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The focus of this research is to assess the effectiveness of statistical 

downscaling and bias correction methods in predicting future climate 

conditions under various climate change scenarios in Benin City, 

Enugu, Lokoja, and Port Harcourt. The study utilizes 14 years of daily 

precipitation data spanning from 1982 to 1995 obtained from four Food 

and Agricultural Organization (FAO) climate change meteorological 

stations. Simulated input data from Regional Circulation Models 

(RCMs) was acquired from The Earth System Grid Federation (ESGF) 

online platform. Daily precipitation data for the future period (2041–

2050) from RCMs (AFR-44) was employed. The data underwent bias 

correction and statistical downscaling with a spatial resolution of 0.35 

degrees. Analysis of the RCM-simulated historical data reveals intense 

precipitation activity, particularly in the Benin region and Port 

Harcourt city. However, a comparison with observed data from 

meteorological stations highlights significant discrepancies, 

underscoring the necessity of bias correction and downscaling 

techniques before utilizing such data for environmental analyses. 
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1.0.Introduction 

Climate simulations are integral for assessing the impact of anthropogenic emissions of 

greenhouse gases, such as carbon dioxide, methane, and nitrous oxide, on Earth's climate 

dynamics [1, 2]. Moreover, they serve as indispensable tools for examining the consequences 

of climate change on the natural environment through various environmental modeling 

approaches [3, 4, 5]. Over the past decade, notable progress has been achieved in the field of 

climate modeling, including significant enhancements in the spatial resolution of global climate 

models (GCMs) spanning from the 1960s to the 2010s [6, 7, 8]. 

Statistical downscaling serves as a method utilized in climate modeling to acquire detailed 

forecasts of forthcoming climate conditions with heightened resolution. Its aim is to furnish 

more nuanced insights into future climate scenarios than what is achievable solely through 

global climate modeling [9, 10]. In instances where Regional Climate Model (RCM) data is 

either unavailable for a specific locale or remains excessively coarse, statistical downscaling 
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can be deployed. Numerous statistical downscaling methodologies have been devised [11, 12]. 

While global climate models offer insights into overarching climate change patterns, they often 

fall short in capturing localized variations critical for numerous applications like agriculture, 

water resource management, and infrastructure planning. Statistical downscaling serves as a 

means to bridge this disparity by leveraging historical data to establish statistical correlations 

between large-scale and local-scale climate parameters. Consequently, statistical downscaling 

establishes a statistical linkage between historical observed climate data and the output of 

climate models for corresponding historical periods. This linkage is then harnessed to generate 

future climate projections [13, 14]. 

Statistical downscaling serves as a pivotal instrument for comprehending the potential 

ramifications of climate change at local scales. By furnishing intricate insights into forthcoming 

climate conditions, it facilitates strategic planning and adaptation efforts by decision-makers. 

However, statistical downscaling may introduce inaccuracies into projections if the statistical 

relationships employed in the process are flawed. To rectify this issue, bias correction comes 

into play. This method entails aligning statistical downscaling projections with observed data, 

thereby refining their accuracy [15]. Bias correction and statistical downscaling are frequently 

employed in conjunction to refine the precision of climate projections at local scales. While 

statistical downscaling yields high-resolution forecasts, bias correction ensures their fidelity. 

Both techniques synergize to enhance the accuracy of climate modeling projections [16, 17]. 

In preceding decades, available daily climate observations, typically at appropriate fine 

resolutions, have facilitated impact analyses. However, reliance on General Circulation Models 

(GCMs) predominates for generating simulated climate data for future periods. Nonetheless, 

the spatial resolutions of these models prove inadequate for direct application in detailed local 

impact assessments. Additionally, inherent biases permeate each model simulation, which, if 

unaddressed, could yield significant inaccuracies. Hence, prior to integrating GCM data into 

regional impact evaluations, the imperative need for bias adjustment and spatial downscaling 

persists [11]. 

2. Research Methodology 

To adhere to the primary objective of this study, which aims to employ bias correction and 

statistical downscaling as modeling tools for climate change assessment, we integrated bias 

correction with statistical downscaling to precisely ascertain the projected climatic conditions. 

Consequently, bias correction and spatial downscaling were applied to outputs from a Global 

Circulation Model (GCM) simulation for both historical and scenario data simulations 

concerning a specific input variable, namely daily precipitation data. The procedural steps 

involved in bias correction and downscaling of climate data are depicted in the flowchart 

illustrated in Figure 1. 

 

2.1 Data Acquisition 

A prolonged period of model and corresponding observations is essential to ensure the 

statistical downscaling process produces dependable results. The data utilized for this 

investigation consists of 14 years of daily precipitation records spanning from 1982 to 1995. 

These records were sourced from four climate change meteorological stations affiliated with 

the Food and Agricultural Organization (FAO), strategically positioned across Nigeria. The 

primary emphasis was on stations situated in Edo, Enugu, Kogi, and Rivers states. Details 

regarding the geographical coordinates of these stations are provided in Table 1. 
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Figure 1: Methodological Flowchart [17] 

 

 

Table 1: Spatial Location of Meteorological Observation Station in Nigeria  
S/N Station Location Latitude Longitude Elevation 

1 Benin City 6.3089 5.6054 93.92 

2 Enugu 6.4509 7.4841 151.33 

3 Lokoja 7.8135 6.726 167.21 

4 PortHarcourt 4.8109 7.0477 27.2 

 

The selection of Benin City, Enugu, Lokoja, and Port Harcourt as the study areas is grounded 

in several key considerations essential for addressing the research objectives effectively. 

Firstly, these cities represent diverse geographical and climatic conditions within Nigeria, 

allowing for a comprehensive assessment of climate change impacts across different regions. 

Moreover, they are centers of population, economic activity, and infrastructure development, 

making them particularly vulnerable to the effects of climate change. Additionally, the 

availability of long-term meteorological data from Food and Agricultural Organization (FAO) 

climate change meteorological stations in these cities facilitates robust analysis and comparison 

with simulated data from Regional Circulation Models (RCMs). By focusing on these specific 

locations, the study aims to provide insights that are relevant and applicable to local 

stakeholders, policymakers, and communities, thereby contributing to informed decision-

making and climate resilience efforts in Nigeria. 

Thus, General Circulation Models (GCMs) offer global-scale climate change data sourced from 

various channels. However, for this particular investigation, data from the Regional Circulation 

Model (RCMs) was acquired through The Earth System Grid Federation (ESGF) online 

platform. This platform serves as a repository of both historical and projected climate data, 

catering to researchers and end-users with customized datasets based on specific variables and 

criteria. Daily precipitation data for the future period (2041–2050) was extracted from RCMs 
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(AFR-44) and subsequently subjected to bias correction and statistical downscaling with a 

spatial resolution of 0.35 degrees. Further particulars regarding the specific RCM employed 

are delineated in Table 2. 

Table 2: Corresponding details of the Regional Circulation model (RCM) used 
RCMs AFR-44 

Project CORDEX 

Driving model ICHEC-EC-EARTH 

Variable Precipitation (p) 

Experiment Historical and RCP4.5 

Time frequency Daily 

 

A summary of the acquired data is presented in Tables 3, 4, 5, 6, 7 and 8 representing the daily 

average historical observed precipitation from 1982-1995, yearly average historical observed 

precipitation from 1982-1995, daily average historical simulated RCM precipitation from 

1982-1995, yearly average historical simulated RCM precipitation from 1982-1995, daily 

average future simulated RCM precipitation (2041-2050) and yearly average future simulated 

RCM precipitation (2041-2050). 

 

The analysis of the projected maps depicted in Figure 5 reveals significant insights into the 

historical precipitation patterns simulated by the Regional Climate Model (RCM). Specifically, 

our observations highlight a notable concentration of intensive precipitation activity, 

particularly evident in the vicinity of the Benin region and the city of Port Harcourt. However, 

upon comparison with data obtained from various meteorological stations, it becomes apparent 

that there exists a substantial disparity between the simulated RCM data and observed values. 

This incongruity underscores the necessity of implementing bias correction and downscaling 

techniques prior to utilizing such data for environmental studies. To address this issue, bias 

correction was performed on the historical precipitation data generated by the RCM, utilizing 

observation data as a reference input. The CMhyd software was instrumental in executing this 

corrective procedure. Furthermore, Figure 6 illustrates the contrast between the future 

simulated precipitation for the period 2041-2050 and the corrected future precipitation, 

presented in map format. Notably, the corrected future precipitation map indicates a reduced 

projection of precipitation compared to the uncorrected RCM simulation. Moreover, the 

analysis extends to incorporate additional crucial parameters such as standard deviations, 

variance, mean of wet days, and coefficient of variation. These metrics were meticulously 

examined for each of the four meteorological stations and are graphically represented in 

Figures 6 through 9, offering further insights for consideration. 



 
 Ilaboya, I.R et al.  /Journal of Science and Technology Research 

6(1) 2024 pp. 98-110 

102 

 

Table 3: Daily average historical observed precipitation (1982-1995) 
Years Benin Enugu Lokoja Portharcourt 

1982 13.19085 11.1711 9.554356 16.70780822 

1983 3.705753 3.518219 2.727534 7.196191781 

1984 3.54082 3.258142 2.471721 6.150245902 

1985 4.601808 4.042932 3.149479 7.576931507 

1986 5.684767 4.171699 3.193151 7.171589041 

1987 4.408795 3.957589 3.156986 6.668054795 

1988 7.217842 6.879891 5.646557 10.75546448 

1989 7.323014 5.898164 4.57274 9.506657534 

1990 5.388493 5.340164 4.289726 9.418136986 

1991 3.993315 3.537863 2.494822 6.235123288 

1992 4.864098 3.876257 3.16653 7.274535519 

1993 4.183644 3.95663 2.909781 8.74539726 

1994 7.170356 5.529534 4.490904 8.185945205 

1995 5.623068 5.460027 4.329178 9.207013699 

Average 5.77833 5.042729 4.010962 8.628506801 

 

Table 4: Yearly average historical observed precipitation (1982-1995) 
Meteorological stations 14 Years Average 

Benin 5.77833 

Enugu 5.042729 

Lokoja 4.010962 

Portharcourt 8.628506801 

 

 

Table 5: Daily average historical simulated RCM precipitation (1982-1995) 
Years Benin Enugu Lokoja Portharcourt 

1982 1.275726 1.469233 1.469233 1.655945205 

1983 1.421288 1.286055 1.286055 1.33630137 

1984 1.084795 0.984849 0.984849 1.098794521 

1985 1.907315 1.724932 1.724932 1.913424658 

1986 2.208082 1.745644 1.745644 1.710246575 

1987 1.663571 1.345714 1.345714 1.396648352 

1988 1.35418 1.367268 1.367268 1.494153005 

1989 2.372329 2.068685 2.068685 2.11739726 

1990 1.706411 1.680466 1.680466 1.810547945 

1991 1.783753 1.826329 1.826329 1.930630137 

1992 1.125929 1.148115 1.148115 1.330300546 
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1993 1.325699 1.429233 1.429233 1.693424658 

1994 1.362301 1.07789 1.07789 1.097287671 

1995 1.580384 1.482521 1.482521 1.528136986 

Average 1.583697 1.474067 1.474067 1.579517064 

 

 

Table 6: Yearly average historical observed precipitation (1982-1995) 
Meteorological stations 14 Years Average 

Benin 1.583697 

Enugu 1.474067 

Lokoja 1.474067 

Portharcourt 1.579517064 

 

 

Table 7: Daily average future simulated RCM precipitation (2041-2050) 

 

 

 

Table 8: Year average future simulated RCM precipitation (2041-2050) 
Meteorological stations 10 Years Average 

Benin 1.152956 

Enugu 0.741251 

Lokoja 0.741251 

Portharcourt 1.159637099 

 

From the data presented in Tables 3 to 8, it was obvious that the observed and simulated data 

vary in significant amounts. This is because the Regional circulation model is meant to predict 

Years Benin Enugu Lokoja Portharcourt 

2041 0.953041 0.661425 0.661425 1.10739726 

2042 1.278438 0.84074 0.84074 1.181342466 

2043 0.935628 0.520027 0.520027 0.898715847 

2044 1.189836 0.781562 0.781562 1.376657534 

2045 1.591973 0.859205 0.859205 1.461616438 

2046 0.87126 0.575589 0.575589 0.938684932 

2047 0.936667 0.383661 0.383661 0.605874317 

2048 0.850027 0.693918 0.693918 1.158986301 

2049 1.588685 1.041863 1.041863 1.452054795 

2050 1.334 1.054521 1.054521 1.415041096 

Average 1.152956 0.741251 0.741251 1.159637099 
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(to a 3.5 degree) the amount of precipitation based on some computations which have proven 

to provide accuracy over a regional scale but if being used on a local scale, will accumulate 

biased readings. Thus, the Bias correction procedures are used to minimize the discrepancy 

between observed and simulated climate variables (precipitation) on a daily time frequency 

step so that hydrological simulations driven by corrected simulated climate data match 

simulations using observed climate data reasonably well. To extract and bias-correct data 

obtained from global and regional climate models, CMhyd tool was employed.  

In bias correction techniques, a transformation algorithm is utilized to adjust the outputs of 

climate models. The underlying principle is to parameterize this algorithm to rectify simulated 

historical climate data by identifying disparities between observed and simulated historical 

climate variables. It is expected that the adjustment algorithm and its parameterization for bias 

correction methods remain consistent, ensuring the relevance of present climate conditions to 

future scenarios. Thus, forthcoming climate data undergo adjustment using the same algorithm 

The steps involved in applying bias correction and statistical downscaling using CMhyd are as 

follows: (a) Data preparation: CMhyd organizes observed data in ASCII format, with each 

gauge's details recorded in separate files listed in the location file. Separate files are maintained 

for precipitation and temperature data. The latitude and longitude fields in the location files 

specify gauge locations, while the NAME fields indicate corresponding data files. The first line 

in data files denotes the time series start date, with subsequent lines representing each day. 

Missing values are indicated using a no-data value such as 99.9 or 0, with one record per day 

representing the daily sum of precipitation in millimeters. (b) Extraction of climate model 

data: Climate models typically provide time series data in the netCDF3 format, stored in 

multiple binary-decoded *.nc files. NetCDF facilitates the production, access, and exchange of 

array-oriented scientific data, endorsed as an open standard by the Open Geospatial 

Consortium. Each file contains various variables, dimensions, and attributes. CMhyd utilizes 

netCDF file metadata to identify model grid cells overlapping with gauge positions and convert 

precipitation data into millimeters. Time series data for relevant grid cells are then extracted 

from the netCDF files. (c) Data processing: CMhyd's Processing tab in the graphical user 

interface (GUI) guides users through data extraction and bias correction. This process typically 

involves five steps outlined in the CMhyd GUI depicted in Figure 2. 

 

 
Figure 2: CMhyd graphical user interface. The orange numbering represents the processing 

steps  
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The step numbering (1) represent the process of importing the data into the software. Step (2) 

involves selecting the bias correction method using the Linear Scaling method, Step (3) 

involves selecting the Historical and future simulated climate data. Step (4) involves choosing 

a storage folder and step (5) involves processing the data. 

The linear downscaling method, selected for this study, involves establishing statistical 

relationships between large-scale climate variables simulated by Regional Circulation Models 

(RCMs) and local-scale climate variables observed at specific locations. By quantifying these 

relationships through linear regression, the method enables the estimation of future local 

climate conditions based on RCM output. This approach is justified in the study for its 

simplicity, computational efficiency, and ability to capture linear relationships between large-

scale and local-scale climate variables, making it suitable for downscaling daily precipitation 

data in the selected study areas. Additionally, linear downscaling is widely used in climate 

research and has been shown to produce reasonable results, especially when applied alongside 

bias correction techniques to account for discrepancies between simulated and observed data. 

Thus, by employing the linear downscaling method, the study aims to provide reliable 

projections of future climate conditions in Benin City, Enugu, Lokoja, and Port Harcourt, 

facilitating informed decision-making and adaptation planning in the face of climate change. 

 

3. Results and Discussion 

Following the bias correction of the input data, the daily average future corrected precipitation 

for the period 2041-2050 was derived and is displayed in Table 9. Additionally, the yearly 

average future corrected precipitation for the same period is showcased in Table 10. 

Table 9: Daily average future corrected precipitation (2041-2050) 
Years Benin Enugu Lokoja Portharcourt 

2041 2.61137 1.637863 1.196219 4.476246575 

2042 2.408986 1.258493 0.822438 3.726849315 

2043 0.906503 0.488415 0.363142 2.427459016 

2044 1.600603 1.027288 0.660384 3.83490411 

2045 3.208767 1.896603 1.290986 5.308191781 

2046 1.286603 0.863699 0.573041 2.422219178 

2047 1.396667 0.651011 0.518142 2.806666667 

2048 1.245589 1.209562 0.847233 3.938027397 

2050 2.546466 1.724658 1.080849 4.378410959 

Average 2.069706 1.287277 0.881068 3.922785171 

 

Table 10: Year average future corrected precipitation (2041-2050) 
Meteorological stations 10 Years Average 

Benin 2.069706 

Enugu 1.287277 

Lokoja 0.881068 

Portharcourt 3.922785171 

 

To illustrate the distinct contrast between the bias-corrected and downscaled future climate 

data and the RCM-simulated future data, graphical visualization plots and spatial maps were 

generated and are presented in Figures 3, 4, and 5, respectively. 
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(A)                                                                                         (B) 

 

   (c)       (D) 

Figure 3: Line graphs showing the difference between corrected and uncorrected future 

precipitation data for each of the station; (A) represents station at Benin, (B) represents station 

at Enugu, (C) represents station at Lokoja and (D) represents station at Portharcourt 

 

 
Figure 4: Map showing the average daily precipitation as produced by the GCM (Left side) and 

Average daily precipitation as produced by observation stations (Right side) for historical 

Climate change 
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Figure 5: Map showing the average daily precipitation as produced by the GCM (Left side) and 

Average daily precipitation as produced by observation stations (Right side) For Future climate 

change (2041-2050) 

 

 
Figure 6: Additional plots for Benin station 
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Figure 7: Additional plots for Enugu station 

 

 

 
Figure 8: Additional plots for Lokoja station 
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Figure 9: Additional plots for Portharcourt station 

 

4. Conclusion 

In order to generate the requisite future climate data crucial for assessing the impacts of climate 

change, we employed bias correction and statistical downscaling techniques. Although 

originally designed for handling monthly data, we adapted this approach to accommodate daily 

precipitation information. Operating at a spatial resolution of 3.5°x3.5°, this method 

successfully yielded bias-corrected daily precipitation data derived from the AFR-44 Regional 

Climate Model (RCM) spanning the years 2041 to 2050. The availability of bias-corrected 

future climate projections from the RCM facilitates impactful analyses of climate change 

effects. As such, our study underscores the critical significance of bias correction and 

downscaling methodologies in climate change research. These techniques are indispensable for 

effectively scaling general circulation models to local contexts, thereby informing climate 

change studies and facilitating informed environmental planning decisions. 

The implications of our findings highlight the importance of employing bias correction and 

statistical downscaling techniques in climate change research, particularly in regions like Benin 

City, Enugu, Lokoja, and Port Harcourt. By successfully adapting these methods to 

accommodate daily precipitation data, we have demonstrated their utility in generating future 

climate projections at a local scale. This has significant implications for understanding and 

preparing for the impacts of climate change in these regions, where accurate climate data is 

crucial for informed decision-making in environmental planning, infrastructure development, 

and resource management. Furthermore, our study underscores the need for continued research 

and improvement in bias correction and downscaling methodologies. Future research efforts 

should focus on refining these techniques to enhance their accuracy and reliability, especially 

in regions characterized by complex climate dynamics. Additionally, there is a need to explore 

alternative downscaling approaches and evaluate their performance against existing methods 

to identify the most suitable techniques for specific climate modeling applications. Moreover, 

incorporating uncertainty quantification techniques into bias correction and downscaling 



 
 Ilaboya, I.R et al.  /Journal of Science and Technology Research 

6(1) 2024 pp. 98-110 

110 

 

frameworks can provide valuable insights into the reliability and robustness of future climate 

projections, further improving their usefulness for decision-makers and stakeholders. In 

conclusion, our study emphasizes the critical role of bias correction and statistical downscaling 

in generating reliable future climate projections for climate change impact assessments. 

Moving forward, continued research and innovation in these methodologies are essential for 

advancing our understanding of regional climate dynamics and supporting effective climate 

change adaptation and mitigation strategies in vulnerable regions like Benin City, Enugu, 

Lokoja, and Port Harcourt. 
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