less than 
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10 to 12.3 seconds for gases like Methane, Carbon Monoxide, Hydrogen Sulphide and Sulphur 

dioxide, [3, 30, 31]. 

2.1.3 Working Fluid: the main working fluids are: 

i. Air: with an approximate density of 1.25kg/m3, [32, 33] specific heat capacity of 1.005kj/kg-k 

[34] and dynamic viscosity of 1.802 x 10-5 kg/m-s at ISO [35].   

ii. Natural gas: predominantly Methane and others [25, 26].  

iii. Combusted gases which include CO2, CO, HC, PM and other minor gases.  

2.2 Methods  

The General procedure used for improving the gas detector sensitivity using ANN based approach 

is similar to ones used by [36 - 39] is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1 Data Set Collection and Model Formulation 

Technique followed similar pattern used by [37, 40, 41, 42, 43]. Data set for 6 years were used; 

from around January 2019 to early 2024. Some of the gas leakage alarm samples captured by the 

gas detectors with the respective dates as obtained from the HMI - control panel where large 

historical data is archived is shown in Table 1. 
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Table 1:  Alarm trigger sample - Possible input for actual and calibrators targeted outputs  
Date X1 X2 X3 X4 X5 Output Calibrated 

01/01/2019 1 1 0 0 1 1 0 

04/04/2019 0 0 1 1 1 1 1 

08/07/2019 0 0 1 0 1 0 1 

18/01/2020 0 1 0 0 1 1 1 

13/11/2020 1 1 1 0 0 0 1 

15/12/2020 1 1 0 1 0 1 1 

21/01/2021 1 1 0 0 1 0 1 

25/01/2021 1 0 0 1 1 0 1 

27/05/2023 0 0 1 1 1 1 1 

17/08/2023 0 1 1 1 0 1 1 

05/01/2024 0 1 0 1 1 1 1 

06/01/2024 0 1 1 0 1 1 0 

22/01/2024 1 0 1 0 1 0 1 

 

Table 1 shows the alarms that triggered during five years period, approximately three times per year. 

In the first column, ‘1’ indicates alarm without any indication of whether it is real or false. In the 

second column, calibrators are used and the results indicate ‘1’ for true alarm and ‘0’ for false alarm. 

The ANN model was designed using data from actual gas detector and the calibrator. Out of 18 

events captured by the gas detector, 72% case scenarios were used for training and the rest for 

validation.  

2.2.2 The design concept 

The concept is based on the combination of the history of the factors that could influence alarm due 

to gas detection which may be true and false as depicted in Figure 3. 

2.2.3 Design Architecture of the Artificial Neural Network  

The alarm from an infra-red detector may come from equipment health condition (x1), location 

distance of the detectors (x2), working fluid state equilibrium (x3), immediate ambient condition 

(x4) and Human operation error (x5). These five factors are considered as the input to the ANN. 

The representative ANN architecture is given in the neural interconnecting chart shown in Figure 4. 
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Figure 3: Pictorial of five variable and pre-conditions which prompt gas leak alarms. 
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Figure 4: Design Architectural of the Artificial Neural Network 

The artificial Neural Network (ANN) for Gas Leak Detector has the following features. 

Inputs: there are five inputs defined below: x1 = Equipment fault, x2 = Detector location, x3 = 

Thermo-fluid condition, x4 = Environmental impact and x5 = Human error. The values of the data 

sets for each xi are binary with ‘0’ indicating no fault/impact thus classifying the alarm as false, or 

‘1’ indicating fault/impact is present, thus producing a real alarm. 

Hidden Layers: there are two hidden layers; Layer-1 (6 neurons) and Layer-2 (2 neurons).  

Output: the output represents an alarm which may be real ‘1’ or false ‘0’.  

Activation Functions: the two activation functions adopted are Sigmoid for hidden layers and linear 

function for the output layer. 

Training Algorithm: Combined forward- and backward-propagations training algorithm was used. 

It is a supervised learning in which binary data sets 𝑛 with 𝑋𝑖 input and 𝑌𝑖 output vectors are given 

for 𝑖 = 1, 2, … , 𝑚 caused of gas leakage and the consequential alarm.   

A typical training set for the supervised learning using binary classification 0/1, for n = 3 and m = 

5, is given in Table 2:  

Table 2: Supervised training data set sample for Gas leak Detector Model  
x1 x2 x3 x4 x5 y 

1 0 0 1 0 0 

0 1 0 0 1 1 

1 1 1 0 1 1 
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2.2.4 Model Formulation and Design Codes in MatLab  

The features, applied weights and biases are given in MATLAB environment in code 1a: 
Code 1a: Network Architecture Definition 

% Network Architecture Definition 

Inputs = 5; 

numInputs = size(inputs, 2); % Number of input neurons 

numHidden1 = 6; % Number of neurons in the first hidden layer 

numHidden2 = 2; % Number of neurons in the second hidden layer 

outputs = 1; 

numOutputs = size(outputs, 2); % Number of output neurons 

% Initialize weights and biases 

weights1 = rand(numInputs, numHidden1) - 0.5; % Weights for layer 1 

biases1 = rand(1, numHidden1) - 0.5; % Biases for layer 1 

weights2 = rand(numHidden1, numHidden2) - 0.5; % Weights for layer 2 

biases2 = rand(1, numHidden2) - 0.5; % Biases for layer 2 

weights3 = rand(numHidden2, numOutputs) - 0.5; % Weights for output layer 

biases3 = rand(1, numOutputs) - 0.5; % Biases for output layer 

  

A forward propagation function is then applied to it using the relation in Equation 1:  

𝑦(𝑧) =
1

1+𝑒−𝑧          (1) 

Where y is a normalization function that constrain the output to stay between 0 and 1, and z is a 

transfer-enthalpy function defines as: 

  𝑧 = ∑ 𝑥𝑖𝑤𝑖,𝑗
𝑛
𝑖=1 + 𝑏𝑖,𝑗       (2) 

Where  𝑥𝑖 is the input variable 𝑤𝑖,𝑗 is the weight given to each transfer path and 𝑏𝑖,𝑗 is the bias 

defined as the sum of the product of the input and the assigned weight to the neuron. The 

MATLAB code-1b presents the implementation of the bias and propagation function. 
Code 1b 

% Forward propagation function 

function output = forward_propagation(input, W1, b1, W2, b2, W3, b3) 

    z1 = W1 * input + b1; 

    a1 = sigmoid(z1); 

    z2 = W2 * a1 + b2; 

    a2 = sigmoid(z2); 

    z3 = W3 * a2 + b3; 

    activationFunction = @(x) 1./(1 + exp(-z3)); 

   output = sigmoid(z3); 

end 

2.2.5 The Model Training Codes 

After the model and mini-coding, the ANN model was trained with detector’s historical data 

obtained from both calibrator and the actual detector. Nine years data – from 2019 to early 2024 

was used for training the model. The codes for training parameters and activation functions are given 

in code 2a. 
Code 2a 

% Training parameters Parameters 

learningRate = 0.1; % Learning rate 

epochs = 100; % Number of training epochs 

 % Training loop 

for epoch = 1:epochs 

   % Forward propagation 

   hidden1 = activationFunction(inputs * weights1 + biases1); 

   hidden2 = activationFunction(hidden1 * weights2 + biases2); 

   outputsPredicted = activationFunction(hidden2 * weights3 + biases3); 
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2.2.6 Testing and Validation: the ANN is applied to a set of data with known outcome, and it 

mimicked the actual detector by predicting outcomes at some randomly chosen dates (28% of 

sample) to validate the potency of the model. The results obtained are compared to the known 

outcome and the difference (error) estimated. A backward propagation signal is implemented to 

provide signals for adjusting the weights and biases until the outputs are within acceptable close 

values to the targets. 

The sample codes for backward propagation, weight and bias adjustment is given in code 2b 
Code 2b 

 % Calculate error 

 error = outputs - outputsPredicted; 

 % Backpropagation 

 delta3 = error .* outputsPredicted .* (1 - outputsPredicted); 

 delta2 = delta3 * weights3' .* hidden2 .* (1 - hidden2); 

 delta1 = delta2 * weights2' .* hidden1 .* (1 - hidden1); 

 % Update weights and biases 

 weights3 = weights3 + learningRate * hidden2' * delta3; 

 biases3 = biases3 + learningRate * sum(delta3); 

 weights2 = weights2 + learningRate * hidden1' * delta2; 

 biases2 = biases2 + learningRate * sum(delta2); 

 weights1 = weights1 + learningRate * inputs' * delta1; 

 biases1 = biases1 + learningRate * sum(delta1); 

 

2.3 The performance Evaluation Criteria for The ANN Model 

In this paper, four performance indicators; root mean square error (RMSE), Linear regression (LR) 

were the criteria utilized to establish the accuracy of the ANN model used for forecasting.  

i. The (RMSE) is defined as the difference between the predicted and experimental values define 

as: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖−𝑜𝑖)2𝑚

𝑖=1

𝑚
                   (3) 

Where 𝑥𝑖 is the desired output for node p and 𝑜𝑖 is the system output for node i, 𝑚 is the sample 

number. As error measurement criteria, the lower the RMSE the more accurate is the model 

evaluated.  

ii. Linear Regression: Kanade [44, 45], defined Linear Regression as an algorithm which provides 

linear relationship between independent and dependent variables. The linear correlation between 

the two variable vectors 𝑥𝑖 and 𝑦𝑖 is defined as: 

𝑟 =
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 −(∑ 𝑥𝑖

𝑛
𝑖=1 ) (∑ 𝑦𝑖

𝑛
𝑖=1 )

[𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 −(∑ 𝑥𝑖
𝑛
𝑖=1 )

2
][𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1 −(∑ 𝑦𝑖

𝑛
𝑖=1 )

2
]
     (4) 

Finding out the linear correlation before fitting a model is a useful tool in identifying the kind of 

relationships between the vectors, as well as level of accuracy associated to the group of data set 

used. The level of accuracy is influenced by the percentage of input data sets that nominally accounts 

for variation in the output. This factor is termed the coefficient of determination, R2, defined as 

[xxx]:  

𝑅2 =
∑ (�̂�𝑖−�̅�)2𝑛

𝑖=1

∑ (𝑦𝑖−�̂�𝑖)2𝑛
𝑖=1

         (5) 

Where 𝑅2 is the coefficient of determinantion, 𝑛 is the number of data sets, 𝑦𝑖 is the actual data 

value, �̂�𝑖 is the regression value and �̅� is the mean value of the actual data. 

iii. Cross-Entropy: For binary classification, Maximum Likelihood Estimator (MLE) is also 

used to determine the cumulative loss between target values and actual ANN outputs. MLE for n 

data sets is defined as [xxx]:   

𝑀𝐿𝐸 =  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: ∏ 𝑞(𝑋𝑖)
𝑦𝑖[1 − 𝑞(𝑋𝑖)

1−𝑦𝑖]𝑛
𝑖=1     (6) 

Log was Applyed to Equation (6), the cross-entropy cost function CE, defined as [xxx]:  

https://en.wikipedia.org/wiki/Dependent_and_independent_variables
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𝐶𝐸 = ∑ [−𝑦𝑖𝑙𝑜𝑔(𝑞(𝑋𝑖)) − (1 − 𝑦𝑖)log (1 − 𝑞(𝑋𝑖))]𝑛
𝑖=1     (7) 

The cost function, is defines the cumulative loss in binary classification training. 

iv. Percentage of good classification (PGC): is simply defined as the average of ANN output in 

percentage. It is calculated from [xxx]:  
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1          (8) 

It gives a quick initial judgement of closeness of targeted and actual outputs.  

The MatLab Codes for the Model Performance evaluation covers the four statistical measures of 

accuracy and dispersion, namely: RMSE, Cross-entropy, linear correlation and PCG. 
Code 3a 

% Calculate performance metrics 

   rmse = sqrt(mean(error.^2)); 

   r = corr(outputs, outputsPredicted); 

   rSquared = r^2; 

   crossEntropy = -mean(outputs .*log(outputsPredicted)+(1 - outputs)...      

.* log(1 - outputsPredicted)); 

   pcg = sum(outputsPredicted >= 0.5 & outputs == 1)/sum(outputs == 1); 

    % Display progress 

   if mod(epoch, 100) == 0 

disp(['Epoch:', num2str(epoch),',RMSE:',num2str(rmse),',R^2: ',...  

num2str(rSquared), ', Cross Entropy: ', num2str(crossEntropy),...  

',PCG:', num2str(pcg)]); 

   end 

end 

  

To generate loss analysis, some sample data for demonstration purposes were used and the 

codes for generating the graphs are in code 3b.  
code 3b 

% Performance curves presentation with a set of separate test dataset  

figure; 

subplot(2, 2, 1); 

plot(1:epochs, rmse); 

title('RMSE vs Epochs'); 

xlabel('Epochs'); 

ylabel('RMSE'); 

  

subplot(2, 2, 2); 

plot(1:epochs, rSquared); 

title('R^2 vs Epochs'); 

xlabel('Epochs'); 

ylabel('R^2'); 

  

subplot(2, 2, 3); 

plot(1:epochs, crossEntropy); 

title('Cross Entropy vs Epochs'); 

xlabel('Epochs'); 

ylabel('Cross Entropy'); 

  

subplot(2, 2, 4); 

plot(1:epochs, pcg); 

title('PCG vs Epochs'); 

xlabel('Epochs'); 

ylabel('PCG'); 

  

title('ANN Performance Curves'); 
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3.0 RESULT AND DISCUSSION  

The model was built and trained with 72% of the data from the actual detector and calibrator 

measurements archived from 2015 to 2024. Randomly selected data from the remaining 28% mainly 

from 2019 and 2024 were used test run the model. Similarly, Table 2 contains sample set used for 

testing the validity of the ANN model while Table 3 contains comparative performances of the 

actual detector, calibrator and the ANN modelled gas detector sensor. Figure 7 is the chart showing 

gas leak sensitivity ratios for the 18 cases recorded between 2019 and 2024 for the gas detector and 

the calibrator. 

3.1 Data Classification and Alarm Representation 

The data used is classified into two non-calibrated and calibrated data, each of which presents two 

possible outcomes – true of false alarm on combination of some factors that are responsible to 

actuate the detector measurement and hence, trigger the alarm.  

The bar-chart in Figure 5 shows the frequency of true or false from the sample readings of the actual 

detector and that of the calibrator. 

 

Figure 5: Percentage detector and calibrator Alarms for 18 cases recorded between 2019-2024 

The total binary data (0, 1) is 64; 32 for calibrated and non-calibrated each. In non-calibrated, 20 

are true ‘1’ representing 63% and 12 are false ‘0’representing 37%. After the detector is calibrated, 

25 are true alarm ‘1’ representing 78% while 7 of them represents false ‘0’ representing 22%.  

Detector faults may be due to several issues; however, all of them result to sensor drifting and 

possible false alarm. This was generally classified as measuring equipment faults. It therefore 

indicates that fixing calibration helps to improve detector performance by 15%, thus the balance of 

false alarm 22% (37% - 15%) is caused by other sources, namely: distance of detectors from leakage 

source, extreme condition of working fluid, impact of environment which may be seasonal or 

periodical on daily bases, and human error.  

3.3 Major Causes of False Alarm in Geregu Gas Power Plant 

3.3.1 False Alarm due to Seasonal Condition of the Plant Environment 

According to [46, 47], the central region of Nigeria – particularly the Federal Capital Territory, 

Abuja, are governed by a well-defined single rainy season (April to September) and dry season 

(December to March) with October and November as transition period. From this definition, a 

scatter table for the true and false alarm are shown in Table 3 with ‘1’ in green representing true 

alarm and ‘0’ in orange indicating false alarm. 
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Table 3: Scatter plot table for true and false alarm of monthly events per season 

Year 
Rainy season Dry season 

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar 

2019 1    1        0   

2020         1 0 0   

2021            
 0,  

   
1 

2023   1    1         

2024             

 0,        

   
 0,               

1 

 

As observed in Table 3, the actual gas detector was quite over sensitive (false alarm) in six instances, 

which is considered appropriate compared to Lin et al., [48] characterization of the detector sensors. 

From the table, all the instances during which the detector sensor flagged false gas leak alarms (as 

shown in orange) occurred in December and predominantly in January; during the harmattan periods 

of each calendar year. This assertion was also confirmed from the records of the Instrumentation 

and Control unit at Geregu power station, which showed that the false gas detection alarms on those 

came up on the HMI in the control room due to dusty matter and cobwebs on the lens of the plant 

gas detectors, and hence, wrong analysis for gas-leakage. This assertion was also aided with further 

documentation based on detector location. Out of six pairs of detectors deployed within and outside 

the turbine-built environment, 2 pair were involved in all the given alarms and they were position 

closer to the outer ambient. Thus, it can be concluded that seasonal and environmental factors are 

highly responsible for false alarm in the Geregu gas power plant.  

3.3.2 False Alarm due to Human Factor 

Record also indicated that one of the alarms was caused by extreme pressure condition in the 

combustion chamber. Investigation of this using Y-Y analysis shows that a maintenance schedule 

was missed in order to meet production target after a previous off-line backwashing that took over 

3 hours shutdown. The resultant contributing factors by weight are given in the radar-chat of Figure 

6. 

From the pentagonal radar graph in Figure 6, the points for both location and thermo-fluid properties 

fall within the innermost pentagon and are thus considered as having non-substantial effect on the 

alarm status, [49]. This is followed by the effect of equipment defect which is greatly resolved 

through calibration processes. The two significant factors that mostly influence false alarm are 

human error and seasonal conditions. While human error can be managed through staff training on 

system quality control and assurance management and their impact on safety of human life 

equipment and environment as well as on productivity. Seasonal factor can be mitigated through 

planned maintenance policy and reverse engineering via entrance space humidification and use of 

air curtain among others. These are intended to increase the masses of in-coming dust to change 

their flow direction towards the ground to make them easily removable.  
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Figure 6: Pentagonal Radar Chart for Gas Leakage Influenced Factors 

3.4 Performance of Calibrated Detector Integrated with the ANN-model 

3.4.1 Model Accuracy 

The accuracy of the ANN-integrated calibration model is shown in Table 4 with RMSE and Cross-

entropy against the calibrator-target and ANN-integrated model outputs.  

Table 4: Gas detector, calibration and ANN Performance Test Samples 

Date 
Detector 

(Input) 

Calibrator 

(Target 

Output) 

ANN 

(Predicted 

Output) 

Root Mean 

Square 

Error  

Cross – 

Entropy 

02/06/2021 1 1 1 0 0.25238 

13/06/2022 1 1 0.9989 0.00000001 0.25076 

26/09/2022 1 1 1 0 0.25001 

04/10/2022 1 0 0.6753 0.025686473 0.24897 

15/02/2024 1 1 0.9358 0.00000729 0.24854 

Epoch 

65 

r 

0.95 

R^2 

0.87 

PCG 

0.9220 

RMSE 

0.3034 

CE 

0.2501 

 

One of the test samples is presented in Table 4. It covers expected alarm events for three years 

horizon of calibrated without ANN and calibrated with ANN. The three main measures used are: 

percentage of good classification (PGC), Root mean square error (RMSE) and cross-entropy (CE). 

To ascertain the level of relationship between input and output, linear correlation r and coefficient 

of determination R2 were also examined.  

After 100 epochs of several training and testing, the optimum training performance using the 

Levenberg-Marquard technique [50, 51] was taken to be at 65 epochs as shown in Figure 7.  
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Figure 7: Plot showing best performance measures of the ANN model. 

3.4.2 Measure of Model Error and Loses 

The graphs are classified into two zones; low and high measure value zones. In the low measure 

value zone are root mean square error (RMSE) and cross-entropy (CE) which are measures of errors 

and their probability distributions of the predicted and actual values.   

From Figure xxx, the average RMSE against 65 Epochs is 0.30 and the cross enthalpy is 0.25. The 

variation pattern of the RMSE and CE are shown in exploded views of Figure 8.  

 
Figure 8: Exploded view of the RMSE and Cross-Entropy 

3.4.3 Model Correlation and Fitness 

At the upper part of the graph 7 are PCG, r and R^2. The PCG measures the average output of the 

model and it is seen to have grown quickly to 0.92 at 65 epochs with a linear correlation r of 0.95 

and R2 of 0.87 of the sample data sets as shown in Figure 9 
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Figure 9: Regression performances for training, validation and test of the ANN model. 

The population data shows a more inclusive influence in the determination of variation in the model 

output with an R^2 of 0.9961 and an r of 0.98 after data is cleaned of outliers.  

The performances of indicate very close correlation between the ANN based detector outputs and 

the target (calibrator measurements) with large numbers of the data sets influencing the 

determination of the outputs thus, resulting a high percentage of classification and low RMSE and 

cross-entropy. The overall results suggest good performance in terms of best fit and accuracy. 

 

4.0      Conclusion 

An artificial neural network (ANN) with five input, two hidden layers, and one output based on 

AND logic gate with binary inputs was developed for true gas leak detection in Geregu power plant. 

Several factors responsible for gas leak were conventionally summed up around detectors’ sensor 

drifting and thus, calibration process is the only correction measure commonly applied. It was found 

that even calibrated detectors may still produce false alarm due to seasonal ambient condition, 

human operation error, extreme pressure imbalances of the working fluid and relative leakage 

location to fixed detector position. The unique contribution of this study is that it traces the causes 

of false alarm beyond detectors’ sensor drifting to these primary factors expressed in binary 

representation with AND logic gate to train, validate and test the ANN.  The result obtained shows 

that sensitivity of the actual gas detector is over 170%. While sensor over sensitivity may be 

reasonable in the short to mid-term life span, it ruins the results in the long run when other factors 

could have their ways to overcome the sensor weakness due to ageing, thus, leading to false leak 

detection alarms. As such, it is important to consistently calibrate the detector sensor, which mostly 

takes a lot of time and operation interruptions. In this study it is seen that a robust and well 

formulated Artificial Intelligence (AI) based detector sensor model with RMSE of 0.3034 and 

overall R2 of 87%, was used to accurately predict gas leakages for true or false scenarios with 92.2% 

prediction status at an epoch of 65.  
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It can thus be concluded that an ANN based gas detector sensor can be used to alternatively monitor 

the sensitivity of the actual gas detector as the model results were validated against calibration data 

with almost zero differences. Though, the ANN model detectors cannot wholly replace the role of 

calibration the integration of the two will provide an excellent AI based sensor that will eliminate 

false alarms and improves productivity in gas power plants.  
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