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 In the past decades, cryptographers tried to validate that a 

cryptographic universe exists by instantiating its components 

from concrete computational assumptions. Presently, a large set 

of public key primitives is built from Deffie Hellman (DH), 

factorization and lattice-based assumptions. Unfortunately, no 

corresponding amount of progress is made in building such a 

large set of crypto primitives from quantum cryptosystem 

derivatives including code based, multi-variate based, or isogeny-

based assumptions. This retarded progress is attributed to the 

quantum-based primitives not being mainstream assumptions yet. 

This is not good for the security requirement of the future as the 

DH or factorization assumptions are not post-quantum secure. 

Additionally, it is unwise to trust one single post-quantum solution 

given the recent advances in lattices cryptanalysis. Therefore, it 

is wise to diversify the set of possible post-quantum secure 

assumptions to build rich crypto primitives. In readiness for a 

possible cryptographic tsunami in the next couple of years, we 

propose a post quantum key exchange scheme based on 

supersingular elliptic curve isogeny known as Quantum Resistant 

Supersingular Isogeny Key Exchange scheme, which is based on 

eSIDH. The scheme employs Montgomery and Edward models 

that allow performing arithmetic operations faster. 
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1. Introduction 

Cryptographic security has the objective of utilizing well-defined hard mathematical problems that 

are impossible to solve. Such security is provided by current public key cryptography-based 

cryptosystems such as RSA, ECDH, ECDSA, etc. are current cryptographic systems deployed in 

higher level and real-world security solutions like Transport Layer Security (TLS) protocol use in 

secure internet browsing with https, PGP, automatic updates of software using public key digital 

signatures for the purpose of authentication [1]. These higher-level security applications provide 

confidentiality, integrity, availability, and nonrepudiation ser-vices to governments and private 

businesses including the financial sector. The secure services hitherto enjoyed would in no time 

become elusive due to quantum computing. Many post quantum cryptosystems are developed in 

readiness for a possible cryptographic tsunami in the next couple of years. Calling what the 
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cryptography universe looks like, we have the world of minicrypt where the one-way functions 

exist, cryptomania where the public key encryption exist, and the obfustopia where the 

indistinguishability obfuscation exist which can be described as a crypto dream world. In the past 

few decades, cryptographers have attempted to validate the existence of these worlds by 

instantiating them from concrete computational assumptions. Therefore, these concrete hardness 

assumptions in some sense act as a crypto atlas for these worlds. In some more details, cryptomania 

typically consists of many public key primitives and these have been built from many different 

assumptions. Now the state-of-the-arts look something like this, a very large public key primitive 

with rich functionalities have been built from Diffie Hellman (DH) assumption, factorization 

assumption and more recently from lattice-based assumption. Unfortunately, not similar amount of 

progress has been made in building such a large set of crypto primitives from code based, 

multivariate based, hash-based, symmetric key quantum resistance or isogeny-based assumptions. 

This retarded progress can be attributed to the fact that these quantum cryptosystem derivatives are 

not yet mainstream cryptographic assumptions. This is not a good shade of affair because it is well 

known that the construction based on the DH or factorization assumptions are not post-quantum 

secure. In addition, given the recent advances in lattices cryptanalysis, it is perhaps unwise to put 

all our crypto eggs into one single post-quantum bag. In other words, it is interesting and perhaps 

important question to diversify the set of possible post-quantum se-cure assumptions from which 

we can be rich crypto primitives in cryptomania. Among the post-quantum secure assumptions are 

code-based, lattice-based, multivariate based, symmetric quantum resistance based and isogeny-

based assumptions. Code based cryptography relies on the hardness assumption of problems in 

coding theory such as the syndrome decoding and the learning parity with noise problems. [2] came 

forward with a code-based post-quantum cryptographic scheme called hybrid universal network-

coding cryptosystem that guarantees computational security in networks were using PKE over all 

network links is not possible. Instead, the scheme sufficiently encrypts a single selected link and by 

so doing ensures a desirable computational security over all paths with appreciable information rate 

in the network. [3] contributed in the understanding of code-based cryptography by carrying out a 

survey on the most recent development in this area. Based on their work, publications by most 

researches in this area showed that code-based cryptography is mainly adopted in developing 

encryption schemes, signature schemes, and identification schemes. The work of [4] goes to confirm 

the application direction of the code-based quantum cryptographic approach. In a comparison of 

post quantum cryptographic algorithms, the authors confirmed their position in [3] by showing that 

code-based cryptography has usefulness in encryption/decryption and digital signatures.  

Hash-based cryptography takes its security assurance from the assumption of irreversibility of hash 

functions. This security assurance characterizes hash functions as one-way functions, collision 

resistant, and second pre-image attacks. Based on these properties, hash-based cryptography is a 

promising candidate for providing post quantum cryptographic security. Most researches on hash-

based cryptography reveal that the approach is principally, deployed in signature schemes. [5] 

presented a classification and discussion on the different hash-based signature solutions. The 

authors’ discussed on the advance made in the area of hash-based signatures, which aims to analyze 

the different hash-based signature categories including possible direction for development of hash-

based signatures. In [4], hash-based cryptography is shown to be mainly applicable in the design of 

digital signature schemes. [6] showed the strategic role of hash functions in signatures by 

investigating the application of hash-based signatures in IoT devices security in post quantum era. 

According to the authors, the appropriateness of the selection was based on the constraints of design 

and optimization requirements of the scheme. Another signature scheme named chameleon 

signature scheme was proposed in [7]. This hash-based quantum-resistant scheme is designed as an 

alternative to number theoretic methods including the one presented by Krawczyk and Rabin. 

Lattice-based cryptography is perhaps the most studied post quantum cryptographic approach. The 

security of lattice-based post quantum schemes is premised on some fundamentally hard lattice 
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problems namely, shortest vector problem (SVP), closest vector problem (CVP), short integer 

solution problem (SIS), and learning with errors (LWE). Research works in this area show that 

lattice-based cryptography is used to implement encryption/decryption algorithms, signature 

algorithms, and key exchange schemes [4]. However, this post-quantum cryptography approach is 

supposedly bedeviled by brute force attack, meet-in-middle attack, lattice reduction attack, and 

chosen cipher text attack. [8] clarified that though these attacks have been used in security evaluation 

of the lattice-based cryptosystems, the results have not been satisfactory as the evaluations were 

based on too simple assumptions. This either overestimates or underestimates the security of lattice-

based schemes, hence current estimates in terms of security are not dependable and are unclear. To 

solve this puzzle, the author based his improved runtime analysis of the attacks on more concrete 

assumptions and further evaluated the security against the attacks for the lattice-based schemes. His 

result validated the fact of the overestimation or underestimation of lattice-based schemes e.g. 

NTRU, BLISS, etc. This concern is actually our main motivation to adopting isogeny-based 

approach for designing a key exchange scheme in this paper. The other motivating factor to adoption 

of isogeny-based cryptography in this work is that supersingular elliptic curve isogeny is 

existentially suitable for a key exchange scheme. [9] made the first effort in the search for a scheme 

to replace the quantum-vulnerable Diffie Hellman key exchange (DHKE) protocol in 2011. The duo 

came up with a quantum-resistant key exchange protocol named supersingular isogeny Diffie 

Hellman (SIDH) whose security is based on the mathematical hardness problem of finding isogenies 

between supersingular elliptic curves as opposed to the hardness of solving the (ordinary) elliptic 

curve discrete logarithm, which formed the basis of security for the traditional DH. 

Our Contribution: 

As our contribution, we proposed an authenticated key exchange algorithm based on eSIDH that is 

secure against quantum cryptanalysis in the enhanced Canetti-Krawczyk (eCK) security model with 

perfect forward security against active adversary under the gap Diffie-Hellman (GDH) assumption 

[10]. We explore ways of ensuring that a select curve has unknown endomorphism ring or 

computing the isogeny between any two supersingular curves is exponentially difficult. Our scheme 

is based on eSIDH to ensure that the two factors that fans the embers of breaking SIDH are to the 

best our knowledge discouraged. The common attack on isogeny-based schemes is powered by 

known endomorphism ring of the supersingular elliptic curve. Therefore, if knowledge of the 

endomorphism ring is made public, it becomes a common tool to attack this class of schemes. 

Obviously, we incorporate generating a SECUER in our scheme as solution to combat this at-tack 

and encourages use of a curve whose endomorphism ring is unknown. Random curves have 

unknown endomorphism. Curves with known endomorphism create potentials for backdoor. To 

solve the problem of SIDH’s vulnerability due to knowledge of the endomorphism ring, we 

instantiate our scheme with SECUER. Other schemes which have used SECUER include [11] and 

[12]. Computing endo-morphism rings has implications for the security of isogeny-based 

cryptosystems. Systems that we hope to replace quantum deprecated cryptosystems are based on 

supersingular elliptic curves believed to be exponentially hard to compute isogenies between them. 

Finding isogenies between two supersingular elliptic curves is equivalent to calculating 

endomorphism rings. This is because attackers with knowledge of endomorphism rings can 

effectively construct isogenies and hence compromise the system. 

 

2.0 Review of Literature  

2.1  Related Works 

As we approach the realization of quantum computers and algorithms, many researchers have 

embarked on a search for replacements for the present cryptographic primitives which have been 

proven vulnerable to attacks using quantum computers and quantum related algorithms e.g. Shor’s 

and Grover’s algorithms. The present cryptosystem primitives such as AES, RSA, Elgamal, ECDH, 

and ECDSA are dependent on the hardness of the factorization problem, discrete logarithm problem, 
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and ECDLP. With the hardness of these problems, higher-level applications using these primitives 

such as SSL, TLS, https, PGP etc., are secure. However, with the power of the quantum computer, 

this mathematical hardness has been broken hence the search for replacements. Among the secure 

post quantum cryptosystems (PQC) are the lattice based, code-based, multivariate based, isogeny 

based, symmetric key quantum resistance, and hash-based cryptography. Researchers have designed 

PQC systems using the above mention quantum attack resistant cryptographic systems. The state of 

the arts applications of this post quantum crypto is categorized into those deployed in 

encryption/decryption, digital signature, authentication, and key exchange or key establishment. In 

this paper, we carry out a systematic literature review to cover some of the researches carried out 

by authors in these directions. To offer a general understanding of the hard mathematical problems 

that forms the basis of a PQC capable of addressing the looming quantum-based threats, [13] 

assessed the existing researches done in this area with the view to identifying any research gaps for 

future works in pursuant of the readiness for a PQC life. Their assessment highlighted six categories 

of anti-quantum mathematical problems on which the PQC cryptosystems could be based including 

lattice based, code-based, multivariate based, isogeny based, symmetric key quantum resistance, 

and hash based. [14] did a more detailed work by analyzing all the existing cryptosystem primitives 

(RSA, AES, Elgamal, DH, ECDH, and ECDSA, to ascertain their individual vulnerabilities to 

quantum hacking based on their respective underlying mathematical problems. The paper 

mathematically expounded six advanced hard mathematical problems, viz., lattice based, code-

based, multivariate based, isogeny based, symmetric key quantum resistance, and hash-based 

problems that form the basis of security against the power of quantum computers and algorithms in 

the post quantum era. The mathematical analysis of the six anti-quantum hard problems provides a 

high-level confidence in the security promised for the post quantum era to replace today’s 

cryptographic primitives in future security applications. Now, we look at research works focusing 

attention on key exchange application specific deployment of the supersingular elliptic curve 

isogeny. Supersingular isogeny based key exchange is a Diffie Hellman (DH) variant designed in 

the wake of the traditional DHKE’s vulnerability to quantum attacks. [15] proposed two key 

exchange protocols based on supersingular isogenies characterized as one-round DH-type 

authenticated key exchange (AKE). The authors deployed the CK and the CK+ models of security 

to proof the security of their proposed protocols. In the CK model, the first protocol is secure against 

an attacker with quantum capabilities under the supersingular isogeny variant based on the 

decisional DH assumption, which is to ensure indistinguishability security of the shared keys. The 

second protocol is secure in the CK+ model given an attacker equipped with classical computing 

resources under the supersingular isogeny variant based on the gap DH assumption. Having a simple 

one-round DH structure, both protocols are efficient and applicable practically. However, both 

protocols only provide limited security in the face of an attack. For example, they only provide 

wPFS and are not capable of total PFS. Aiming to find a new way to design a provably secure AKE 

based on supersingular isogeny, [16] presented two supersingular isogeny-based AKEs that used a 

double-key PKE, and prove their security in the CK+ model. The contributions of the work in Xu 

et al.’s paper is viewed in three proposals. Firstly, the paper proposed a PKE (2-PKE) secure against 

OW-CCA based on the supersingular isogeny decisional Diffie Hellman (SIDDH) assumption. 

Secondly, they proposed a two-round AKE namely SIAKE2, based on the SIDDH assumption by 

using the modified Fujisaki-Okamoto transformation on KEM as a primitive to obtain a SIDH-based 

KEM protocol that is secure against OW-CCA and OW-CPA. Thirdly, they modified the primitive 

to be secure against the 1-oracle SIDH assumption and used it to propose a three-round AKE called 

 SIAKE3 and proved that both  SIAKE2 and  SIAKE3 are CK+ secure in the random oracle. Their 

schemes compete favorably with existing isogeny-based AKEs. 

Originally, [9] was the first to introduce the SIDH key exchange protocol in 2011. Thereafter, the 

many security researchers have developed quantum-resistant cryptographic schemes based on 

SIDH, which has produced SIKE, one of the candidate schemes that has pass the second round of 
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the NIST post-quantum standardization project. [17] proposed a variant of the SIDH key exchange 

protocol tagged, extended SIDH (eSIDH).  An elliptic curve can be viewed as two separate curves 

symmetric along the x-axis. Given that, isogenies map a point on one side of the curve onto a 

corresponding point on the other side of the curve, supersingular curves used in SIDH are primarily 

defined over a finite field, 𝔽𝑝2, where 𝑝 is a very large prime number expressed as 𝑝 = 4𝑒𝐴3𝑒𝐵 − 1 

and 𝑒𝐴 and 𝑒𝐵 are positive integers such that  4𝑒𝐴  and  3𝑒𝐵 are asymptotically equal, i.e. 4𝑒𝐴 ≈ 3𝑒𝐵. 

Whereas the traditional SIDH makes use of primes as described above, eSIDH uses primes of the 

form 𝑝 = 4𝑒𝐴ℓ𝐵
𝑒𝐵ℓ𝐶

𝑒𝐶𝑓 − 1, where ℓ𝐵 and ℓ𝐶 are small prime numbers; 𝑓 a cofactor; and 𝑒𝐴, 𝑒𝐵 and 

𝑒𝐶 are positive such that 4𝑒𝐴 ≈ ℓ𝐵
𝑒𝐵ℓ𝐶

𝑒𝐶. Therefore, there is a reasonable speed gain due to parallelism 

from the replacement of 3𝑒𝐵 in the traditional SIDH with   ℓ𝐵
𝑒𝐵ℓ𝐶

𝑒𝐶. To harness the parallelism 

opportunity, the paper carried out a multicore implementation of SIKE and SIDH by presenting a 

design for an eSIDH instantiation that enable parallel computation of its scalar multiplication 

operations. The paper recommended an expanded search for more efficient eSIDH primes that will 

satisfy all the security levels as stated in [18]. The knowledge of the endomorphism ring of a 

supersingular elliptic curve gives impetus to the attack on SIDH. Based on this, to find a solution to 

the SIDH vulnerability, [12] analyzed the practicability of a protocol for generating a supersingular 

elliptic curve with unknown endomorphism ring and provided a statistical proof of zero knowledge 

of the isogeny. The work achieved zero isogeny knowledge by generating a chain of secret random 

walks on the supersingular ℓ-isogeny graph such that given two curves 𝐸1 and 𝐸2, either party in 

communication can prove that they know an isogeny with revealing it. 

In designing a key exchange scheme, it is important to determine the desired expectations of the 

design of the security protocol use in insecure wireless networks. To do this, a distinction between 

the sufficiency of secure security mechanisms is needed, not forgetting device limitations and what 

is known to be necessary for a key exchange scheme [19]. An important requirement for a key 

exchange scheme is a secure one-way hash function such that given a set of input it is easy to obtain 

a corresponding output but computationally impossible to obtain the original in-put given the output. 

A key exchange system should be secure against man-in-the-middle (MitM) attack, no eavesdropper 

must be able to intercept the public key [20]. As a countermeasure against this attack, it is necessary 

that a key exchange scheme provide a way whereby the two parties mutually authenticate each other 

satisfying the requirement that the parties in the communication must be distinguishable, from their 

individual perspectives [21]. This means that the parties in the communication should be able to 

verify each other’s identity creating room for no impersonation of any of the parties in the 

communication by an adversary [22]. Such a scheme is called Authenticated Key Exchange (AKE), 

which serves to protect against MitM attack.  Another vital requirement of a key ex-change scheme 

is that the session keys must have perfect forward secrecy (PFS), which stipulates that session keys 

be changed frequently and automatically such that even if the private key is compromised, the 

encrypted session data cannot be decrypted.  

2.1 Overview of Isogeny-based Cryptography 

In the recent past not much attention was given to using the hardness of finding isogenies of elliptic 

curves in the design of cryptographic systems. Presently, the focus of cryptographic research has 

been shifted to study and adoption of harder mathematical problems such as isogenies due to the 

realization of the quantum computer with huge computational capabilities. Isogeny based 

cryptography promises to resist the huge cryptanalytic powers of the much dreaded futuristic 

(quantum) computer. The supposed security of the existing cryptographic standards such as RSA, 

Elgamal, ECDH, ECDSA, etc. is broken by Shor’s algorithm [23] solution to the factorization and 

the discrete logarithm problems in polynomial time and Grover’s algorithm cryptanalytic power 

over AES. 
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Isogenies: Let 𝔼1 and 𝔼2 be elliptic curves having equal cardinality, viz: #E1 = #E2, and let the 

curves also have identity elements 𝒪1 and 𝒪2, respectively. Then we describe an isogeny, 𝜙 as a 

surjectively mapping 𝔼1 ⟼ 𝔼1 if and only if 𝜙(𝒪1) =  𝒪2 . The mapping 𝜙: 𝔼1 ⟼ 𝔼1 also a group 

homomorphism, i.e. ∀P, Q ∈ 𝔼1: 𝜙(𝑃 + Q) = 𝜙(𝑃) + 𝜙(Q). Two elliptic curves are isogenic if 

there is an isogeny between them. The isogeny kernel is the set of points on the domain curve which 

is mapped to the identity element: ker(𝜙) = {P ∈ 𝔼1 | 𝜙(P) ⟼ 𝒪2}. There is a one-to-one relation 

between isogenies and their kernels and each isogeny can be calculated from their respective 

kernels. It is common to a kernel to an isogeny as a data structure in SIDH. Given 𝔼1 as an elliptic 

curve, for any subgroup H ⊆ 𝔼1 there is a unique (up to isomorphism) elliptic curve 𝔼2 with an 

associated isogeny 𝜙: 𝔼1 ⟼ 𝔼1 with ker(𝜙) = H, which is a natural map having an isomorphic 

image to the quotient of the kernel in the domain, i.e. 𝔼2  ≅  𝔼1/ker(𝜙). Parts of the protocol deal 

with the computation of an isogeny of a certain degree. For the purpose of this paper, the degree of 

an isogeny is the cardinality of its kernel. 

2.2 Quantum-Safe Candidates for Key Exchange 

All existing cryptographic systems potentially suffer the risk of extinction due to quantum related 

attacks. NIST, in response to this quantum instigated threat, rolled out calls for proposals in search 

of harder mathematical problems whose solution (complexity) would lie on the exponential side, 

the first standardization move for quantum cryptography [24]. Based on this, many proposals have 

been submitted the aim of which is to find quantum-resistant versions to existing DH and ECDH 

key establishment protocols. Two interesting quantum-based scheme in this category are 

Supersingular Isogeny Deffie Hellman (SIDH) and Supersingular Isogeny Key Encapsulation 

(SIKE). SIDH is based on the hard problem of computing isogenies between two supersingular 

elliptic curves.  

 

2.3. The Concept Central to SIDH: Isogeny simply means “equal origin”. It is a characteristic of 

a supersingular elliptic curve. Couveignes first suggested the use of isogenies in cryptography in 

1997 and in 2011, [9] made the biggest contribution in the area of using Isogeny in a key 

encapsulation, which they tagged Supersingular Isogeny Key Encapsulation (SIKE) scheme 

submitted to NIST PQC Standardization 2017. This property permits mapping a point from one 

curve to a point on another curve in this family shown in Figure 1. Given two supersingular elliptic 

curves 𝐸1 and 𝐸2 defined over extension field: 𝐸1/𝔽𝑝2 and 𝐸2/𝔽𝑝2, where p is a large prime, there 

is an isogeny 𝜙: 𝐸1 ⟶  𝐸2, with a smooth degree ℓ that maps 𝐸1 𝑡𝑜 𝐸2. Now, we formulate the 

Supersingular Isogeny  

 

 

 

 

 

 

Figure 1: Post Quantum Isogeny-based Cryptography 

problem as follows: given 𝑃, Q ∈ 𝐸1 and 𝜙(𝑃), 𝜙(𝑄) ∈ 𝐸2, find the secret isogeny map 𝜙. The 

main attraction to supersingular elliptic curve isogeny-based scheme like SIDH is its small 

public/private key size. 

Further understanding of this is by considering isogenies walks illustrated in Figure 2. Alice and 

Bob start with the same point on the curve E, and randomly walk away from the starting point of 

𝜙 

𝜙 
Q 𝜙(𝑄) 

𝜙(𝑃) 𝜙 
P 

𝐸′ = 𝜙(𝐸) 𝐸 
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the curves resulting in the creation of curve EA (Alice’s curve) with 4-degree isogeny and EB (Bob’s 

curve) with 3-degree isogeny. The two parties exchange their curves. Alice repeats the random walk 

again from EB. Bob repeats his random walk from EA, and the two eventually meet at a new secret 

curve, ES, where 𝐴10 = 𝐵8 as indicated in red. If we regard isomorphic groups as being the same, 

then Alice’s and Bob’s walk is commutative. This gives rise to a curve known only to both Alice 

and Bob, and which represents the new key, because no third party knows this curve, except 

information about Alice’s and Bob’s random walk is known. Worthy of note is that isomorphic 

curves have equivalent j-invariant, i.e. in a closed algebraic field, if the j-invariants, 𝑗(𝐸1) = 𝑗(𝐸2), 

then the curves 𝐸1 and 𝐸2 are said to be isomorphic. 

 

 
Figure 2: Isogeny Walks from Different Degree Isogenies 

 

 

 

2.4  The SIDH Protocol Analysis 

Alice and Bob wish to communicate with each other but they first need to exchange keys for a 

secure communication. One of the post Quantum approaches to ensuring secure key exchange is 

using a Supersingular Isogeny Diffie Hellman (SIDH). The basic setup for SIDH is as follows: Alice 

and Bob agree on a common supersingular elliptic curve E of Abelian variety. Alice then chooses a 

secret subgroup A ⊆ E, quotients out the image of A bordered by B and sends the resulting group, 

E/A to Bob. Bob chooses a secret subgroup B ⊆ E, quotients out the image of B bordered by A and 

sends the resulting group, E/B to Alice. Both Alice and Bob can now individually compute the 

common secret (𝐸/𝐵)/𝐴 ≅   𝐸/(𝐴 + 𝐵) ≅ (𝐸/𝐴)/𝐵 as shown in Figure 3. Now, the idea is that 

both of them have the same group maybe with the origin of group E. However, believing that A and 

B chosen by Alice and Bob are both subgroups of E is mathematically ambiguous.  

 

 

 

 

 

 

 

Figure 3: A Trivial SIDH setup 

 

Figure 3: SIDH 

Therefore, to make (𝐸/𝐵)/𝐴 ≅ (𝐸/𝐴)/𝐵 precise, we have to say how A should be used as a 

Chooses 
B ⊆ 𝑬 

Chooses 
A ⊆ 𝑬 

 

𝑬 ∈ {𝑨𝒃𝒆𝒍𝒊𝒂𝒏 𝒈𝒓𝒐𝒖𝒑𝒔} 

E/A  

                       E/B 

 

Common secret: 

(𝑬/𝑩)/𝑨   ≅   𝑬/(𝑨 + 𝑩)     ≅    (𝑬/𝑨)/𝑩  
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subgroup of E by providing a quotient map 𝜑𝐴 from A to E/A and 𝜑𝐵 from B to E/B such that Figure 

3 now becomes as shown in figure 4. The quotient maps show how E is map to the images of the 

subgroups chosen by Alice and Bob. 

 

 
Figure 4: An Improve SIDH Setup with Quotient Maps to specify the mapping of E to the Images 

of the Subgroups 

The specification of 𝜑𝐴: 𝐸 → 𝐸/𝐴 and 𝜑𝐵: 𝐸 → 𝐸/𝐵 turns around to constitute a problem as it 

reveals the kernels, Ker 𝜑𝐴 and Ker 𝜑𝐵 of A and B respectively. This is, in part, because E is a 

supersingular elliptic curve with a known endomorphism ring. A trick to get around this is the source 

of introducing auxiliary points. Figure 5 shows the protocol with the quotient maps of auxiliary 

points exchanged.  

 
Figure 5: SIDH with the quotient maps of auxiliary points exchanged 

Alice chooses two auxiliary points 𝑷𝑨 and 𝑸𝑨 from the subgroup A generated from E and Bob does 

the same by choosing 𝑷𝑩 and 𝑸𝑩 from the subgroup B generated from E such that 𝑷𝑨, 𝑸𝑨, 𝑷𝑩,  𝑸𝑩 

∈ 𝑬. Alice chooses a secret a ∈ 𝚭 computes A using her auxiliary points to get 𝑨 = 〈𝑷𝑨 + 𝒂𝑸𝑨〉. 

Likewise, Bob chooses a secret b ∈ 𝚭 computes B using his auxiliary points to get 𝑩 = 〈𝑷𝑩 + 𝒃𝑸𝑩〉. 
Now, instead of giving the image of her quotient map of A, 𝝋𝑨: 𝑬 → 𝑬/𝑨 Alice only sends the 

images of the quotient maps 𝝋𝑨(𝑷𝑩) and 𝝋𝑨(𝑸𝑩) of Bob’s auxiliary points 𝑷𝑩 and 𝑸𝑩 to Bob. 

Bob does the same by sending the images of the quotient maps 𝝋𝑩(𝑷𝑨) and 𝝋𝑩(𝑸𝑨) of Alice’s 

auxiliary points 𝑷𝑨 and 𝑸𝑨 to Alice. This setup enables Alice’s map A and Bob’s map B generated 

from E to be secret. Now, since having possession of the quotient maps of each other’s auxiliary 

points, using Bob’s quotient map 𝝋𝑩, Alice can compute 𝝋𝑩(𝑨) = 𝝋𝑩(〈𝑷𝑨 + 𝒂𝑸𝑨〉) resulting in 

〈𝝋𝑩(𝑷𝑨) + 𝒂𝝋𝑩(𝑸𝑨)〉 and Bob can use Alice’s quotient map  𝝋𝑨 to compute 𝝋𝑨(𝑩) = 

𝝋𝑨(〈𝑷𝑩 + 𝒃𝑸𝑩〉) resulting in 〈𝝋𝑩(𝑷𝑨) + 𝒃𝝋𝑩(𝑸𝑨)〉. To make things complete, we take a look at 

a simplified version of SIDH as concretely proposed by [9]. Let E: 𝒚𝟐 = 𝒙𝟑 + 𝒙 be an element of 

supersingular curves over the finite field 𝔽𝒑𝟐. Let 𝑬[𝟐𝒆] torsion points encountered along the way 
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in E be 〈𝑷𝑨, 𝑸𝑨〉, 𝟑𝒇 torsion points encountered along the way in E be 〈𝑷𝑩, 𝑸𝑩〉 and let 𝒑 = 𝟐𝒆𝟑𝒇 −
𝟏 be the chosen prime (just a technical assumption). The auxiliary points of Alice form the 𝟐𝒆 torsion 

and the auxiliary points of Bob forms the 𝟑𝒇 torsion. This ensures that torsion is defined over  𝔽𝒑𝟐. 

Alice chooses a ∈ 𝒁 and builds a secret subgroup A = 〈𝑷𝑨 + 𝒂𝑸𝑨〉 ⊆ 𝑬[𝟐𝒆]. She then quotients out 

the subgroup A by computing  𝝋𝑨: 𝑬 → 𝑬/𝑨 as a composition of 2-isogenies and sends 𝑬/𝑨 and 

the quotient maps of Bob’s auxiliary points  𝝋𝑨(𝑷𝑩) and  𝝋𝑨(𝑸𝑩) to Bob. On the other side, Bob 

chooses b ∈ 𝒁 and builds a secret subgroup B = 〈𝑷𝑩 + 𝒃𝑸𝑩〉 ⊆ 𝑬[𝟑𝒇]. Bob quotients out the 

subgroup B by computing  𝝋𝑩: 𝑬 → 𝑬/𝑩 as a composition of 3-isogenies and sends 𝑬/𝑩 and the 

quotient maps of Alice’s auxiliary points  𝝋𝑩(𝑷𝑨) and  𝝋𝑩(𝑸𝑨) to Alice as shown in figure 6. 

 
Figure 6: SIDH Concrete Proposal with prime, 𝑝 = 2𝑒3𝑓 − 1, [9][22] 

2.4 SIDH and Ordinary Diffie Hellman Protocol 

If Alice and Bob wish to exchange keys (shared secret) in a channel eavesdropped by an attacker, 

the key exchange protocol makes use of a cyclic group G, with a generator, g ∈ G as a public 

parameter. Alice chooses a secret, a and Bob chooses a secret, b where a, b ∈ G and each of them 

determines ga and gb respectively. the computed values are exchanged over the insecure channel. 

On receipt of gb from Bob, Alice computes (g𝑏) 𝑎. Likewise, Bob also computes (g𝑎) 𝑏. This is 

depicted in figure 7.  

 

 
Figure 7: A Schematic of the Traditional Diffie Hellman Protocol 

A replacement for this version of DH protocol is overdue to maintain security of cryptosystems 

based on it. To achieve this, we need a structure, which can pose a more complex problem that a 

quantum computer cannot find solution in polynomial time. A supersingular isogeny-based 

approach offers this level of security as it is based on the problem of finding isogenies between 

elliptic curves, which beats both classical and quantum-based cryptanalysis. Using a supersingular 
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isogeny to build a DH-like protocol is realized in SIDH, a scheme that uses a supersingular isogeny 

class as shown in figure 8.  

 

 
Figure 8: SIDH key exchange protocol between parties Alice and Bob 

In the protocol, Alice and Bob create respective isogenies using the same elliptic curve, E by 

creating random points that represent the kernel of their isogeny.  This random point RA (or RB) a 

random linear combination of the points (PA, QA) and (PB, QB). Using  R (or RB), Alice and Bob can 

use Velu's formulas to compute the isogenies 𝝓A and 𝝓B  respectively. To ensure that the isogenies 

created are different and non-commutative, parties A and B select different pairs of points. Parties 

A and B then use Velu's formulas for creating isogenies  𝝓A and 𝝓B respectively using the random 

points in the kernel. Next, the image of (PA, QA) or (PB,QB)  are calculated using the  𝝓B and 

𝝓A  isogenies respectively resulting in A and B having two pairs of points 𝝓B(PA), 

𝝓B(QA), and  𝝓A(PB), 𝝓A(QB)  respectively. A and B now exchange these pairs of points over a 

communications channel. The pair of points received by each party forms the basis for the kernel of 

a new isogeny together with the same linear coefficients used before. They each compute 

points SBA and SAB and use Velu's formulas to construct new isogenies. 

3.0 Methodology 

The proposed scheme first determines whether a given elliptic curve E is supersingular by verifying 

that the cardinality of E over finite field 𝔽𝒒 is such that #𝜠(𝔽𝒒) ≡ 𝟏 (𝒎𝒐𝒅 𝒑) using the Schoof–

Elkies–Atkin (SEA) algorithm where 𝒒 = 𝒑𝟐. This identification process is necessary to avoid the 

use of elliptic curves that are non-supersingular, as determining non-supersingular elliptic curves 

isogenies is nontrivial. We are not perturbed by the algorithm’s polynomial-time complexity nature. 

Our scheme, QRSI-AKE is based on eSIDH with characteristic security against MitM attack and 

side channel attack. Additionally, our (eSIDH)-based key exchange scheme employs the hard 

computational assumption behind the Supersingular Isogeny Diffie-Hellman (SIDH) to establish a 

shared secret key between two parties. eSIDH works over a class of particular pairs of elliptic curves 

called Montgomery curves. The security of eSIDH relies on the hardness of finding the isogeny 

between two Montgomery curves in polynomial time. eSIDH is a promising alternative to SIDH as 

it offers faster key computation, reduced key sizes, and resistance to quantum attacks. 

 

 

3.1 Proposed Protocol Description 
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The proposed protocol is based on the eSIDH protocol hence it operates on supersingular elliptic 

curves defined over finite field, 𝔽𝒑𝟐 where 𝒑 is a prime of the form 𝒑 = 𝟒𝒆𝑨𝓵𝑩
𝒆𝑩𝓵𝑪

𝒆𝑪𝒇 − 𝟏. The 

protocol consists of two phases: the key generation and the key agreement phases. We choose the 

exponents 𝒆𝑨, 𝒆𝑩, and 𝒆𝑪 such that 𝟒𝒆𝑨 ≈ 𝓵𝑩
𝒆𝑩𝓵𝑪

𝒆𝑪.  Alice is responsible to compute degree-𝟒𝒆𝑨 

isogenies and Bob is responsible to compute degree-𝓵𝑩
𝒆𝑩𝓵𝑪

𝒆𝑪 isogenies. Leveraging on eSIDH’s 

inherent parallelism, Bob calculates two secret points 𝒓𝑩 = 𝓵𝑩
𝒆𝑩 and 𝒓𝑪 = 𝓵𝑪

𝒆𝑪 in parallel using two 

pairs of point 〈𝑷𝑩, 𝑸𝑩〉 representing 𝒓𝑩 and 〈𝑷𝑪, 𝑸𝑪〉 representing 𝒓𝑪 given as  

         𝑅𝐵 = 𝑃𝐵 + [𝑚𝐵]𝑄𝐵  and 𝑅𝐶 = 𝑃𝐶 + [𝑚𝐶]𝑄𝐶                                      (1) 

where 𝑹𝑩 and 𝑹𝑪 are Bob’s secret points, 〈𝑷𝑩, 𝑸𝑩〉 and 〈𝑷𝑪, 𝑸𝑪〉 are points on the supersingular 

elliptic curve and 𝒎𝑩 ∈ [𝟏, 𝒓𝑩 − 𝟏] and 𝒎𝑪 ∈ [𝟏, 𝒓𝑪 − 𝟏] are integers randomly chosen by Bob.                       

Assumptions: The security of our model is established under the isogeny adaptations of the 

decisional Diffie–Hellman (SI DDH) assumption and gap Diffie–Hellman assumptions [15]. This 

work considers two types of Supersingular Isogeny Gap Diffie–Hellman (SI GDH) problems 

namely degree-sensitive SI-GDH (ds-GDH) and degree-insensitive SI-GDH (di-GDH).  

Definition 1: Supersingular Isogeny Decisional Diffie–Hellman (SI DDH) Assumption Let ℵ be a 

quantum computer adversary. For pksidh = (𝔤 = (𝐸; 𝑃𝐴, 𝑄𝐴, 𝑃𝐵 , 𝑄𝐵), 𝔢 =

(ℓ𝐴, ℓ𝐵, ℯ𝐵, ℯ𝐵)) ←𝑅 𝐺𝑒𝑛𝑠𝑖𝑑ℎ(1𝜆) and 𝔞, 𝔯 ∈𝑅 𝑆𝐾𝐴, 𝔟, 𝔰 ∈𝑅 𝑆𝐾𝐵, ℵ receives 𝜒𝑏for 𝑏 ∈𝑅 {0,1}, that is 

defined by 𝜒0 = (pksidh, 𝔤𝔞, 𝔤𝔟, (𝔤𝔞)𝔟) and 𝜒1 = (pksidh, 𝔤𝔞, 𝔤𝔟, (𝔤𝔯)𝔰) ℵ outputs a guess bit 𝑏′. If 

𝑏 = 𝑏′, ℵ wins. The advantage of ℵ for the SI DDH problem is thus defined as 𝐀𝐝𝐯𝔤,𝔢
SI−DDH(ℵ) =

Pr[ℵ wins] − 1/2. The SI-DDH assumption is: For any polynomial-time quantum machine 

adversary,  ℵ, the advantage of ℵ for the SI-DDH problem is negligible in parameter 𝜆.  

Definition 2: ds- and di-Supersingular Isogeny Gap Decisional Diffie–Hellman Assumptions Let ℵ 

be a quantum computer adversary. For pksidh = (𝔤 = (𝐸; 𝑃𝐴, 𝑄𝐴, 𝑃𝐵, 𝑄𝐵), 𝔢 =

(ℓ𝐴, ℓ𝐵, ℯ𝐵, ℯ𝐵)) ←𝑅 𝐺𝑒𝑛𝑠𝑖𝑑ℎ(1𝜆) and 𝔞 ∈𝑅 𝑆𝐾𝐴, 𝔟 ∈𝑅 𝑆𝐾𝐵, ℵ receives and ℵ access SI-DDH oracle 

for any input 𝜒 = pksidh, (𝐸𝐴
′ ;  𝑃𝐴𝐵

′ , 𝑄𝐴𝐵
′ ), (𝐸𝐵

′ ;  𝑃𝐵𝐴
′ , 𝑄𝐵𝐴

′ , 𝔥′) where 𝑃𝐴𝐵
′ , 𝑄𝐴𝐵

′  and 𝑃𝐵𝐴
′ , 𝑄𝐵𝐴

′  are points 

in 𝐸𝐴
′ (𝔽𝑝2) and 𝐸𝐵

′ (𝔽𝑝2) respectively and 𝔥′ ∈ 𝔽𝑝2, and the outputs 𝔥 ∈ 𝔽𝑝2. If 𝔥 = (𝔤𝔞)𝔟(= (𝔤𝔟)𝔞), 

ℵ wins. Two types of SI-GDH problems are defined here based on the conduct of the SI-DDH 

oracle. 

• degree sensitive SI-GDH (ds-SI-GDH) problem: The ds-SI-DDH oracle answers true if there 

exist a supersingular elliptic curve 𝐸𝐴𝐵
′  and isogenies 𝜙𝐴

′ , 𝜙𝐵
′ , 𝜙𝐴𝐵

′ , 𝜙𝐵𝐴
′  among 𝐸, 𝐸𝐴

′ , 𝐸𝐵
′ , 𝐸, 𝐸𝐴𝐵

′  

which form a commutative diagram as in figure 9 such that  

(i) degree 𝑑𝐴
′  of 𝜙𝐴

′  (and 𝜙𝐵𝐴
′ ) is equal to ℓ𝐴

ℯ𝐴  and degree 𝑑𝐵
′  of 𝜙𝐵

′  (and 𝜙𝐴𝐵
′ ) is equal to ℓ𝐵

ℯ𝐵 

and  

(ii) 𝑃𝐴𝐵
′ = 𝜙𝐴

′ (𝑃𝐵), 𝑄𝐴𝐵
′ = 𝜙𝐴

′ (𝑄𝐵) and 𝑃𝐵𝐴
′ = 𝜙𝐵

′ (𝑃𝐴), 𝑄𝐵𝐴
′ = 𝜙𝐵

′ (𝑄𝐴) where points 

(𝑃𝐴, 𝑄𝐴, 𝑃𝐵 , 𝑄𝐵) are given in public key pksidh, and 𝔥′ = 𝑗(𝐸𝐴𝐵
′ ) and false otherwise. 

• degree insensitive SI-GDH (di-SI-GDH) problem: The di-SI-DDH oracle outputs true if a 

supersingular elliptic curve 𝐸𝐴𝐵
′  and isogenies 𝜙𝐴

′ , 𝜙𝐵
′ , 𝜙𝐴𝐵

′ , 𝜙𝐵𝐴
′  exist among 𝐸, 𝐸𝐴

′ , 𝐸𝐵
′ , 𝐸, 𝐸𝐴𝐵

′  

forming a commutative structure as in figure 9 such that  

(i) degree 𝑑𝐴
′  of 𝜙𝐴

′  (and 𝜙𝐵𝐴
′ ) is a power of ℓ𝐴 and degree 𝑑𝐵

′  of 𝜙𝐵
′  (and 𝜙𝐴𝐵

′ ) is a power 

of ℓ𝐵 and  

(ii) 𝑃𝐴𝐵
′ = 𝜙𝐴

′ (𝑃𝐵), 𝑄𝐴𝐵
′ = 𝜙𝐴

′ (𝑄𝐵) and 𝑃𝐵𝐴
′ = 𝜙𝐵

′ (𝑃𝐴), 𝑄𝐵𝐴
′ = 𝜙𝐵

′ (𝑄𝐴) where points 

(𝑃𝐴, 𝑄𝐴, 𝑃𝐵 , 𝑄𝐵) are given in public key pksidh, and 𝔥′ = 𝑗(𝐸𝐴𝐵
′ ) and false otherwise. 
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Figure 9: Commutative Diagram with instances of SI-Decisional DH Oracles 

In the above, 𝒅𝑨
′ = 𝐝𝐞𝐠(𝝓𝑨

′ ) = 𝐝𝐞𝐠(𝝓𝑩𝑨
′ ) and 𝒅𝑩

′ = 𝐝𝐞𝐠(𝝓𝑩
′ ) = 𝐝𝐞𝐠(𝝓𝑨𝑩

′ ). The advantage of 

adversary ℵ are defined as 𝐀𝐝𝐯𝖌,𝖊
𝐝𝐬−𝐒𝐈−𝐆𝐃𝐇(ℵ) = 𝐏𝐫[ℵ 𝐰𝐢𝐧𝐬] and 𝐀𝐝𝐯𝖌,𝖊

𝐝𝐢−𝐒𝐈−𝐆𝐃𝐇(ℵ) = 𝐏𝐫[ℵ 𝐰𝐢𝐧𝐬] 

respectively. The ds-SI-GDH (and di-SI-GDH) assumption is: For any polynomial-time quantum 

machine adversary, ℵ, the advantage of ℵ for the ds-SI-GDH (and di-SI-GDH) problem is negligible 

in security parameter 𝝀. The protocol run is as in figure 10. 

 

3.2 Choice of Parameters for Implementation 

Since the protocol in this paper is based on eSIDH, we carefully choose the parameters for the prime, 

𝒑 = 𝟒𝒆𝑨𝓵𝑩
𝒆𝑩𝓵𝑪

𝒆𝑪𝒇 − 𝟏  used in the proposed protocol. These parameters include 𝒆𝑨, 𝒆𝑩,  𝒆𝑪,   𝓵𝑩, and 

𝓵𝑪. We adopted the eSIDH primes because they are more flexible and easily accessible than their 

SIKE counterparts. If the values of 𝝀 and the small primes 𝓵𝑩 and 𝓵𝑪 are fixed where 𝝀 is given as 
⌈log2 𝑝⌉, representing the minimum number of words used as an eSIDH prime. By intentionally 

changing 𝒆𝑩,  𝒆𝑪 and 𝑓, we are able to search 
𝑁

2
− Montgomery friendly primes helping us to achieve 

Montgomery reduction as compared to SIKE primes. For computations on Bob’s side, we leverage 

the tradeoff between the sizes of the base primes, 𝓵𝑩 and 𝓵𝑪 and the exponents 𝒆𝑩  and 𝒆𝑪. In isogeny 

evaluations, the magnitude of the step to be performed is defined by the base primes while the 

exponents define number of steps that must be performed. Hence, we opted to keep the to keep the 

base primes large while the exponents are reduced. Based on this consideration, we choose the 

parameters for the prime, 𝒑 = 𝟒𝒆𝑨𝓵𝑩
𝒆𝑩𝓵𝑪

𝒆𝑪𝒇 − 𝟏 such that 2𝒆𝑨 ≈ 𝐥𝐨𝐠𝟐(𝓵𝑩
𝒆𝑩𝓵𝑪

𝒆𝑪). We choose 𝒆𝑨 in 

such a way that the security level offered by SIKE is achieved. The co-factor, 𝑓 is also selected to 

ensure that  𝒑 is a 
𝑁

2
− Montgomery friendly prime. 

Therefore, the following prime and values were chosen for our implementation.  

Prime chosen: 𝒑𝟒𝟑𝟒 = 𝟒109𝟑70𝟓45 − 𝟏 

𝒆𝑨 = 109, 𝒆𝑩 = 70, 𝒆𝑪 = 45, 𝓵𝑩 = 3, 𝓵𝑪 = 5 and 𝒇 = 1. 

 

3.3 Exploiting eSIDH’s Inherent Parallelism 

We assume that  𝝀 = ⌈𝒍𝒐𝒈𝟐(𝒑)⌉, referred to in section 3.2, is bit length of the eSIDH prime 𝒑 =
𝟒𝒆𝑨𝓵𝑩

𝒆𝑩𝓵𝑪
𝒆𝑪𝒇 − 𝟏 and for convenience Bob set 𝒓𝑩 = 𝓵𝑩

𝒆𝑩  and 𝒓𝑪 = 𝓵𝑪
𝒆𝑪. Bob has to calculate two 

secret points by choosing two pairs of points defined as two separate secret points 〈𝑷𝑩, 𝑸𝑩〉 and 
〈𝑷𝑪, 𝑸𝑪〉 as stated earlier. Bob sets 𝑬[𝒓𝑩] = 〈𝑷𝑩, 𝑸𝑩〉  and 𝑬[𝒓𝑪] = 〈𝑷𝑪, 𝑸𝑪〉 and randomly chooses 

two integers 𝒎𝑩 ∈ [𝟏, 𝒓𝑩 − 𝟏] and 𝒎𝑪 ∈ [𝟏, 𝒓𝑪 − 𝟏] and uses them to compute 𝑹𝑩 and 𝑹𝒄 

according to equation 1. Now, if 𝓵𝑩, 𝓵𝑪, 𝒆𝑩, and 𝒆𝑪 are chosen such that 𝐥𝐨𝐠𝟐(𝓵𝑩)𝒆𝑩 ≈ 𝐥𝐨𝐠𝟐(𝓵𝑪)𝒆𝑪 

then the cost of calculating 𝑹𝑩 is about 
𝟐𝝀

𝟒
 xDBL. It should be noted that this cost is almost the same 

cost needed to calculate 𝑹𝑪 and which the combined cost of 𝑹𝑩 and 𝑹𝑪 is less than the cost of 

calculating Alice’s 𝑹𝑨 using the optimal strategy [17]. This signifies a performance gain due to the 

parallel computation implicit in eSIDH because computations of 𝑹𝑩 and 𝑹𝑪 are mutually exclusive. 

 

𝜙𝐵𝐴
′  

𝜙𝐴𝐵
′  𝜙𝐵

′  

𝜙𝐴
′  

𝐸𝐴𝐵
′  𝐸𝐵

′  

𝐸𝐴
′  𝐸 
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Based on this, Bob’s secret points  𝑹𝑩 and 𝑹𝑪 can be computed in parallel using a multicore 

processor. Furthermore, we can calculate the isogeny 𝝓𝑩𝑪 as 𝝓𝑩 °𝝓𝑪 without the need for 

multiplication by 𝒓𝑪 as shown in step 4 of Bob’s protocol run. This gain in the reduction in 

computation complexity of the isogeny, 𝝓𝑩𝑪 comes from the fact that 𝐠𝐜𝐝(𝒓𝑩, 𝒓𝑪)  =  𝟏 with the 

order of the points 𝑹𝑩, 𝑹𝑪 being 𝒓𝑩 and 𝒓𝑪 respectively. Based on this, 𝑹𝑩 and 𝝓𝑩(𝑹𝑪) respectively 

are used to generate the kernels of 𝝓𝑩 and 𝝓𝑪. This saving in computation cost is also significant 

in the key agreement phase where Alice equally have to generate kernels of 𝝓𝑩
′  and 𝝓𝑪

′  using  𝑹𝑩
′  

and 𝝓𝑩
′ (𝑹𝑪

′ ) respectively. 

For instance, given the eSIDH prime, 𝒑𝟒𝟑𝟒 = 𝟒109𝟑70𝟓45 − 𝟏, Alice must compute 𝟒109 while Bob 

can compute 𝟑70 and 𝟓45 in parallel on two separate CPU cores. Comparing this to an equivalent 

prime used in SIKE, 𝒑𝟒𝟑𝟒 = 𝟐216𝟑137 − 𝟏, one can observe that the base primes are small than in 

the case of eSIDH prime but the exponents are tremendously larger. Secondly, Bob must compute 

𝟑137 on a single core and hence does not offer opportunity for leveraging the inherent parallelism 

in modern CPU technology. The impact of the choice of eSIDH prime over the SIKE prime cannot 

be overemphasized as there is a significant timing speedup compared to SIKE primes. The 

noticeable gain performance can be attributable to 𝒑𝟒𝟑𝟒 being a Montgomery friendly prime with a 

faster modular reduction property. 

Performance achieved by using multi-core processor is higher than that of a single core at any point 

in time. We arrived at this piece of knowledge when our scheme implemented with eSIDH- 𝒑𝟒𝟑𝟒 =
𝟒109𝟑70𝟓45 − 𝟏 on Intel i5 with quad (4) cores exhibited far better performance than using the SIKE 

prime,  𝒑𝟒𝟑𝟒 = 𝟐216𝟑137 − 𝟏 on the same CPU architecture. Interestingly, we notice a performance 

degradation when a single-core CPU architecture was used. The implementation with the SIKE 

prime performed better. 

In this work, the only practical consideration and potential limitation in exploiting parallelism with 

respect to implementing the enhanced prime can be explained using Amdahl’s Law [25]. Only a 

fraction of a program, 𝑑 is parallelizable while the other portion, (1 − 𝑑) must be executed 

completely sequentially. What this means is that no matter the number of processors, the sequential 

portion of a program will spend same time as it would on a single core system. 

 

3.4 Isogeny Computation on Montgomery Curves 

Montgomery curve is the main building block for implementing the eSIDH based key exchange 

protocol called QRSI-AKE developed in this paper. Assuming K, is a field having characteristic 

not equal to 2 or 3, we can denote the Montgomery curve or K by  

𝑴𝒂,𝒃: 𝒃𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙𝟐 + 𝒙                                                                       (2)  

with the condition that 𝒃(𝒂𝟐 − 𝟒) ≠ 𝟎. In this paper, we refer to 𝑴𝒂,𝒃 as 𝑴𝒂 when b = 1. For 

carrying out arithmetic computation on the elliptic curve, we use differential addition and doubling 

formula and for isogeny computation, we use odd degree isogenies. 
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Figure 10: QRSI-AKE Protocol Run 

 

3.5. Computations on the Montgomery Elliptic Curve 

Point Addition and Point Doubling: Assuming 𝑷 and  𝑸 are points on the Montgomery curve, 𝑴𝒂 

with coordinates (𝒙𝑷, 𝒚𝑷) and (𝒙𝑸, 𝒚𝑸) where   𝒙𝑷 ≠ 𝒙𝑸 and 𝑷 − 𝑸 is given as 𝒙𝑷−𝑸, 𝒚𝑷−𝑸, then 

we compute the 𝒙 coordinates of the sum of the two points, 𝑷 + 𝑸 and the doubling of 𝑷, 𝒙[𝟐]𝑷 as 

follows: 

𝑥𝑃+𝑄 =
(𝑥𝑃𝑥𝑄 − 1)

2

(𝑥𝑃−𝑄(𝑥𝑃 − 𝑥𝑄)
2

)
                                                                     (3) 

𝑥[2]𝑃 =
(𝑥𝑃

2 − 1)2

(4𝑥𝑃(𝑥𝑃
2 + 𝑎𝑥𝑃 + 1))

                                                                 (4) 

In the key generation phase 

The public parameters of eSIDH are given by: a supersingular base curve 𝐸 with basis 

points 𝑃𝐴 , 𝑄𝐴 , 𝑃𝐵 , 𝑄𝐵 , 𝑃𝐶 , 𝑄𝐶 ∈ 𝐸0 such that 𝐸[𝑟𝐴] = 〈𝑃𝐴 , 𝑄𝐴〉, 𝐸[𝑟𝐵] = 〈𝑃𝐵 , 𝑄𝐵〉 and 

𝐸[𝑟𝐶] = 〈𝑃𝐶 , 𝑄𝐶〉 

Alice Bob 

1. Generates two random integers 𝑚𝐴 , 

𝑛𝐴 < (4𝑒𝐴 ) 

2. Chooses a point 〈𝑃𝐴 , 𝑄𝐴〉 on the 

curve and computes  𝑅𝐴 = 𝑚𝐴 . 𝑃𝐴 +

𝑛𝐴 . 𝑄𝐴  

3. Uses 𝑅𝐴 to create an isogeny 

mapping 𝜙𝐴: 𝐸 → 𝐸𝐴  

4. Chooses another point 〈𝑃𝐵 , 𝑄𝐵〉 on 

the curve and applies 𝜙𝐴 to 〈𝑃𝐵 , 𝑄𝐵〉 to 

form 𝐸𝐴: 𝜙𝐴(𝑃𝐵) and 𝜙𝐴(𝑄𝐵) 

5. Sends 𝝓𝑨(𝑷𝑩), 𝝓𝑨(𝑸𝑩) to Bob 

 

1. Generates two random integers 𝑚𝐵, 

𝑚𝐶 < (4𝑒𝐴 ) 

2. Chooses two pairs of points 〈𝑃𝐵 , 𝑄𝐵〉 

and 〈𝑃𝐶 , 𝑄𝐶〉 on the curve and computes 

                   𝑅𝐵 = 𝑃𝐵 + 𝑚𝐵 . 𝑄𝐵 and 

                   𝑅𝐶 = 𝑃𝐶 + 𝑚𝐶 . 𝑄𝐶  

3. Uses 𝑅𝐵 and 𝑅𝐶  to create 𝜙𝐵 and 𝜙𝐶  

isogenies         𝜙𝐵 : 𝐸 → 𝐸𝐵 and 

𝜙𝐶 : 𝐸𝐵 → 𝐸𝐵𝐶 respectively. 

4. Combines the 𝜙𝐵 and 𝜙𝐶  isogenies 

using the CRT: 𝜙𝐵𝐶 = 𝜙𝐵  °𝜙𝐶  where 

the kernel of 𝜙𝐵 is generated by 𝑅𝐵 and 

the kernel of 𝜙𝐶  is generated by 

𝜙𝐵(𝑅𝐶) 

5. Redefines his public points as 𝑆 =

𝑃𝐵 + 𝑃𝐶  and 𝑇 = 𝑄𝐵 + 𝑄𝐶 

6. Sends 𝝓𝑩𝑪, S, T, 𝒎𝑩, 𝒎𝑪, 𝒓𝑩, 𝒓𝑪 to 

Alice 

In the key Agreement phase 

Alice Bob 

6. Uses 𝑚𝐴 , 𝑛𝐴, 𝝓𝑩𝑪, S, T, 𝒎𝑩, 𝒎𝑪, 

𝒓𝑩, 𝒓𝑪 to compute  

𝑅𝐵
′ = 𝑟𝐶(𝝓𝑨(𝑺)) + 𝑚𝐵(𝝓𝑨(𝑻)) 

𝑅𝐶
′ = 𝑟𝐵(𝝓𝑨(𝑺)) + 𝑚𝐶(𝝓𝑨(𝑻)) 

7. Uses 𝑅𝐵
′  and 𝑅𝐶

′  to create isogeny 

mappings 𝝓𝐵
′ : 𝐸𝐴 → 𝐸𝐴𝐵   and 

𝝓𝐶
′ : 𝐸𝐴𝐵 → 𝐸𝐴𝐵𝐶  respectively 

8. Combines the 𝝓𝐵
′  and 𝝓𝐶

′  isogenies 

to 𝝓𝐵𝐶
′  using the CRT  

9. Uses 𝝓𝐵𝐶
′  to create an elliptic curve 

𝐸𝐴𝐵𝐶  isogenous to 𝐸  

10. Computes 𝐾 = j-invariant (j𝐴𝐵𝐶) of 

the curve 𝐸𝐴𝐵𝐶 

7. Uses 𝑚𝐵 , 𝑚𝐶, 𝝓𝑨(𝑷𝑩), 𝝓𝑨(𝑸𝑩) to 

compute  

𝑅𝐴
′ = 𝑚𝐵(𝝓𝑩𝑪(𝑷𝑨))

+ 𝑚𝐶(𝝓𝑩𝑪(𝑸𝑨)) 

8. Uses 𝑅𝐴
′  to create isogeny mapping 

𝝓𝐴
′ : 𝐸𝐵𝐶 → 𝐸𝐵𝐶𝐴 

7. Uses 𝝓𝐴
′  to create an elliptic curve 

𝐸𝐵𝐶𝐴 isogenous to 𝐸  

10. Computes 𝐾 = j-invariant (j𝐵𝐶𝐴) of 

the curve 𝐸𝐵𝐶𝐴 

j-invariant (j𝐴𝐵𝐶) of the curve 𝐸𝐴𝐵𝐶 is equal to j-invariant (j𝐵𝐶𝐴) of the curve 𝐸𝐵𝐶𝐴 

Hence Alice and Bob have established a common secret session key, K 
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Computing the odd degree isogenies on Montgomery curves: 

Assuming 𝑷 = (𝒙𝟏, 𝒚𝟏) is a point on the Montgomery curve, 𝑴𝒂 having order 𝓵 = 𝟐𝒅 + 𝟏 and 
(𝒙𝟏, 𝒚𝟏) = [𝒊]𝑷, then we can compute 𝓵-isogeny, 𝝓 from 𝑴𝒂 to 𝑴𝒂′ =𝑴𝒂/〈𝑷〉 as follows: 

𝝓: (𝒙, 𝒚) → (𝒇(𝒙), 𝒚 ∙ 𝒇′(𝒙))                                                              (5) 

where, 

𝒇(𝒙) = 𝒙 ∙ ∏ (
𝒙𝒙𝒊 − 𝟏

𝒙 − 𝒙𝒊
)

𝟐

                               

𝒅

𝒊=𝟏

   

 

 

4.0 Security Analysis  

The key exchange scheme based on eSIDH appears to be a promising alternative to traditional key 

exchange algorithms such as Diffie-Hellman (DH) and elliptic curve cryptography (ECC) in the 

face of the impending quantum computer technology in the next couple of years. The security of 

eSIDH relies on the intractability of the supersingular isogeny problem, which provides a potentially 

stronger level of security. However, it is important to continue rigorous analysis of the scheme and 

monitor developments in cryptanalysis. Additionally, the relatively higher computational overhead 

of eSIDH compared to DH and ECC should be considered when selecting a key exchange algorithm. 

 

4.1 The Extended Canetti-Krawczyk Security Model 

The security analysis of the key exchange scheme based on eSIDH considers the eCK. The choice 

of eCK model is based on the fact that security requirements such as key compromise impersonation 

(KCI), weak perfect forward secrecy (wPFS) and maximal exposure attacks (MEX) are brought into 

the eCK model. This security model considers the use of a quantum computer that can solve the 

ECDLP problem. The scheme developed in this paper is shown to be secure, with the eCK model 

providing a stronger level of security. These results demonstrate the effectiveness of the use of 

eSIDH as a secure key exchange protocol even in the presence of quantum computing capabilities. 

Our motivation is that for an adversary to recover the session key in the eCK model, both the long-

term and ephemeral secret keys must be compromise. In this section, we describe the components 

of the eCK security model. 

We assume that there are a set of 𝒏 parties given by 𝚸 = {𝑷𝟏, … , 𝑷𝒏} where 𝒊 in each party 𝑷𝒊 is an 

element of the set of integers [1,…,n] and each 𝑷𝒊 posses a pair of long-term (public and secret) 

keys denoted as (𝒑𝒌𝑷𝒊
, 𝒔𝒌𝑷𝒊

). 𝑷𝒊 can initiate up to 𝒔 ≤ 𝒏 concurrent or sequential sessions. We refer 

to the initiator of a protocol session as owner represented as 𝚸 and the other party as the responder 

represented as 𝑸. The owner sends the first protocol message and any party that responds to the 

protocol message becomes the responder. A session, ∏𝑷,𝑸
𝒔  enters an accepted state when the session 

key is successfully computed. ∏𝑷,𝑸
𝒔  may terminate without assuming the accept state. Let the 

protocol sessions  ∏𝑷,𝑸
𝒔  and ∏𝑷′,𝑸′

𝒔′
 be initiated by owner, 𝚸 and the other party earlier called the 

Responder, 𝑸. A legitimate protocol run results from proper setup of 𝚸’s and 𝑸’s sessions. This 

means that 𝚸 and 𝑸 set up their individual sessions represented as ∏𝑷,𝑸
𝒔  and ∏𝑷′,𝑸′

𝒔′
 respectively. 

The two sessions must pass the following requirement to be partners: 

(i) They both have computed session keys and the session keys are identical 

(ii) All Messages sent from ∏𝑃,𝑄
𝑠  and received by ∏𝑃′,𝑄′

𝑠′
 and vice versa must be identical 

(iii)The owner is the initiator and the other party is the responder 

(iv) When Ρ initiates a protocol run, 𝑄 is the responder and vice versa. 
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4.2 Adversarial Model 

Our protocol also assumes certain adversarial capabilities. Let the adversary ℵ be a probabilistic-

time polynomial system.  ℵ have control of the entire network and is capable of interacting with any 

initiated protocol sessions in the accepted state. The following specifies the powers ascribed to ℵ. 

(i) ℵ can initiate new sessions and either modify or delay messages or capable of both. It can 

do this by sending query with (Ρ , 𝑄, s, m) as parameters to the session ∏𝑃,𝑄
𝑠 .  

(ii) ℵ can run a query to reveal the session key with (Ρ , 𝑄, s) as parameters in the known session 

key attack. ℵ obtains the session key of ∏𝑃,𝑄
𝑠  the later has accepted and is in possession of a 

session key. 

(iii)ℵ is capable of running a query to reveal all the ephemeral keys as far as the randomness of 

the session, ∏𝑃,𝑄
𝑠 . 

(iv) ℵ can obtain all the long-term secrets of the initiator or owner 𝑃 by run the Corrupt query 

with 𝑃 as the parameter and use it to setup long-term secrets as 𝑃 at anytime hence corrupting 

𝑃. However, this does not reveal any session keys to ℵ. 

(v) ℵ can try to determine whether there is a difference between a random key and the session 

key accepted and held by a session. To do this, it can run the Test query with (Ρ , s) as 

parameters. Here, the session, ∏𝑃,𝑄
𝑠  selects a random bit 𝑏 ∈ {0,1}. If b = 1, the correct 

session key is delivered to ℵ else a random session key is chosen and sent to ℵ. 

4.3  eCK Security Game 

Stage 0: Using the security parameter 𝑘, the challenger, 𝒞 generates keys.                               stage 

1: The adversary, ℵ is executed with the following capabilities Send query, SessionKeyReveal 

query, EphemeralKeyReveal query, Corrupt queries to any session at will and Test query. 

Stage 2: The adversary ℵ chooses a fresh session executes the Test query. 

Stage 3: ℵ keeps running Send query, SessionKeyReveal query, EphemeralKeyReveal query, and 

Corrupt queries with the only constraint that the test session cannot be violated. 

Stage 4: At a certain instance, ℵ produces the bit, 𝑏′ ∈ {0,1} as output by guessing 𝑏 during test 

session. If 𝑏 = 𝑏′, ℵ wins the security game. 

Our protocol is said to be secure in the eCK model if no probabilistic polynomial time (PPT) 

adversary wins the eCK security game with an advantage given by 

𝐴𝑑𝑣𝑄𝑅𝑆𝐸𝐼−𝐴𝐾𝐸
𝑒𝐶𝐾 (ℵ) = |Pr[𝑏′ = 𝑏] − 1/2| 

where Pr[𝑏′ = 𝑏] is the probability that the adversary ℵ wins the eCK security game. 

 

4.4  QRSI-AKE Protocol’s Resilience Against Attacks 

Though SIDH was the first version of a Deffie Hellman-like key exchange scheme based on 

supersingular isogeny, in this paper we took cognizance of the weakness of SIDH. The protocol 

developed in this paper is based on eSIDH. We, alongside this, intentionally employ the 

Montgomery and Edward elliptic curves to provide security against timing attacks. This is because 

scalar multiplication based on the Montgomery form do not depend on the bit-pattern of the secret 

key unlike the Weierstrass-form dependent scalar multiplication. We also propose to use Edwards 

curve since every Edwards curve is birationally equivalent to elliptic curve in Montgomery form. 

The QRSI-AKE Protocol is also strong against key recovery attack as we leverage the responsibility 

of one party in the communication, say Alice, to compute degree-𝟒𝒆𝑨 isogenies and the other party, 

say Bob, to compute degree-𝓵𝑩
𝒆𝑩𝓵𝑪

𝒆𝑪  isogenies. based on this, Bob computes two values 𝓵𝑩
𝒆𝑩  and 𝓵𝑪

𝒆𝑪  

as against one value 3𝑒𝐵 in the large prime, 𝑝 = 4𝑒𝐴3𝑒𝐵 as obtainable in the SIDH protocol which 

is vulnerable to key recovery attack. In addition, the public keys generated indistinguishable from 

random bitstrings. Notice that Alice’s public key sent to Bob is of the form 𝝓𝑨(𝑷𝑩), 𝝓𝑨(𝑸𝑩) while 

Bob’s public key sent to Alice is of the form 𝝓𝑩𝑪, 𝑺, 𝑻, 𝒎𝑩, 𝒎𝑪𝒓𝑩𝒓𝑪 in figure 10 lines 5 and 6 
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respectively. This indistinguishability offers the scheme in this paper resilience against offline 

dictionary attack. 

 

4.5. Discussion 

While our intention in this section is not to give a description of a secure cryptosystem based on the 

traditional DH protocol, it is worthy of note to state that its security depends on the choice of a 

model for the cyclic group. To the best of our knowledge, the family of groups that can offer a DH 

based cryptosystem secure against classical attacks is the elliptic curves over finite field  𝔽. It is a 

common knowledge that existing cryptosystem primitives including DH based cryptos will be 

broken with the arrival of quantum computers. This is because the traditional (ordinary) DH protocol 

depends on the DLP or the ECDLP for its security, which the quantum computer is capable of 

solving in polynomial time. Therefore, this paper engaged in finding a quantum safe mathematical 

problem that can withstand quantum-based cryptanalysis. We explored the various hard 

mathematical problems resistant to exploitation against a quantum computer including lattices, 

hashes, codes, isogenies, high entropy-based symmetric key resistance, and multivariate quadratic 

problems. All these hard problems are capable of surpassing the impending cryptographic nightmare 

posed by quantum computing although still at the theoretical level. We found that of these quantum 

resistant primitives, the supersingular elliptic curve isogeny is suitable for purposes of key exchange 

and key establishment protocol definitions. The traditional Deffie Helman based key exchange 

protocol will no longer be secured in the face of quantum computers hence a supersingular isogeny-

based version of DH protocol for key exchange, SIDH. We explored eSIDH, an extended version 

of SIDH, which enables the use of primes that are Montgomery friendly. These primes allow for 

exploiting the parallelism associated with one of the parties’ computational requirements and also 

offer faster field arithmetic due to the parallelism. 

6.0 Conclusion 

There are many real-world security problems, which cryptographers have provided solutions. These 

problems all bother on how to protect the desirable properties that make information valuable 

including confidentiality, integrity, availability and nonrepudiation. The existing solutions to these 

problems have helped to ensure secure communication over insecure and untrusted channels giving 

the illusion of a more trusted world. One requirement of secure communication is secure key 

exchange, which classically is provided by schemes such as ECDH key exchange. With the 

promising computational power of quantum computers, all key exchange based on schemes with 

DLP, integer factorization problem, and ECDLP problem will fail cryptanalysis test with quantum 

computers hence the rush to migrate to more robust methods soon. SIDH based key exchange is the 

quantum analogue of the classical ECDH. Using an extended version of SIDH called eSIDH, we 

proposed an authenticated key exchange protocol resistant against quantum cryptanalysis, timing 

attacks, offline dictionary attack and MitM attack which security is based on the hard problem of 

finding isogenies of supersingular elliptic curve. We also considered the security of our protocol 

under the eCK because of the additional security requirements captured in the model. 

 

Conflicts of Interest 

The authors declare no conflicts of interest. 

 

 

References 

[1] Steven, D. G. and Vercauteren F. “Computational problems in supersingular elliptic curve isogenies”, 

Cryptology, ePrint Archive, Paper 2017/774, doi: 10.1007/s11128-018-2023-6, 

https://eprint.iacr.org/2017/774. 



 
Tom, J. J. et al. / Journal of Science and Technology Research 

6(1) 2024 pp. 215-233 

232 

 

[2] Cohen, A. D’Oliveira, R. G. L Salamatian S. & Medard, M. “Network Coding-Based Post-Quantum 

Cryptography”. IEEE Journal on Selected Areas in Information Theory. 

https://doi.org/10.1109/jsait.2021.3054598, 2021. 

[3] Cayrel, PL. Yousfi, El. Alaoui, S.M. Hoffmann, G Meziani, M. Niebuhr, R. “Recent Progress in Code-Based 

Cryptography”. In: Kim, Th., Adeli, H., Robles, R.J. Balitanas, M. (eds) Information Security and Assurance. 

ISA. Communications in Computer and Information Science, vol 200. Springer, Berlin, Heidelberg. 

https://doi.org/10.1007/978-3-642-23141-4_3, 2011. 

[4] Balamurugan, C. Singh, K. Ganesan, G. & Rajarajan, M. “Post-Quantum and Code-Based Cryptography—

Some Prospective Research Directions”, 2021. Cryptography, 5(4),38. 

[5] Li, L. Lu, X. & Wang, K. “Hash-based signature revisited”. Cybersecurity 5, 13. 

https://doi.org/10.1186/s42400-022-00117-w, 2022. 

[6] Suhail, S. Hussain, R. Khan, A. & Hong, C.S. “On the Role of Hash-Based Signatures in Quantum-Safe 

Internet of Things: Current Solutions and Future Directions”. IEEE Internet of Things Journal, 8, 1-17, 2020. 

[7] Thanalakshmi, P. Anitha, R. Anbazhagan, N. Cho, W. Joshi, G. P. & Yang, E. “A Hash-Based Quantum-

Resistant Chameleon Signature Scheme”. Sensors (Basel, Switzerland), 21(24), 8417. 

https://doi.org/10.3390/s21248417, 2021. 

[8] Wunderer, T. “A detailed analysis of the hybrid lattice-reduction and meet-in-the-middle attack”. Journal of 

Mathematical Cryptology, 13(1), 1-26. https://doi.org/10.1515/jmc-2016-0044, 2019. 

[9] Jao, D. Feo, L.D. “Towards quantum‐resistant cryptosystems from supersingular elliptic curve isogenies”. In: 

Yang, B. (ed.) Post‐Quantum Cryptography‐4th International Workshop, PQCrypto, Taipei, Taiwan. Vol. 

7071 of Lecture Notes in Computer Science, pp. 19–34. Springer (2011). https://doi.org/10.1007/978‐3‐642‐

25405‐5, 2011. 

[10] Alawatugoda, J. “Authenticated Key Exchange Protocol in the Standard Model under Weaker Assumptions”, 

Cryptography 7(1):1. https://doi.org/10.3390/cryptography, 2023. 

[11]  Alamati, N De Feo, L. Montgomery, H. Patranabis, S. “Cryptographic Group Actions and Applications”. In: 

Moriai, S., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2020. ASIACRYPT 2020. Lecture Notes 

in Computer Science, vol 12492. Springer, Cham. https://doi.org/10.1007/978-3-030-64834-3_14, 2020. 

[12] Basso, A. “A post-quantum round-optimal oblivious PRF from isogenies”. Cryptology ePrint Archive, Paper 

2023/225 (2023). https://eprint.iacr.org/2023/225, 2023. 

[13] Yalamuri, G. Honnavalli, P. Eswaran, S. “A Review of the Present Cryptographic Arsenal to Deal with Post-

Quantum Threats”, Procedia Computer Science, Volume 215, Pages 834-845, ISSN 1877-0509, 

https://doi.org/10.1016/j.procs.2022.12.086, 2022. 

[14] Tom, J. J. Anebo, N. P. Onyekwelu, B. A. Wilfred, A. & Eyo, R.E. “Quantum Computers and Algorithms: A 

Threat to Classical Cryptographic Systems”. In International Journal of Engineering and Advanced 

Technology (Vol. 12, Issue 5, pp. 25–38), Blue Eyes Intelligence Engineering and Sciences Engineering and 

Sciences Publication - BEIESP. https://doi.org/10.35940/ijeat.e4153.0612523, 2023. 

[15] Fujioka, A., Takashima, K., Terada, S., Yoneyama, K. “Supersingular Isogeny Diffie–Hellman Authenticated 

Key Exchange”. In: Lee, K. (eds) Information Security and Cryptology – ICISC 2018. ICISC 2018. Lecture 

Notes in Computer Science, vol 11396. Springer, Cham. https://doi.org/10.1007/978-3-030-12146-4_12, 2019. 

[16] Xu, X. Xue, H. Wang, K. Au, M.H. Tian, S. “Strongly Secure Authenticated Key Exchange from Supersingular 

Isogenies”. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. 

Lecture Notes in Computer Science, vol 11921. Springer, Cham. https://doi.org/10.1007/978-3-030-34578-

5_11, 2019. 

[17] Cervantes‐Vázquez, D., Ochoa‐Jiménez, E., & Rodríguez‐Henríquez, F. “Extended supersingular isogeny 

Diffie–Hellman key exchange protocol: Revenge of the SIDH”. IET Information Security, 15(5), 364-374, 

2021. 

[18] Azarderakhsh, R. et al. “Supersingular Isogeny Key Encapsulation”. Second Round Candidate of the NIST’s 

Post‐Quantum Cryptography Standardisation Process (2017). https://sike.org/.Accessed 23 April 2021. 

[19] Tom, J.J. Alese, B.K. Thompson, A.F. & Anebo, N.P.  “Performance and Security of Group Signature in 

Wireless Networks”. International Journal of Computer (IJC) ISSN 2307-4523 (2018) Volume 29, No 1, pp 

82-98, 2018. Global Society of Scientific Research and Researchers. 

[20] Yang, X. Yi, X. Khalil, I. Fengling, H. & Tari, Z. “Securing Body Sensor Network with ECG”. 298-306, 2016. 

10.1145/3007120.3007121, 2016. 

[21] Soukharev, V. & Hess, B. “PQDH: A Quantum-Safe Replacement for Diffie-Hellman based on SIDH”. IACR 

Cryptol. ePrint Arch., 2019, 730, 2019. 

[22] Zhang J., Zhang, Z Ding, J. Snook, M. Dagdelen, Ö. “Authenticated Key Exchange from Ideal Lattices”. In: 

Oswald, E., Fischlin, M. (eds) Advances in Cryptology - EUROCRYPT 2015. Lecture Notes in Computer 

Science, vol 9057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46803-6_24, 2015. 

[23] Shor, P. W. “Algorithms for quantum computation: Discrete logarithms and factoring”. In Foundations of 

Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages 124–134. IEEE, 1994. 



 
Tom, J. J. et al. / Journal of Science and Technology Research 

6(1) 2024 pp. 215-233 

233 

 

[24] National Institute of Standards and Technology “Post-Quantum Cryptography Standardization Process”. 

https://csrc.nist.gov/Projects/ Post-Quantum-Cryptography, 2017. 

[25] Amdahl, G.M. “Validity of the Single-Processor Approach to Achieving Large-Scale

 Computing Capabilities,” Proc. Am. Federation of Information Processing Societies Conf., AFIPS

 Press, pp. 483-485, 1967. 

 

 


