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Tobacco smoking, a highly complex behavior influenced by genetic 

predisposition and environmental factors, is a grave global health 

alarm and a leading preventable cause of death, linked to severe 

diseases like osteoporosis and various cancers. Quitting rates remain 

dishearteningly low despite recommendations for nicotine 

replacement therapy and healthcare provider discussions. Presently, 

tobacco research generates vast data that can be harnessed by 

machine learning models, including supervised, unsupervised, and 

deep learning algorithms, which are gaining traction in tobacco 

research. This review delves into the intersection of traditional 

tobacco research and machine learning, elucidating the potential of 

ML methodologies in addressing the challenges of tobacco control. By 

leveraging diverse applications such as identifying smoking 

susceptibility predictors, predicting smoking behavior from genetic 

data, aiding cessation efforts with personalized predictors, 

automating data collection through apps, managing nicotine 

cravings, tracking smoking-induced diseases, monitoring illegal 

online vape sales, and assessing second-hand and third-hand smoke 

exposure, especially in infants, ML emerges as a powerful tool to 

combat the tobacco epidemic. Furthermore, this review highlights the 

significance of integrating ML techniques in tobacco research, 

emphasizing their role in advancing our understanding of smoking 

behavior, informing targeted interventions, and ultimately mitigating 

the public health burden associated with tobacco use. By harnessing 

the predictive power of ML algorithms, researchers and policymakers 

can tailor interventions to individual needs, optimize resource 

allocation, and accelerate progress toward a tobacco-free future. 
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1.  Introduction 

Tobacco smoking is the primary preventable cause of death globally, resulting in the loss of 8 

million lives annually, with 1.2 million of these being non-smokers exposed to secondhand 

smoke. [1–3]. Worldwide, this number will shoot up to 18.3 million by 2030 if a proper effort to 

limit tobacco smoking is not initiated timely  [4–7]. According to a report by the World Health 

Organization (WHO), 36.7% of men and 7.8% of women, cumulatively 22.3% of the entire global 

human population smoked tobacco in 2020 [1]. Roughly an estimated 14% of all U.S. adults i.e., 34 

million people are smokers, and they can expect to gain up to 10 years of life just by quitting 



 
 Nabanita Ghosh, Krishnendu Sinha /Journal of Science and Technology Research 

6(2) 2024 pp. 55-71 

56 

 

tobacco [8]. Hence prevention of smoking seems to be a critical step in controlling the tobacco 

smoking pandemic [6,9–12]. It has been shown that around 70% of smokers want to quit smoking 

while it takes an average of 6 quit attempts for them to quit before achieving persistent abstinence 

from smoking [8]. In such cases, a combination of nicotine replacement therapy (NRT) products 

and counseling has been proven to be effective [8,13]. 

Tobacco smoking is a rather complex learned behavior with a heritable genetic influence as high as 

50% and maintained by physical nicotine dependence [6,8].  From socioeconomic status to 

education and from the environment to peer, numerous aspects have a significant influence on the 

development of tobacco smoking disorder [6,8,14].  However, in addition to traditional combustible 

smoking, electronic nicotine delivery systems (ENDS) are becoming a matter of concern for public 

health, especially in adolescents [15–22]. Though ENDS (like e-cigarettes and other ‘vapes’) was 

originally developed to aid individuals to quit smoking by allowing the controlled dose of nicotine, 

subsequent uncontrolled and unsupervised growth of the vaping market is imposing significant risk 

on the public health worldwide [15,17,22]. Vaping has emerged as a ‘youth vaping epidemic’ in the 

U.S. and intensified public health and regulatory inspection regarding this epidemic has directed 

more attention to uncontrolled advertising and trade of vaping goods on social media 

platforms [15,17,19–22]. 

A few years back computational methodologies were primarily centered on professional 

understanding, but nowadays, a transition from conventional methodology to machine learning 

(ML) models is evident and the credit goes to a large amount of data at disposal [6,23–25]. 

Currently, ML models are beginning to flourish in the fields of psychology, medicine, and public 

health [25]. Researchers are applying ML algorithms to address complex tobacco research-related 

questions like psycho-genetic predisposition on tobacco addiction/ tobacco smoking behavior, 

intricate behavioral patterns in smokers, deploying personalized digital assistance to quit smoking, 

tracking unregulated vaping trades over social media platforms, etc. [6,14,25]. In this review would 

like to appreciate these approaches. These were unimaginable a few years back but now coming 

into practice to control the tobacco epidemic, thanks to the next generation of ML algorithms and 

the great boom in big data research. 

Furthermore, this review aims to provide a comprehensive examination of the current landscape of 

tobacco research and the evolving role of machine learning (ML) methodologies within this domain. 

By synthesizing recent literature and highlighting key findings, the review seeks to address several 

overarching research objectives. These include elucidating the significance of leveraging ML in 

tobacco research, identifying novel applications and advancements facilitated by ML algorithms, 

and assessing the implications of these developments on public health interventions and policy 

frameworks. By explicitly stating these research objectives, we aim to guide readers through the 

subsequent sections of the review, providing a clear framework for understanding the contributions 

and insights presented herein. 

2.  A Brief Account on Machine Learning 

Machine Learning involves teaching computers to learn from data without explicit 

programming  [26]. Unlike traditional programming, where specific rules are set, Machine Learning 

extracts patterns from data to create rules specific to each instance (Fig 1). Historically, it enables 

computers to learn without explicit programming  [27]. Complex Machine Learning challenges fall 

into four core types: Classification, Regression, Clustering, and Rule extraction [28,29]. 

Classification labels discrete data points, Regression predicts numerical outcomes, Clustering 

groups similar data, and Rule extraction identifies associations among properties [29]. Machine 
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Learning systems are categorized as supervised, unsupervised, semi-supervised, or reinforcement 

learning based on human supervision during training  [26,30,31]. 

 

2.1. Supervised learning 

Supervised learning works with a group of labeled examples, i.e., training dataset. That can be 

mathematically represented as {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛 , where an individual element 𝑥𝑖 is a feature vector and 

the dimensionality of the dataset is the length of this feature vector [30]. Each dimensional value is 

a feature, represented as 𝑥𝑖
(𝑗)

 [32]. Feature defines an instance. All the feature vectors are typically 

loaded into a matrix layout where an individual row signifies a vector for one instance and an 

individual column signifies all the instances’ values for that feature. For an instance, 𝑥𝑖 in one 

collection characterizes an adolescent vape user, then the first feature 𝑥𝑖
(1)

could involve his age, the 

second feature 𝑥𝑖
(2)

, could involve his education, and so on. The label 𝑦𝑖 is generally an element to 

a finite set of classes or a real number indicating the label for the corresponding vector, e.g., ever-

smoker or never-smoker [30,32]. A class can be conceptualized as a category to which a feature 

vector belongs. In supervised learning, the task of predicting a class is known as classification 

whereas, predicting a float is called regression [26,30]. Decision Trees (DTs) and Random Forests 

(RFs) (Fig 2), 𝑘-Nearest Neighbors (𝐾NN), Support Vector Machines (SVMs) (Fig 3), Linear 

Regression (LR), artificial neural networks (ANN) (Fig 4) are some contextually relevant supervised 

learning algorithms. However, cumulatively it can be stated that a supervised learning algorithm 

intends to use a labelled dataset to generate a model that in succession takes an unlabeled feature 

vector 𝑥𝑖 as input and outputs a label for that [30].  

 

2.2. Unsupervised learning 

Unsupervised learning works with a set of unlabeled examples called a training dataset. 

Mathematically speaking, the training dataset is represented as {𝑥𝑖}𝑖=1
𝑛 , where every element 𝑥𝑖 is a 

feature vector. Contrary to supervised learning, an unsupervised learning algorithm produces a 

model that accepts an unlabeled feature vector 𝑥𝑖 as input and either transforms it into another vector 

or into a scaler that can be employed to resolve a practical problem [26,30]. Clustering is a critical 

unsupervised learning technique appropriate for locating groups of analogous objects in a large pool 

of objects. A clustering model sends the ID of the cluster for every feature vector in the dataset. In 

other words, it puts a label/ID on unlabeled data points based on its features [30]. Hierarchical 

Cluster Analysis (HCA), 𝐾-Means, Isolation Forest, t-Distributed Stochastic Neighbor Embedding 

(t-SNE), and Principal Component Analysis (PCA) are a few vital unsupervised learning clustering 

algorithms [26]. Instances of unsupervised learning in tobacco research include discovering the 

topics of conversations related to tobacco on social media or finding possible nicotine addiction 

subtypes by evaluating the MRI data of brain addicts [33].  

3. ML in Prognosis of Tobacco Smoking Induced Ailments 

3.1. Hierarchical clustering and SVM in Smoking-induced lung cancer prognosis 

Lung cancer ranks among the leading causes of cancer-related deaths globally due to its late 

detection, high malignancy rate, and rapid progression  [34,35]. The duration of tobacco smoke 

exposure, rather than pack size, strongly correlates with lung cancer risk, with active smoking years 

significantly increasing the odds of developing the disease  [35–37]. Despite most cases being linked 

to tobacco smoke, approximately 10-15% of U.S. lung cancer cases occur in never-smokers, 

suggesting other contributing factors beyond smoking  [34,35]. Chapman et al.'s meta-analysis 
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highlighted key driver mutations and patient characteristics such as sex, ethnicity, and smoking 

status as common in never-smoker lung cancers  [35]. Recent work by Chen and Lin identified five 

feature risk pathways capable of effectively distinguishing smokers with lung cancer from those 

without, facilitating tailored treatments, and identifying high-risk individuals  [34]. Their study 

analyzed standardized expression profiles from the GEO database, identifying numerous 

differentially expressed genes (DEGs) using the limma algorithm [34]. Hierarchical clustering 

confirmed DEGs' effectiveness in classifying smoker subgroups and revealing similarities  [34]. GO 

and KEGG enrichment analyses mapped DEGs to a protein-protein interaction network, 

highlighting functions associated with up-and down-regulated genes. Five optimal feature pathway 

sets were identified, improving diagnostic accuracy to 84% using an SVM model, which further 

increased to 90% with clinical data integration  [34]. The study concluded that smokers with 

prolonged smoking history, lymphadenopathy, and larger nodules are at higher risk of developing 

lung cancer. 

While recent studies demonstrate the potential of ML in lung cancer risk assessment, it's important 

to acknowledge limitations. For instance, relying solely on standardized expression profiles from 

the GEO database may introduce biases. Additionally, while ML models show impressive 

diagnostic accuracy, concerns about overfitting and generalizability to diverse patient populations 

remain. Furthermore, ML algorithms often lack interpretability, hindering understanding of 

underlying biological mechanisms. Future research should focus on validating models with diverse 

datasets, integrating clinical and molecular data, and enhancing interpretability for effective clinical 

translation. 

 

3.2. XGBoost and Smoking-induced non-communicable diseases prognosis 

Noncommunicable diseases (NCDs) are posing a significant death threat to the global population 

with a staggeringly high rate of 70% of all global mortalities [38].  Tobacco has emerged as a key 

etiological agent for NCDs. Smoking is also jeopardizing the United Nations’ Sustainable 

Development Goals (SDGs) while cessation of smoking could help to reduce the global NCD burden 

to one-third by the end of 2030 [39]. Smoking-induced noncommunicable diseases (SiNCDs) 

include diabetes, stroke, all heart disease, cancers, chronic respiratory diseases, Parkinson’s disease, 

Crohn’s disease, etc. Death rates due to SiNCDs could be effectively checked by early diagnosis, 

efficient treatment, and cessation of smoking [34,38,40,41].  

ML has shown great prospects in forecasting, assessing, and early diagnosis of SiNCDs [38]. In a 

recent study, Davagdorj et al. developed a framework based on XGBoost to predict SiNCDs [38]. 

The study used the National Health and Nutrition Examination Survey datasets of South Korea 

(KNHANES) and the United States (NHANES) to build the optimal XGBoost model for SiNCDs 

predictions [38]. They also compared the proposed model with the random forest, logistic 

regression, SVM, support vector machine recursive feature elimination (SVM-RFE), random forest-

based feature selection (RFFS), 𝐾NN, MLP, and neural network baseline classifiers [38]. The 

XGBoost-based framework has been combined with the hybrid feature selection (HFS) method for 

SiNCD prediction and, selected features are fed into the model [38]. Primarily, HFS is accomplished 

in three stages picking important features by t-test and chi-square test, obtaining dissimilar features 

by multicollinearity analysis, and finally selecting the best representative features employing the 

least absolute shrinkage and selection operator (LASSO) [38]. The study revealed the most 

characteristic features of SiNCDs in the general populations of the United States and South 

Korea [38]. Some important predictors that emerged from this study are obesity, overweight, 

alcohol intake, psychological health, blood cholesterol level, age, number of smokers living in the 

same house, etc. [38]. The suggested model delivered critical features to expand the interpretability 

of the SiNCDs prediction model and is likely to aid in the timely diagnosis and prevention of 

SiNCDs in public health issues [38]. 
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While Davagdorj et al.'s study on XGBoost-based SiNCD prediction models shows promise, it's 

important to critically assess its strengths and limitations. While achieving high predictive accuracy, 

reliance on observational datasets like KNHANES and NHANES may limit generalizability. 

Comparative analysis with baseline classifiers offers insights, yet further investigation into feature 

selection methods' impact on interpretability and generalizability is needed. Key predictors 

identified underscore SiNCDs' multifactorial nature, prompting the integration of additional data 

sources for improved accuracy and clinical utility. By critically evaluating ML approaches, 

researchers can advance effective public health interventions targeting SiNCDs. 

 

3.3. SVM-RFE and RF in Smoking-related postmenopausal osteoporosis management 

Osteoporosis is a skeletal disorder identified by diminished bone strength and bone mineral density, 

bone fragility, altered bone microstructure, etc. [42,43]. Due to changed hormonal status, post-

menopausal women are especially vulnerable to osteoporosis, as more than 50% of them develop a 

condition called post-menopausal osteoporosis (PMOP) [44]. B-lymphocytes severely influence 

PMOP by generating cytokines that control the activity of osteoblast and osteoclast and 

downregulating own MAPK3 and ESR1 which alter the secretion of factors leading to increased 

osteoclastogenesis and decreased osteoblastogenesis [42,45]. However, smoking has emerged as an 

independent risk factor for PMOP which helps to develop the disease with twice the frequency in 

female smokers to non-smokers, leading to a disorder termed, smoking-related postmenopausal 

osteoporosis (SRPO) [45–47].  

A current study has recognized six genes (HNRNPC, TCEB2, PFDN2, RPS16, PSMC5, and 

UBE2V2) as prospective biomarkers for SRPO by analyzing gene expression patterns of 20 

postmenopausal female smokers’ circulating B lymphocytes with low or high BMD employing, 

weighted gene co-expression network analysis (WGCNA), random forest (RF), support vector 

machine-recursive feature elimination (SVM-RFE), protein-protein interaction (PPI) and functional 

analyses, as well as ROC curve analysis [42]. The study used the GSE13850 microarray dataset 

from Gene Expression Omnibus (GEO) to identify gene modules related to SRPO by applying 

protein-protein interaction (PPI), analysis weighted gene co-expression network analysis 

(WGCNA), and pathway functional enrichment analyses [42]. SVM-RFE and RF selected feature 

genes [42]. The study detected eight highly conserved modules in the WGCNA network and the 

strongly SRPO correlated genes in the module that was used for building the PPI network, where a 

total of 113 hub genes in the core network has been identified using topological network analysis 

closely related to ATPase activity, regulation of RNA transcription and translation and immune-

related signaling  [42]. The study recognized prospective genetic biomarkers and offered a new 

understanding of the fundamental molecular mechanism of SRPO which might offer a narrative 

intuition into the diagnosis and treatment of SRPO [42]. 

The study identifies six genes as potential biomarkers for smoking-related postmenopausal 

osteoporosis (SRPO) using advanced techniques like weighted gene co-expression network analysis 

(WGCNA) and protein-protein interaction (PPI) analysis. While offering valuable insights into 

SRPO pathogenesis, limitations include reliance on a single dataset and the need for further 

validation. Nonetheless, these findings pave the way for future research aimed at improving 

diagnostic and therapeutic strategies for SRPO. 

 

3.4. Ensemble learning in Smoking and HIV prognosis 

Despite over 60% of HIV-infected individuals being smokers, smoking remains an overlooked 

independent risk factor for adverse outcomes in this population  [48–50]. Epigenome-wide 

association studies (EWAS) have identified multiple DNA methylation CpG sites in white blood 

cells (WBCs) linked to smoking-related traits and diseases, including cancer, heart diseases, and 
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chronic inflammation  [51–56]. While these findings primarily stem from HIV-uninfected 

populations, it's known that HIV infection affects the host epigenome and serves as a predictor for 

HIV-related aging and cognitive impairment  [57–60]. Zhang et al. utilized ensemble machine 

learning models to uncover 698 DNA methylation sites associated with smoking in HIV-infected 

WBCs, enabling the prediction of frailty and mortality in this population  [58]. They demonstrated 

the efficacy of DNA methylation-based machine learning in HIV prognosis. The study identified 

137 epigenome-wide significant CpGs for smoking in WBCs from 1137 HIV-positive individuals, 

of which 698 were selected as predictors of high frailty, showing robust performance in both training 

and independent samples. Additionally, the study revealed a correlation between a DNA 

methylation index constructed from these CpGs and a 5-year survival rate [HR = 1.46; 95%CI 

1.06~2.02, p = 0.02]  [58]. Pathway analysis highlighted significant enhancement in canonical 

integrin signaling pathways and other non-canonical pathways related to organ injury, cancer, and 

abnormalities, suggesting the biological relevance of features chosen by ensemble learning in 

smoking-related diseases. These findings were based on DNA samples extracted from HIV-infected 

individuals' WBCs in the Veteran Aging Cohort Study (VACS). 

Zhang et al.'s study using ensemble machine learning to identify DNA methylation sites associated 

with smoking in HIV-infected white blood cells represents a significant advancement in 

understanding smoking's impact on HIV prognosis. While the study demonstrates the efficacy of 

DNA methylation-based machine learning in predicting frailty and mortality in this population, it is 

crucial to acknowledge limitations such as reliance on WBC DNA samples and potential 

confounding factors. Further validation in independent cohorts is needed to confirm the findings' 

generalizability. Nevertheless, these results highlight the potential of machine learning in 

uncovering novel biomarkers and pathways relevant to smoking-related outcomes in HIV-infected 

individuals, offering insights for personalized interventions and clinical management strategies.  

4. ML and Indirect Tobacco Smoke Exposure 

4.1. Assessing fetal exposure to maternal smoking by supervised ML  

Smoking during pregnancy profoundly impacts infant health and is associated with adverse 

outcomes  [61]. Despite this knowledge, only 45% of mothers who smoked before pregnancy ceased 

smoking during gestation  [62]. In utero exposure to maternal smoking increases the risk of non-

communicable diseases (NCDs) such as pediatric obesity and nicotine addiction in offspring, 

primarily through epigenetic modifications like DNA methylation  [62–67]. These alterations can 

persist from infancy to adulthood and possibly beyond  [68–70]. Markunas et al. conducted an 

epigenome-wide association study (EWAS) on 889 infants, identifying DNA methylation changes 

associated with maternal smoking during the first trimester  [62]. They used robust linear regression 

models in R to analyze CpG sites related to maternal smoking status, identifying 185 CpGs with 

significant methylation changes linked to 110 gene regions [62]. Notably, they identified 10 

previously unknown genes associated with smoking exposure, including ATP9A and FRMD4A, 

which are implicated in smoking cessation and embryonic development  [62,71]. Their findings 

suggest potential age-dependent differences in methylation patterns and raise questions about the 

long-term health effects of maternal smoking exposure  [62]. In another study, a DNA methylation 

score for in utero tobacco smoke exposure was developed using supervised machine learning 

algorithms  [66]. This score, validated in multiple cohorts, can help identify individuals exposed to 

maternal smoking during pregnancy based on DNA methylation data. It provides a valuable tool for 

studies lacking direct maternal smoking data, aiding in the adjustment of models to account for its 

effects.  

In the section discussing maternal smoking during pregnancy, machine learning (ML) techniques 

aid in identifying DNA methylation changes associated with smoking exposure. While ML offers 
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promise in uncovering molecular mechanisms and developing predictive models, it's important to 

acknowledge limitations, such as potential confounding factors. Further research is needed to 

elucidate the functional significance of these changes and their long-term health implications for 

offspring. 

 

4.2. Assessing secondhand and thirdhand tobacco smoke exposure to infants by multivariable 
linear regression models 

As discussed throughout this review, a considerable amount of work has been done on firsthand 

tobacco smoke exposure, there is less appreciation of secondhand tobacco smoke exposure and ever 

lesser consideration for thirdhand tobacco smoke exposure  [72–76]. Exposure to the smoke 

discharges from the burning end of cigarettes and smoke respired by smokers are considered 

secondhand smoke exposure whereas, exposure to the tobacco-related gases and particles that 

become fixed in materials like furniture, carpets, toys, cloths, beds, upholstery, etc. are considered 

as thirdhand tobacco smoke exposure  [75,76]. Infants are mostly affected by these kinds of 

involuntary secondary exposures. Parks et al. assessed secondhand and thirdhand tobacco smoke 

exposure in infants residing in Canada [72]. The team tried to recognize the sources of tobacco 

smoke exposure using ML methods combined with prediction modeling for the infants from the 

CHILD Cohort study, a four-center (Manitoba, Edmonton, Toronto, and Vancouver) longitudinal 

population-based birth-cohort study, that registered 3455 mother-child duos in-between 2008 and 

2012 [72]. Urinary nicotine biomarkers, cotinine, and trans-3'-hydroxycotinine (3HC) were used to 

assess tobacco smoke exposure in infants [72]. The study evaluates the capability of questionnaires 

to predict the variability of urinary cotinine and 3HC concentrations among 2017 3-month-old 

infants by using multivariable linear regression models [72]. These models were selected with the 

help of conceptual and data-driven strategies involving random forest regression. The team detected 

cotinine and 3HC in the urine samples of 76% and 89% of the infants, respectively, though, only 

2% of mothers testified smoking before and during their pregnancy [72]. Questionnaire-based 

models explained 41% and 31% of the variance in 3HC and cotinine levels, respectively [72]. 

Detected concentrations recommend 0.25 and 0.50 ng/mL as cut points in cotinine and 3HC to 

characterize secondhand smoke exposure and this proposes that 23.5% of infants had modest or 

consistent smoke exposure [72]. This suggests that parents' efforts to decrease tobacco smoke 

exposure to their infants are being compromised due to a lack of consideration of the universality 

and persistence of secondhand and thirdhand smoke. Parks et al. could not predict over half of the 

variation in urinary 3HC and cotinine in infants through their model probably because of the 

ubiquity of thirdhand smoke and the possibility for oral and dermal routes of nicotine exposure [72]. 

These predictors need to be evaluated and assessed in future studies for a better-fit model. 

While the review provides insights into the assessment of secondhand and thirdhand tobacco smoke 

exposure in infants using machine learning (ML) methods, a deeper examination of the strengths, 

limitations, and implications of these approaches is warranted. The study by Parks et al. sheds light 

on the challenges of accurately predicting tobacco smoke exposure in infants, despite the utilization 

of ML techniques combined with prediction modeling. The observed discrepancy between 

questionnaire-based predictions and urinary biomarker levels underscores the complexity of 

assessing tobacco smoke exposure in real-world settings. Moreover, the inability to predict a 

significant portion of the variance in urinary biomarker levels highlights the limitations of current 

ML models in capturing the full spectrum of exposure pathways and sources, particularly those 

associated with thirdhand smoke. These findings emphasize the need for further research to refine 

ML models and evaluate additional predictors that account for the ubiquity and persistence of 

thirdhand smoke exposure. Additionally, future studies should explore the implications of oral and 

dermal routes of nicotine exposure in infants, enhancing the development of more accurate and 

comprehensive models for assessing tobacco smoke exposure in this vulnerable population. 



 
 Nabanita Ghosh, Krishnendu Sinha /Journal of Science and Technology Research 

6(2) 2024 pp. 55-71 

62 

 

5. ML and Unconventional Sources of Nicotine 

Nicotine in any form is dangerous to both physical and mental health. Unfortunately, besides 

conventional sources of combustible nicotine products like cigarettes, cigars, pipes, etc., 

unconventional sources of nicotine cumulatively known as electronic nicotine delivery systems 

(ENDS), are getting immensely popular, especially among teenagers [77–80]. ENDS are popularly 

called vapes which include a wide variety of products like e-cigarettes, e-cigs, vaporizers, vape pens, 

e-pods, e-pipes, etc., and are prevalently marketed in the U.S. by brands like JUUL, Puff Bar, 

SMOK, and Vuse [77–79,81,82]. E-cigarettes were launched into the US market in 2007 and have 

swiftly become a common source of nicotine for several patients [82]. These are constructed to 

imitate smoking by heating a nicotine-containing solution, called ‘e-liquid’, producing an aerosol 

that the user inspires. Though the short- and long-term effects of an e-cigarette are still controversial 

with certain negative acute effects on blood pressure, heart rate, and airway resistance, their use is 

growing alarmingly [80,82]. Though vapes were originally designed to aid long-term tobacco 

smoking cessation by delivering a regulated amount of nicotine, their marketing, and use took a 

wrong turn by popularizing among teens and youth as a style statement. The use of vapes in nicotine 

withdrawal therapy is not recommended by FDA [77,79]. Vapes are also not proven to do any good 

in assisting nicotine cessation but it is affecting a large amount of youth worldwide. The annual 

National Youth Tobacco Survey in 2021 found that more than 2 million youth are currently using 

e-cigarettes in the U.S. of which 8% of middle school students and 28% of high school students are 

involved [77,78,81–85]. Among them, 40% use e-cigarettes frequently, and 25% use e-cigarettes 

daily [79,83]. Nearly 85% of teens choose flavored vapes [83]. These disturbing figures are 

indicative of a strong vape-induced nicotine dependency [83]. Using nicotine as a teen may have a 

lasting effect on attention, memory, and learning that supports future addiction to 

nicotine [77,78,80,83,84]. More youths who start taking nicotine via vaping ultimately end up in 

combustible cigarettes [77,79,83,84]. Along with nicotine vapes contain toxic metals like nickel, 

chromium, and lead which are proven lung-damaging substances [86–88]. Several of the chemicals 

found in combustible cigarette smoke like acetaldehyde, formaldehyde, and acrolein, are also found 

in many e-cigarette aerosols, and breathing in these chemicals causes irreversible lung injury [77–

79,83–85].  

Vaping-associated pulmonary injury (VAPI) or e-cigarette or vaping product use-associated lung 

injury (EVALI) was an outbreak in 2019 in the U.S. which is considered an acute or subacute 

respiratory illness characterized by a range of clinicopathologic findings imitating several 

pulmonary diseases [89]. The epidemic set out in March 2019 when a collection of incidents 

appeared in the USA of patients who had developed lung injuries related to the use of vapes [89,90]. 

As of February 2020, more than 2800 patients have been affected by EVALI and been admitted to 

various US hospitals of which 68 deaths have been reported so far  [89,90]. Beyond the US, Canada 

and Europe have reported a few cases of EVALI with fatal outcomes [91,92]. Bestowing to the CDC 

criteria, clinical diagnosis of EVALI entails the usage of an e-cigarette in the 90 days before the 

onset of early symptoms, pulmonary infiltrates on basic chest CT or radiograph, and lack of any 

additional possible etiology, such as infection, including acute fibrinous pneumonitis, diffuse 

alveolar damage, or organizing pneumonia, typically bronchiolocentric and complemented by 

bronchiolitis  [89–92]. Reports also find the presence of vitamin E acetate, an additive of many vape 

liquids, in the bronchoalveolar lavage (BAL) of most EVALI patients which makes health officials 

believe is the primary, but not the only, cause of EVALI  [90].  

Hence, alongside controlling conventional sources of tobacco smoking, controlling these 

unconventional sources poses challenges to regulating authorities like the FDA and in such 

scenarios, ML algorithms are proven indispensable. 
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5.1. Assessing ENDS uses among adolescents by supervised ML 

Intervention strategies to stop teenagers from using ENDS should be based on robust predictors of 

ENDS use which typically vary from predictors of conservative combustible tobacco product 

use [32]. Studies find novel emerging predictors like orientation towards digital media use, 

orientation towards new technologies, etc., in adolescents which is different from traditional tobacco 

smoking predictors [93,94]. As discussed earlier, identifying the novel and emerging predictors for 

ENDS use will help healthcare providers and law enforcement agencies combat this ENDS 

epidemic. Han et al. identified emerging predictors for adolescent ENDS uses employing supervised 

ML algorithms, specifically the penalized logistic regression algorithm due to its analytical benefits 

such as high prediction performance and decent model interpretability in contrast to other ML 

algorithms [32,95]. Though they also checked three other well-established algorithms, namely 

distributed random forest, gradient boosting machine, and deep neural networks, none were found 

superior to the penalized logistic regression algorithm [32]. The team investigated nationally 

representative multi-wave longitudinal survey data (2013–2018) taken from the Population 

Assessment of Tobacco and Health Study (PATH) [32]. A sample of juveniles and teenagers (12–

17 years) who completed Wave 2 (n= 7958), Wave 3 (n = 6260), and Wave 4 (n = 4544) and never 

used any tobacco products at baseline were studied [32]. The penalized logistic regression evaluates 

self-reported past-month ENDS use (i.e., current use) at Waves 2–4 depending upon the variables 

measured at the former wave  [32]. The algorithm demonstrated a proper ability to distinguish 

between wave-wise ENDS uses and non-uses depending on the area under the receiver operating 

characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC)  [32]. From 

the study, frequent social-media usage appeared as a critical variable in guessing adolescent 

ENDS  [32]. Such social media use variables are seldom significant predictors for other substance 

use, specifically for adolescent substance use behaviors, and are completely ineffective as 

conventional smoking behavior predictors. Authors rightfully predicted that digital media use 

emerging as a prominent predictor of ENDS uses for adolescents because increased ‘technophilia’ 

is exposing youth to lucrative and aggressive campaigns of ENDS over the internet and social 

media [32,93]. Alarmingly it has been recovered from the study that social media use variables were 

also capable of forecasting cigarette smoking in subsequent years (i.e., Wave 4 outcome) as long-

term usage of ENDS might make the youth susceptible to combustible tobacco products [32,93,94]. 

The study also pointed out that, adolescents who developed a curiosity about ENDS across social 

media might try out alcohol or marijuana along with ENDS, which makes them susceptible to these 

substances' uses [32,93].  

Furthermore, while discussing the study by Han et al. on the identification of predictors for 

adolescent ENDS (electronic nicotine delivery system) use, it is crucial to acknowledge the 

methodological strengths and limitations of employing supervised machine learning algorithms. The 

use of penalized logistic regression demonstrated high prediction performance and model 

interpretability, which are commendable attributes for informing intervention strategies. However, 

it's essential to recognize that the choice of algorithm may influence the results obtained, and 

alternative algorithms, such as distributed random forest and gradient boosting machine, should also 

be considered for comparison to ensure robustness. Additionally, the reliance on self-reported data 

for ENDS use may introduce biases, such as underreporting or social desirability bias, which could 

impact the accuracy of the predictive models. Moreover, while the study identifies social media 

usage as a significant predictor for adolescent ENDS use, further exploration is warranted to 

understand the underlying mechanisms driving this association and its implications for targeted 

interventions. Despite these limitations, the findings underscore the importance of considering novel 

predictors, such as digital media use, in designing intervention strategies to address the emerging 

ENDS epidemic among adolescents. 
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5.2. Vaping-related surveillance on Twitter and Instagram by stacking ensemble learning and 
supervised ML 

Social media has become a popular medium to express and share thoughts, experiences, and 

opinions about almost every issue an individual can think of. Twitter is a highly accepted social 

media platform with an enormous user base and hence has effectively been used for health-related 

public surveillance in the areas of mental health and well-being, illegal drug use, and other health-

related issues  [96–99]. Public opinion varies widely about vaping and those opinions often get 

reflected on Twitter. Twitter encompasses rich data communicated by users about their behaviors 

and experiences, as well as thoughts on vaping  [99]. Hence Twitter can also be used as an excellent 

source for vaping-related data mining. These data can be effectively used to detect users at risk of 

vaping-related adverse health conditions and thus benefit from an intervention regarding vaping 

cessation. In a recent study, Ren et al. developed a stacking ensemble learning model to routinely 

capture vaping-associated tweets and their accompanying user accounts by assessing millions of 

tweets  [14]. An enormous number of tweets was the main obstacle to such surveillance. This work 

could provide an excellent tool for detecting and intervening in probably vulnerable individuals 

concerning ENDS usage. The team has applied seven well-established ML and deep learning 

algorithms namely Naïve Bayes, Random Forest, XGBoost, stacking and voting ensemble, models 

Support Vector Machine, Multilayer Perception, and Transformer Neural Network, and for their 

custom-built classification model [99]. They mined a set of sample tweets in the 2019 EVALI 

outbreak using the Twint Python package and generated an annotated data set to train and evaluate 

these models  [99–101]. The stacking ensemble learning accomplished the peak performance with 

an F1 score of 0.97 and was selected as the optimum model for the study  [99]. The study provides 

a good ensemble classifier with a stacking method to be used for screening and mining millions of 

tweets to detect persons, speaking and networking regarding vaping on social media sites and to 

extend to individuals who might be at risk for serious health consequences owing to vaping and 

could be benefited from unswerving link to quit support and associated intervention programs [99]. 

In another recent study, by using Targeted Topic Modelling (TTM) (a supervised machine learning 

algorithm), Costigina et al. found commercial JUUL-related Instagram posts highlighting e-

cigarette-related marketing [102]. These posts have convincing messages promoting vape trial and 

use, leading to nicotine dependence, especially among vulnerable adolescents. 

Moreover, while the utilization of social media data and machine learning (ML) techniques holds 

promise for surveillance and intervention efforts in tobacco control, it is essential to critically 

examine the strengths, limitations, and implications of these approaches. Despite the demonstrated 

effectiveness of ML algorithms such as stacking ensemble learning and targeted topic modeling in 

identifying vaping-related content on platforms like Twitter and Instagram, several challenges 

persist. For instance, the reliance on publicly available social media data raises concerns about 

representativeness and biases inherent in the data, potentially limiting the generalizability of 

findings. Additionally, the rapid evolution of social media platforms and user behaviors necessitates 

ongoing refinement and adaptation of ML models to ensure their continued efficacy in detecting 

emerging trends and patterns related to tobacco use. Furthermore, ethical considerations 

surrounding user privacy and consent must be carefully addressed in the collection and analysis of 

social media data for public health purposes. By critically evaluating the strengths and limitations 

of ML approaches in leveraging social media data for tobacco research, researchers can better 

navigate the complexities of this burgeoning field and maximize the utility of these innovative 

methodologies in advancing tobacco control efforts. 
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Fig 1. The fundamental idea behind classical programming and machine learning methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Decision Trees, (a) fundamental structural components of a decision tree; (b) an Ensemble 

of six distinct decision trees.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. SVM is represented graphically showing hyperplanes and support vectors. The ideal 

hyperplane splits the data points into two categories characterized by grey and blue dots. 
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Fig 4. ANN, (a) single rectified linear unit (i.e., single neuron plus rectified function as its 

activation function) with matching weights (𝑤) and bias (𝑏); (b) 3-layer deep stack of dense 

layers with input-output layers. 
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Fig 5. An overview of the divisions of ML and related algorithms and their utilization in solving 

tobacco research-related issues. 

 

6. Conclusion 

The effective and ethical integration of ML holds the potential to revolutionize tobacco control 

interventions, especially in light of the burgeoning volume of available data. ML is transforming 

various aspects of tobacco research, including the analysis of epigenetic and genetic data to predict 

susceptibility to tobacco addiction and related illnesses (Fig 5). Additionally, ML aids in the 

extraction of pertinent smoking-related data from social media platforms such as Twitter, Instagram, 



 
 Nabanita Ghosh, Krishnendu Sinha /Journal of Science and Technology Research 

6(2) 2024 pp. 55-71 

68 

 

and Reddit  [103,104]. ML facilitates comprehensive scrutiny of tobacco use by automatically 

analyzing social media content, offering insights into public opinions on smoking, including 

contentious topics like vaping. This data enables the identification of factors contributing to 

adolescent tobacco use, thereby informing targeted intervention strategies for high-risk groups. 

Moreover, ML assists in evaluating secondhand and thirdhand tobacco exposure in infants, aiding 

in the identification and mitigation of exposure sources  [104]. From internet surveillance to 

predictive analytics based on various data sources, ML plays a pivotal role in advancing tobacco 

research. However, it is crucial to acknowledge the opacity of many ML models, requiring careful 

consideration of the statistical methods and computational tools used to interpret findings 

accurately. Such findings often capture complex interactions among predictors and outcomes that 

conventional statistical methods may struggle to uncover  [104]. Tobacco researchers must also 

address inherent biases in ML applications to tobacco control and work towards mitigating them 

effectively. By staying abreast of emerging trends and responsibly harnessing sophisticated tools, 

ML has the potential to unlock new frontiers in tobacco research. 

Furthermore, synthesizing findings from diverse studies allows for the identification of overarching 

themes and patterns essential for advancing tobacco research and intervention strategies. While the 

discussion underscores the transformative potential of ML in tobacco control, a more critical 

analysis of the evidence presented can enrich our understanding of its implications. By rigorously 

evaluating the strengths and limitations of ML applications in tobacco research, researchers can 

pinpoint areas for refinement and future exploration. Moreover, delving into the practical 

implications of these findings can inform evidence-based decision-making in tobacco control 

efforts. Specifically, highlighting gaps in the literature and proposing avenues for further 

investigation can guide future research endeavors. Future studies might focus on refining ML 

algorithms to address inherent biases, enhancing data quality and interpretability, and exploring 

innovative applications in tobacco prevention and cessation programs. Additionally, fostering 

interdisciplinary collaborations between researchers, policymakers, and public health practitioners 

is paramount for translating ML-driven insights into actionable public health interventions. 

Embracing these recommendations, the tobacco research community can fully leverage ML's 

potential to effectively combat the tobacco epidemic. 
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