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The urgent need to monitor oil-filled power transformers’ health on 

daily bases is due to the incipient faults that lead to economic loss. 

However, the most used traditional technique which is dissolved gas 

analysis (DGA) for incipient fault detection is characterized by their 

inability to categorize the state of the faults. This is because the DGA 

datasets can be imbalanced, insufficient and overlapping; imposing 

limitation in obtaining accurate diagnosis. This study investigated an 

ensemble of classifiers used to build fault detection diagnostic model 

for power transformers using DGA. The proposed methods include 

using data transformation techniques, machine learning algorithms: 

Support Vector Machine, Logistic Regression, Multilayer Perceptron, 

and their ensembles: voting, stacking, boosting, bagging, and random 

forest classifiers. The prediction model was applied on 298 data 

samples with seven independent attributes. The research results 

showed that the AdaBoost Radom Forest ensemble model with an 

accuracy of 100% performed better than other methods for the 

prediction of incipient faults in power transformers. The findings, 

therefore, suggest that the performance of the use of ensemble of 

classifiers could be influenced by the type and size of the datasets, and 

models’ parameters. 
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1.0  Introduction 

An electrical transformer is an inert apparatus that facilitates the transmission of electrical 

energy between circuits using electromagnetic induction. It is an immensely important and 

expensive component in electricity generation, transmission, and distribution [1]. As power 

transformers operate, they experience significant mechanical, electrical, and thermal strain, 

which inevitably result in faults. Power transformer failures not only halt the continuous flow 

of energy but also seriously jeopardize the stability and security of the entire power system. 

Moreover, such failures can lead to substantial economic and societal losses [2]. For detecting 

faults in power transformers, dissolved gas analysis (DGA) is widely used as non-intrusive 

technique [1]. Heat generated by the transformer during its operation causes insulation 

materials to undergo degradation, leading to the emission of detectable quantities of certain 

gases. Analysing gas distribution provides important insights in knowing the faults types that 

occurs within the power transformer. The gases that are most commonly examined in DGA 

include methane (CH4), ethane (C2H6), ethylene (C2H4), hydrogen (H2), acetylene (C2H2), 

carbon monoxide (CO), and carbon dioxide (CO2), which are measured and expressed in units 

of parts per million (ppm) [3]. Popular traditional methods for interpreting DGA data include 
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the Doernenburg method, Rogers' method, key gas method, Duval Triangle method, and IEC 

ratios [4]. These methods rely heavily on the technical knowledge of human experts to diagnose 

faults in power transformers, but can as well lead to miss-identification of the severity or type 

of faults [1]. This problem has led to the introduction of numerous methods utilizing intelligent 

methods to reliably and efficiently analyse DGA data and predict power transformer faults 

more accurately. Some popular intelligent methods include Artificial Neural Networks (ANN), 

support vector machine (SVM), fuzzy logic, adaptive neuro-fuzzy inference system (ANFIS), 

and other hybrid methods [5]. Numerous studies have investigated the efficiency of these 

intelligent techniques. It is important to consider previous research in order to identify 

opportunities for improvement. A summary of studies on DGA interpretation using machine 

learning and intelligent approaches are highlighted in Table 1. 

 

Table 1 Related literature summary 

Author Models Contribution for Knowledge Limitations 

[1] KosaNET (ensemble 

method based on decision 

trees) 

Exhibits an improved ability in classifying 

multinomial data with a classification 

accuracy of 99.98%. 

Not used on 

regression problem 

[6] IEC and ROGER ratio 

methods combined with 

Artificial Neural Networks 

(ANN) 

Increase in efficiency from 20% to 70% for 

the IEC ratio method and 40% to 70% for 

the ROGER ratio method 

Still prone to 

producing 

misleading results 

[4] Parzen window estimation 

method 

Higher performance than the traditional 

methods at 95% accuracy. 

Small sample used 

[7] Back-propagation (BP), 

radial basis function (RBF) 

NN, and adaptive ANFIS 

Obtained 98.85% accuracy No validation 

ANFIS is slow  

and occupies more 

memory space 

[8] Multi-layer perceptron 

(MLP), Doernenburg ratio 

and Rogers ratio  

Detects faults more accurately than 

contemporary ratio methods 

No parameter tuning 

[3] Common Vector Approach 

(CVA)  

Produces better fault diagnosis performance 

than all methods that were compared. 

Lacks generalization 

ability 

[9] Particle Swarm 

Optimization with Support 

Vector Machine (PSO 

SVM) 

Superior accuracy to standard SVM and 

GA-SVM, with 85.71% accuracy against 

57.14% for SVM and 60.71% for GA-SVM 

Lacks generalization 

ability 

[10] Probabilistic Neural 

Network (PNN) optimized 

by a modified differential 

evolution whale 

optimization algorithm 

(MDE-WOA) 

Improves the convergence rate of PNN 

network, enabling it to quickly escape local 

optima and increasing efficiency. 

Performance is 

impacted by the 

parameter setting  

[5] A Fuzzy Inference System 

(FIS), Artificial Neural 

Network (ANN), and 

Adaptive ANFIS 

The ANFIS, FIS and ANN method were 

shown to have superior performance with 

97.5%, 95%, 92.5% accuracy respectively 

while the Rogers ratio method had a 60% 

Lacks generalization 

ability 
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[2] Genetic algorithms, support 

vector machines, arctangent 

transformation (AT) and 

logarithm  

transformation filter 

methods  

Outperforms all other methods in most 

power transformer fault categories 

Lacks generalization 

ability 

[11] A new approach DGA 

Technique has been 

developed based on  

the gas concentrations. 

Obtained higher agreement accuracy than 

traditional DGA techniques 

Obtained an overall accuracy  of 84.71%  

Poor performance 

compared to ML-

based models. 

[12] Fuzzy logic system Proposed system maintains an accuracy rate 

of 99% in identifying faults in transformers. 

No learning  

Not adaptable 

[13] Roger’s ratio and IEC ratio 

combined, Fuzzy Inference 

system (FIS) 

FIS system was shown to improve the 

efficiency of diagnosing power transformer 

faults 

No learning and 

model not adaptable 

[14] MLP Model and SVM SVM obtained 81.4% accuracy while MLP 

obtained an accuracy of 76 %.   

Lacks generalization 

[15] ANN and Fuzzy systems Duval Pentagon method and Fuzzy 

Inference system was proven to have the 

best performance of all methods considered 

ANN lacks 

explainability and 

interpretability. 

Fuzzy lacks learning 

and adaptability 

[16] Extreme Learning Machine 

(ELM) based technique 

Proposed method performed better than 

existing ones. 

Lacks generalization 

ability 

 

It is evident from the literature that the old DGA techniques' accuracy limit remains a 

significant problem when diagnosing transformer defects caused by electrical and thermal 

stressors [11]. Due to their inability to precisely evaluate every faults, which typically arises 

when many faults occur in a transformer especially as the concentration of gas approaches the 

threshold, all conventional approaches have limits [5]. Furthermore, it is observed to the best 

of the authors’ knowledge, ensemble machine learning methods – a method of combining 

different ML algorithms – is yet to be applied in addressing faults in power transformer so as 

to solve the problem associated with diversity with respect to datasets and base classifiers [19, 

28, 29]. Motivated by these limitations, three well-known supervised machine learning 

techniques – MLP, SVM and LR, and Random Forest (RF), and three different ensemble 

learning methods – Bagging, Boosting, Stacking and Voting methods were investigated to 

diagnose the condition power transformer towards improving the accuracy and reliability of 

fault diagnosis and building confidence in results obtained.  

2.0. Materials and Method 

This section outlines the general methodology of our suggested approach as well as the primary 

research component. The suggested methodology's system architecture is shown in Figure 1. 
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Figure 1 System architecture of the proposed methodology 

2.1 Data  

The primary concern for information accuracy is the data source [20]. The data used is the IEC-

TC 10 dataset from [17], which consists of 166 instances and 8 features. Among these features, 

7 are independent variables denoting the concentration of dissolved gases; H2, CH4, C2H4, 

C2H2, C2H6, CO2, and CO in ppm (parts per million), while the 8th attribute represents the 

observed fault. From the dataset, five fault categories were identified, and an extra label was 

assigned to represent the normal operational state. The fault types represented in Table 2 are as 

follows: partial discharge (PD), discharge of low energy (D1), high energy discharge (D2), 

thermal fault below 300°C and Thermal Fault above 300°C but below 700°C (T1&T2) and 

thermal Fault above 700°C (T3) [17,18]. 

 

Table 2 Fault categories of power transformer faults 

 
Fault Type Number Of Instances 

PD 9 

D1 26 

D2 48 

T1&T2 16 

T3 18 

Normal (no fault) 50 

2.2 Processing the data  

Data preprocessing is an essential stage in data preparation that assures data are well-formatted 

and high-quality prior to applying machine learning algorithms and building models. This is 

the most labor-intensive stage of the data mining life-cycle and needs to be done with extreme 

caution because bad data might result in bad models and poor performance. It involves various 

procedures, such as data cleansing, balancing, normalization, data wrangling etc., so as to make 

the data suitable for further analysis and modelling [19,20]. 

2.3 Missing Values 

In this study, the missing values in the dataset were filled up using the median imputation 

technique. The choice of median imputation was made due to the relatively low number of 

missing values (less than 10%) and the implementation method is quick and straightforward. 
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The two steps are to: first, impute the median value of the respective feature, considering 

instances belonging to the same class; and second, repeat this process for all instances with 

missing values in the feature [21]. 

2.4 Data Imbalance 

Data imbalance occurs when the distribution of classes in the dataset is skewed and the minority 

classes have significantly fewer examples than the majority class leading to overfitting and 

poor generalization. When dealing with data imbalance, the two techniques employed are under 

sampling and oversampling. Under sampling is involved with reducing the majority class 

which is not recommended as there is a chance of loss of information.  Oversampling on the 

other hand involves increasing the minority classes so they are equal with the majority classes 

[22]. To address data imbalance in the dataset, the synthetic minority oversampling technique 

(SMOTE) was applied in our work. The following steps was used to implement SMOTE and 

using Equation 1.  

1. Select a minority instance from the feature space. 

2. Locate the K-nearest neighbours and obtain the distance between the neighbours using 

the Euclidean distance (Equation 2). 

3. Next, we determine the vector that connects the chosen neighbor and the current data 

point. 

4. To sum up the additional samples, we multiply the vector by a random integer between 

0 and 1 and add it to the existing data point. 

 

𝑥𝑠𝑦𝑛 = 𝑥𝑖 + (𝑥𝑘𝑛𝑛 − 𝑥𝑖) ∗ 𝑡    (1) 

 

𝑑(𝑥, 𝑦) = √(∑ (𝑥𝑖 − 𝑦𝑖)2𝑁
𝑖=1 )   (2) 

 

After applying SMOTE on our dataset the number of instances increased from 166 to 300, with 

50 samples for each fault type and depicted in Table 3. 

2.5 Normalisation 

The dataset was normalized to prevents bias, improves algorithm convergence and speed and 

stabilize variance. By bringing all features to a common scale, normalization enhances model 

performance, interpretability, and the reliability of statistical analyses. Min-Max normalization 

technique was applied as represented in Equation 3. 

 

𝑋′ =  
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
     (3) 

where 𝑋′ is the normalized value of the original data point 𝑥, 𝑚𝑖𝑛(𝑥) is the lowest value of the 

whole dataset, 𝑚𝑎𝑥(𝑥) is the highest value of the whole dataset . 

2.6 Data Splitting 

The dataset is split with 60% allocated to train the model, 20% for validation and 20% to test 

the model. The distribution of the dataset is depicted in Table 3. 

 

Table 3 Label count for training, validation and testing set  
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Fault Type Training Set Validation Testing Set 

Total (300) 180 60 60 

3.0. Modeling 

The models are formed in this stage. As shown in Figure 2, this process is an iterative step 

leading up to modeling and model evaluation. The fundamental idea is to repeatedly build 

different models in an effort to find the optimal model that meets the data requirements for 

performance criteria. Some selected supervised classification algorithms were used to build the 

models with their default parameter settings adopted [19]. The aim behind the application of 

these classifiers was to increase diversity and confidence of the results obtained [33]. The 

following subsections discusses the classification algorithms as:  

 

 
Figure 2 A typical machine learning framework 

3.1 Multilayer Perceptron 

A Multilayer perceptron (MLP) is an artificial neural network characterized by its fully 

connected feed-forward architecture, comprising a minimum of three layers: an input layer, an 

output layer, and at least one hidden layer [19]. In our Multilayer perceptron model 

implementation as represented in Equation 4, we utilized an input layer of 7 nodes, mapping to 

each of our input features, and use an output layer of 6 nodes for each of our fault types and a 

single hidden layer. The weight outputs are computed as follows [6]: 

𝑦𝑗 = 𝑓(∑ 𝑋𝑖𝑊𝑖𝑗 + 𝜃𝑗
𝑛
𝑖=1 )    (4) 

where 𝑋𝑖 are the network inputs; 𝑊𝑖𝑗 translate the weight-connection between the input neuron 

𝑖 and the neighbouring hidden neuron 𝑗; 𝜃𝑗  is the bias of the 𝑗𝑡ℎ hidden neuron, 𝑦𝑗 is the output 

of the network, and 𝑓( ) is the transfer function or also called activation function. 

3.2 Support Vector Machines 

A support vector machine depicted in Equation 5, creates a hyperplane or multiple hyperplane 

within a high-dimensional or potentially limitless space, which can then be used for tasks such 

as classification or regression tasks [23]. The "one-vs-rest" method of multi-class SVM 

classification was used in this work [24]. 

 
(𝑤 ∗  𝑥)  +  𝑏 =  0     (5) 
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Where 𝑤 is the weight vector, 𝑏 is the bias, and 𝑥 is the feature vector. 

3.3 Logistic Regression 

Logistic regression is a statistical modeling technique that determines the probability of a 

specific result based on one or more independent variables. The logistic function, often 

depicted as an S-shaped curve (Sigmoid curve), generates an output value ranging between 0 

and 1 which can effectively represent a probability [25]. This is implemented using the model: 

 

y =  
1

1+e−(β0+β1x)    (6) 

 

Where 𝑦 is the output value ranging from 0 to 1, 𝑥 is the input variable, and 𝛽0,𝛽1 are the 

coefficients  

3.4 Random Forest 

With ensembles of trees, one can make significant improvements in classification and 

regression accuracy, as each tree in the ensemble is developed according to a random 

parameter. By aggregating throughout the ensemble, final predictions are obtained. These 

processes are known as "random forests" because the fundamental components of the ensemble 

are tree-structured predictors and because each of these trees is built with the addition of 

randomness [27, 33, 34]. An RF is defined formally as a classifier that consists of a set of 

decision tree classifiers: 

 

 {hk(x, Tk)}, k = 1,2, . . . , L    (7) 

 

Where ℎ𝑘 is the decision tree classifier, 𝑇𝑘 is the independent identically distributed random 

sample, and each tree casts a unit vote for the most popular class at input 𝑥 [19,26,27]. To build 

an RF classifier we: 

1. decide on the number of trees to build, a larger number usually leads to better 

performance up to a point, a range between 64 and 128 trees has been suggested in 

literature for an optimal equilibrium among AUC performance, processing speed, and 

memory utilization, 

2. we take the bootstrap sample of our training set data (i.e. repeatedly taking random 

samples from our datasets, with replacement, 𝑘 times), this enables each decision tree 

to be trained on a different dataset creating variation, 

3. each decision tree evaluates only a random subset of the available features during each 

division, introducing randomness that prevents any individual feature from 

overpowering the decision-building procedure, and; 

4. finally, every tree makes a prediction about the class of a given data point; the 

anticipated classes are then combined via majority vote. 

4.0 Ensemble (Combination) Learning Method 

In machine learning, the ensemble technique aggregates the predictions of several different 

independent models to improve their overall performance and robustness, even though it brings 

an increased algorithmic cost and model complexity. There is no single answer to what the best 
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model is or what will give you the best results so the need for ensemble [19]. In this study, 

bagging, stacking, boosting, and voting are adopted using LR as the meta learner. 

4.2 Bagging 

The bagging ensemble method trains a basic classifier on random portions of the original 

dataset. The predictions of these individual classifiers are combined either through voting or 

averaging to produce a final prediction [23]. This is implemented for our training set 𝑇 using 

the model: 

 

𝑇 =  {(𝑦𝑛, 𝑥𝑛), 𝑛 = 1. . . 𝑁}   (8) 

 

where 𝑥 is the instance and 𝑦 is the target label, and a classifier 𝜙 of the form 𝜙(𝑥, 𝑇) that 

predicts the output label from the input data, we build a bagging ensemble by; 

1. taking repeated samples  {𝑇(𝑏)} from 𝑇, to create the model; 

 

𝜙𝐵(𝑥) =  𝑎𝑣𝐵𝜙(𝑥, 𝑇(𝑏))      (9) 

 

2. the bootstrap samples are then derived from replicated dataset, each containing N 

instances, drawn randomly and with replacement from the training dataset, 

3. we train multiple instances of a base model on these subsets independently from each 

other, and; 

4. finally, we combine the predictions of these models to determine our final prediction. 

4.3 Boosting 

Boosting is an adaptive technique in machine learning that involves fitting a series of weak 

learners sequentially by assigning more importance to the data points that were poorly handled 

by the previous models [28]. There are two meta-algorithms used for fitting and aggregating 

weak learners for boosting; AdaBoost and gradient boosting. This work adopted the AdaBoost.  

We implemented a multi-class AdaBoost ensemble utilizing the Stage-wise Additive 

Modelling using a Multi-class Exponential loss function (SAMME) technique. The core 

concept in the SAMME algorithm involves calculating the weighted sum of the weak 

classifiers' predictions and focuses on minimizing an exponential loss function, which 

measures the difference between predicted and actual classes, by adjusting weights and 

selecting the best weak classifiers [29]. It is implemented based on the following mathematical 

model; 

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝛼𝑡ℎ𝑡(𝑥)   (10) 

 

where Ft(x)is the combined prediction up to iteration t, 𝐹𝑡−1(x) is the combined prediction up 

to iteration t-1, αtis the weight assigned to the t-th weak classifier, ht(x) is the prediction of 

the t-th weak classifier for input x. The following steps implement the algorithm as:  

1. initialize the dataset and allocate equal weights to all data points, 

2. then feed the dataset as input to the model and pinpoint the data points, that 

have been classified incorrectly, 

3. increase/boost the weights of the misclassified data points while reducing 

the weights of those that have been classified correctly, and normalize the 

weights of all data points. 

4. This cycle is repeated until the desired outcomes are attained. 
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4.4 Stacking 

Stacking involves the training of multiple diverse weak learners and then combining their 

predictions by using a meta-model in order to leverage the diverse perspectives of these weak 

models and build a more robust and accurate final prediction [30]. We implement stacking 

ensemble in the following steps: 

1. Firstly, multiple weak learners are trained using different algorithms, hyper-parameters, 

or subsets of the data.  

2. Each base model 𝑚𝑖 generates predictions for each input data point 𝑥𝑗, resulting in an 

ensemble of predictions: 

 

{𝑃𝑖𝑗 = 𝑚𝑖(𝑥𝑗)} 𝑖 = 1. . . 𝑁, 𝑗 = 1. . . 𝑘      (11) 

 

where 𝑘 is the number of data-points. 

3. After training the weak learners, they are used to make predictions on the same dataset 

they were trained on. Each weak learner generates its set of predictions for the target 

variable based on its understanding of the data.  

4. The meta-model is then trained on these predictions to learn how to weigh and combine 

them effectively: 

𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝑀(𝑍)   (12) 

4.5 Soft Voting  

The most widely used voting method is majority voting. In this approach, we determine the 

final output by the following steps: 

1. each classifier casts a vote for a specific class label, 

2. we aggregate the votes cast and determine if any class receives more than half of the 

votes, 

3. if such a class exists it is determined as the final output, else; 

4. if not more than half of the votes are cast for any of the target labels, a rejection option 

is provided, and the combined classifier refrains from making a prediction.  

The mathematical model for the above process is as follows; 

This research study adopted the majority voting as in Equation 13 and 14 respectively. 

 

class(x) = arg max
ci∈ dom(y)

∑ g(yk(x), ci)k   (13) 

 

where 𝑦𝑘(𝑥)is the classification of the 𝑘𝑡ℎ classifier, and 𝑔(𝑦𝑘(𝑥)) is an indicator function 

defined as: 

 

g(yk(x)) = {
1 y =  c
0 y ≠  c

    (14) 

5. Performance Evaluation Methods 

The confusion matrix (CM) was used to summarize the performance of classifier models. This 

matrix offers crucial information on the generalization properties of the model as well as its 

capacity to forecast specific classes [1,19,31]. Other performance metrics that are derived from 

a confusion matrix are [19]: 
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Table 4. Confusion Matrix 

 

 

 

 

 

 

 

 

 

(a) Accuracy: determines the model's accuracy, i.e. the ratio of accurate classification 

to all instances, as shown by Equation 15. 

 

Accuracy =
TP +TN

TP + FP + TN + FN
   (15) 

(b) Precision: The ratio of correctly categorized positive cases to all positively 

classified positive instances, as represented by Equation 15, indicates the model's 

precision. 

 

Precision =
TP

TP + FP
     (16) 

 

(c) Recall: calculates the sensitivity using the ratio of instances classified correctly as 

positive to all the positive instances, represented by the Equation 17. 

 

Recall =
TP

TP + FN
     (17) 

(d) F-Measure analysis: one way is to calculate the harmonic mean of precision and 

recall, which in the information retrieval literature is known as the F-measure [32]. 

This statistical study uses the weighted harmonic mean of the recall and precision 

to determine the test's accuracy. The more realistic measure provided by the F-score 

can be achieved by using both recall and precision in the test performance [1,19,32]. 

 

F − measure =  
precision × recall

precision + recall
   (18) 

(e) Receiver operating characteristic (ROC) curve: The area under the coverage 

curve gives the absolute number of correctly ranked pairs; in an ROC plot the area 

under the ROC curve (AUC) is the ranking accuracy [19,32]. 

6. Results and Discussion 

The results from utilizing machine algorithms and ensemble model for classification of power 

transformer faults are discussed in this section. All experiments were conducted on an 8th-

generation Core i5 machine running a Linux operating system. We deployed Jupyter Notebook 

with the Python programming language to implement our machine learning models. These 

models' performance was evaluated employing the F1 Score, accuracy, precision, ROCAUC 

and recall. Table 5 presents the test results of the implemented models. AdaBoost achieved a 

100% accuracy, precision, recall and f1-scores as the highest compared to others. The stacking 

ensemble and bagging (MLP) obtained 95% accuracies, while voting and MLP obtained 

93.33% accuracies respectively. The least preforming models are the SVM and random forest 

with an 85% and 83.33% respectively which are depicted in Figure 2. 
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Table 5 Evaluation comparison of the models implemented 

Metrics SVM MLP RF Bag 

(SVM) 

Bag 

(MLP) 

Ada 

(RF) 

Stack Voting 

accuracy 85.00 93.33 83.33 83.33 95.00 100.0 95.00 93.33 

precision 87.21 94.05 83.94 84.30 95.51 100.0 95.15 94.20 

recall 85.00 93.33 83.33 83.33 95.00 100.0 95.00 93.33 

f1_score 84.50 93.31 82.78 82.98 95.06 100.0 95.00 93.37 

 

 
Figure 2 Performance metrics of all models 

 

The confusion matrix of each of the models are shown in Figures 3 to 8. In Figure 3, Multilayer 

perceptron and voting misclassified 4 samples respectively, while SVM shown in Figure 4 

misclassified 9 samples. In Figure 5, the bagging (MLP) and stacking has 3 misclassified 

samples, while AdaBoost has no misclassified samples in its prediction which shows AdaBoost 

model outperformed others as regards classification in power transformer faults. 

Figure 3 CM for MLP classifier 
 

Figure 4 CM for SVM classifier 

 
Figure 5 CM for Bagging MLP classifier 

 
Figure 6 CM for AdaBoost Ensemble 
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Figure 7 CM for Stacking classifiers 
 

Figure 8 CM for Voting Ensemble 

The area under the ROC provides values between (0, 1). When discrimination operates 

significantly better, its value is 1, and a faulty classification leads values to be near to 0.5 [35]. 

Figures 10 to 17 depicts the receiver operating characteristic area under (ROCAUC) curve 

showing the absolute number of correctly ranked pairs, i.e., the ranking accuracies of each 

model. From the ROCAUC scores from all classifiers shown in Table 6, we obtained good 

performance in the prediction models evaluated. The One vs Rest technique was used to 

binarize the models producing the results for each class. Most of the ensembles are shown to 

have a high sensitivity or true positive rate of above 0.9 across most classes and with an average 

AUC-ROC score between 96% to 99% respectively. This shows that the models are not 

randomly guessing the predicted outcome and produce optimal results in fault diagnosis. 

 

Table 6 AUC-ROC scores (%) 

ROC SVM MLP RF BAG 

SVM 

BAG 

MLP 

ADA 

RF 

STACKING VOTING 

N 100 100 100 100 100 100 100 100 

PD 100 100 100 100 100 100 100 100 

D1 99.31 100 94.62 99.31 100 100 100 100 

D2 94.62 99.65 90.28 94.44 99.65 98.44 99.65 99.65 

T1&T2 94.06 99.63 96.29 94.43 99.07 100 99.81 99.26 

T3 98.20 100 99.20 98.20 100 100 100 99.40 

AVERAGE 97.70 99.88 96.73 97.73 99.79 99.74 99.91 99.72 

 

The application of oversampling, normalization and cross-validation techniques resulted in the 

performance boosting of both models as depicted in Figure 9. The best performing models are 

the stacking, MLP, voting, Bagged MLP and ADA RF models respectively. Whilst the SVM, 

Bagged SVM and RF performed little above average. This may not be unconnected to the use 

of the default parameters in the study. However, it is important to note that the ensemble 

methods performed better than the base classifiers. In addition, the ensemble of MLP, RF, 

Stacking, and Voting improved in their classification due to the diversity introduced in to the 

model, making the proposed model robust and scalable and by implication increases model 

predictive confidence.  
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Figure 9. Empirical Analysis of Models’ Performance  

 

 
Figure 10 SVM ROC curve 

 
Figure 11 MLP ROC curve 
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Figure 12 Random Forest ROC curve 

 

 
Figure 13 Bagging (SVM) ROC curve 

 

 
Figure 14 Bagging (MLP) ROC curve 
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Figure 15 AdaBoost (Random Forest) ROC curve 

 

 
Figure 16 Stacking ROC curve 

 

 
Figure 17 Voting ensemble ROC curve 



 
 Efosa C. Igodan, Rose I. Izevbizua /Journal of Science and Technology Research 

6(1) 2024 pp. 138-155 

153 

 

7. Conclusion 

This research demonstrates the advancements realized through the utilization of ensemble 

techniques in dissolved gas analysis for the classification of faults in power transformer. The 

DGA dataset used was first preprocessed using oversampling techniques, then normalized and 

finally cross validated respectively. We then created and evaluated ensemble methods 

including bagging, AdaBoost, stacking, Random forest and simple voting schemes as well as 

SVM and MLP base models to discover the most performing classification model. The findings 

unequivocally established that the AdaBoost ensemble implemented with a random forest as 

its base learner surpasses all other intelligent approaches, achieving a classification accuracy 

of 100%.  For future research purpose, we plan to employ more robust real-world datasets, also 

introduce feature engineering techniques in determining principal features and feature 

relevance to use in modeling. Finally, the base classifier’s parameters will also be tuned and 

carefully selected for optimal performance with regards to improve accuracy, but reduced time 

and space complexities. Furthermore, by pairing transformers with online-connected field-test 

instruments and then connecting the final model from this investigation to a broader online 

monitoring system, the current work can be extended. 
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