

Journal of Science and Technology Research 2(1) 2020 pp. 55-61 ISSN-2682-5821

55

Software Process Ontology Evaluation Using Ontoclean

Oveh, R.O1 and Egbokhare, F.A.2

1Department of Mathematics and Computer Science, Western Delta University, Oghara, Delta State, Nigeria.

e-mail: omo_rich@yahoo.com
2Department of Computer Science, University Of Benin, Benin City, Edo State, Nigeria

e-mail: fegbokhare@uniben.edu

Article Info Abstract

Keywords:

Software Process, Software
Process Ontology, Ontology,
Knowledge, Formal
Representation, Ontoclean

Software process is a knowledge driven process with sub-processes.

Harvesting and reuse of this knowledge is key to success in software

organisations. An improved use of this knowledge could lead to

maximum payoff in software organisations. The purpose of formal

representation is to help organisations achieve success by modelling

successful organisations. Formal representations must be first evaluated

to determine its quality before it can be fit for reuse. In this paper

Ontoclean was used to evaluate software process knowledge ontology.

Received 10 January 2020

Revised 30 January 2020

Accepted 01 February 2020

Available online 02 March 2020

ISSN-2682-5821/© 2020 NIPES Pub.

All rights reserved.

1. Introduction

In Software process is a knowledge driven and knowledge intensive process that involves several

other sub-processes. Software process can be defined as the set of related activities that are used in

developing software. Knowledge in Software Engineering (SE) is diverse and organizations have

problems capturing, retrieving, and reusing it [1]. An improved use of this knowledge is the basic

motivation and driver for Knowledge Management (KM) in SE [2]. Harvesting, representing and

reusing knowledge within a domain leads to maximum payoff, which is desirable in most

organisations [3]. Knowledge Management (KM) is defined as an effort to capture critical

knowledge and share it within an organization [4, 5]. It capitalizes on the collective organizational

memory to improve decision making, enhance productivity, and promote innovation [6, 7]. It is also

the process of transforming information and intellectual assets into persisting value. KM connects

people with the knowledge that they need to take action, when they need it [8]. Knowledge

management involves the identification and analysis of available and required know [9] and helps

an organization to gain insight and understanding from its own experience. Specific knowledge

management activities focus on acquiring, storing and utilizing knowledge for problem solving,

dynamic leaning, strategic planning and decision making. This prevents intellectual assets from

decay, adds to a firm’s intelligence and provides increased flexibility [10].

SE comprises several interrelated subdomains such as Requirements, Design, Coding, Testing,

Project Management, and Configuration Management. There are several software process models

which describe the sequence of activities carried out in developing software. These software process

models are a standard way of planning and organizing a software process. The major phases are

requirement gathering, design and coding, implementation and maintenance.

mailto:omo_rich@yahoo.com

Oveh, R.O and Egbokhare, F.A. / Journal of Science and Technology Research

2(1) 2020 pp. 55-61

56

It has been identified that there are few works in literature that aim at developing ontologies covering

wide portions of the SE domain, such as [11, 12, 13]. A lot of SE domain ontologies model SE

subdomains [14, 15, 16, 17, 18]. [19], described these subdomain ontologies as weak or not

interrelated, and are often applied in isolation. Thus, he made an attempt to provide an integrated

solution for better dealing with KM-related problems in SE by means of a Software Engineering

Ontology Network (SEON). It was designed with mechanisms for easing the development and

integration of SE domain ontologies, covering the main technical software engineering subdomains

(i.e requirements, design, coding and testing). However, he only represented a small portion of

software engineering ontology. [5] identified that the combination of ontologies of all SE

subdomains would result in an ontology of the complete SE domain. He further stated that the reality

is that this goal is extremely laborious, not only due to its size, but also due to the numerous problems

related to ontology integration and merging, such as overlapping concepts, diverse foundational

theories, and different representation and description levels, among others. He concluded that

despite the challenges involved, an ontological representation covering a large extension of the SE

domain remains a desired solution. Using Ontoclean, this paper evaluates software process

knowledge ontology.

Ontologies have been widely recognized as a key enabling technology for KM. They are used for

establishing a common conceptualization of the domain of interest to support knowledge

representation, integration, storage, search and communication [17]. A domain ontology identifies

the key concepts, objects and entities that exist in some knowledge domain or area of interest and

the relationships between them [20, 21]. Ontologies play a significant role for knowledge sharing

and as knowledge models in instructional science, technology-enhanced learning, knowledge

management and training [20, 21, 22]. Ontologies consist of instances, properties and classes, where

instances represent specific project data, properties represent binary relations held among software

engineering concepts/instances, and classes represent the software engineering concepts interpreted

as sets that contain specific project data [25].

[14] did an extensive review of SE ontologies, where he classified them into generic and specific

ontology. Generic SE Ontologies, have the ambitious goal of modelling the complete SE body of

knowledge; while Specific SE Ontologies, attempting to conceptualize only part (a subdomain) of

this discipline. [23] constructed a software process ontology, which aims to establish a common

vocabulary for software organisations to talk about software processes. A mapping between the

concepts presented in the ontology and the concepts of some of these standards was also done in

order to help software organisations to use those standards in their software process improvement

efforts. [24] proposed a knowledge base called DKDOnto, a domain-specific ontology for

distributed development. its aim was to help projects with a common vocabulary. Allowing them to

assist better the distributed software development process. [25] presented software engineering

ontology as software engineering knowledge representation for a multi-site software development.

It did not only facilitate the capturing of software engineering knowledge but also enhanced the

sharing of software engineering knowledge across geographically multiple software development

sites. [26] developed an ontology-based software process assessment tool to support data collection

phase of process assessment and to track conformance of software processes to CMMI as the process

reference model. [27] produced domain specific knowledge base ontology for core software process

subdomain. However, the ontology was not evaluated to check for its efficiency and possible reuse

which is key.

The management of knowledge and experience are key means by which systematic software

development and process improvement occur. Within the domain of Software Engineering (SE),

quality continues to remain an issue of concern. Knowledge Management (KM) gives organizations

Oveh, R.O and Egbokhare, F.A. / Journal of Science and Technology Research

2(1) 2020 pp. 55-61

57

the opportunity to appreciate the challenges and complexities inherent in software development

[28].

Successful organisations continuously improve their processes. Like organisational standard

process definition, systematic process improvement is more effective and efficient if it is done

guided by process quality models and standards. The purpose of most standards is to help software

organisations achieve excellence by following the processes and activities adopted by the most

successful organisations [23].

2. Methodology

[3, 27] used semi structured interviews, socialization and focus group method to explore the views,

experiences, beliefs and motivations of Software Process domain experts. Four (4) different

software organisations were used for the research. The organisations were selected because of their

successes in their past and present software projects. Discussions in the form of key informant

interviews were held with four (4) project managers and twelve (12) developers on the experiences

and lessons learnt from past projects. Key activities that resulted in project success during the

process of software development were elicited. Focus group discussion was used to capture

knowledge on the specific activities carried out during software development from the key

stakeholders. The interviewees did not grant permission to record the interviews electronically, so

the responses were recorded on paper. Each interview session lasted for about one hour and a total

of five (5) interviews were conducted over a two-week period. Follow up questions were asked via

telephone conversations. The data obtained from the interviews were documented and later

transcribed and meaningful knowledge for software development process was extracted using

content analysis. The resulting ontology constructed from the data is shown in Figure 1. This

research used Ontoclean to evaluate the software process ontology knowledge that was harvested

and represented (formally and informally) in [3, 27].

Figure 1: Software Process Ontology [3, 27]

Oveh, R.O and Egbokhare, F.A. / Journal of Science and Technology Research

2(1) 2020 pp. 55-61

58

Ontology evaluation is a prerequisite for ontology reuse. Ontoclean was used to validate the

software process ontology harvested. The OntoClean methodology is based on formal notions,

which are general enough to be used in any ontology effort, independently of a particular domain.

We use these notions to define a set of metaproperties which, in turn, are used to characterize

relevant aspects of the intended meaning of the properties, classes, and relations that make up an

ontology. In addition, the metaproperties impose several constraints on the taxonomic structure of

an ontology, which help in evaluating the choices made [29]. Onclean was used to validate the

ontology for correctness. Ontoclean provides a logical basis for formally analysing ontologies using

formal and domain independent properties called metaproperties of classes. Ontoclean is not an

ontology and thus is not concerned with the semantics of the relationships among concepts. It is a

methodology used to analyse ontologies using formal and domain independent properties called

meta properties [29, 30, 31]. The following steps outlined in [30] was applied for the Ontoclean

evaluation:

i. Assign metaproperties to the ontology

ii. Evaluate the metaproperties for violation and correct any errors discovered

Ontoclean is majorly based on four (4) metaproperties of rigidity, identity, unity, and dependence

as shown in Table 1.

Table 2: OntoClean Meta Properties [30]

Meta Property Symbol Label Definition

Rigidity +R Rigid All instances will always be instances of this concept in every

possible world

 -R Non-Rigid There are instances that will stop being instances of the concept

 ~R Anti-Rigid All instances will no longer be instances of that concept

Identity +I Carry Identity Instances carry a unique identification (IC)criteria from

superclass

 -I Non Carry Identity There is no identification criteria (IC)

 +O Supply identity Instances themselves provide a unique identification criteria

(IC)

Unity +U Unity Instances are “whole”, and have a single unit criteria(UC)

 -U Non-Unity Instances are “whole”, but they do not have a single unit criteria

 ~U Anti-Unity Instances are not “whole”

Dependence +D External dependence There is dependence on external concept

 -D Non External dependence There is no dependence

Ontoclean have five (5) defined restrictions [29], which are:

1. Anti-rigid class cannot subsume a rigid subclass;

2. A class with identity cannot subsume a non-identity subclass;

3. A class with the unity meta property cannot subsume a subclass without unity criterion;

4. Anti-Unit class cannot subsume unity class;

5. Dependent class cannot subsume non-dependent class

Oveh, R.O and Egbokhare, F.A. / Journal of Science and Technology Research

2(1) 2020 pp. 55-61

59

3. Results and discussion

Using the metaproperties in Table 2, we obtained Figure 2 with the assigned metaproperties for the

software process ontology.

Figure 2: Metaproperties of Software Process Ontology

The metaproperties in Figure 2 was checked against the restrictions of Ontoclean to identify any

violation. A violation was identified and cleaned as shown in Figure 3. The cleaned software

process ontology in Figure 3 can be said to be free from any violation of the restrictions hence

suitable for reuse in software process as posited in [3, 27].

Figure 3: Cleaned Software Process Ontology

Oveh, R.O and Egbokhare, F.A. / Journal of Science and Technology Research

2(1) 2020 pp. 55-61

60

The assignment of metaproperties to Figure 2 was done based on the individual properties of each

class for example, software process was assigned with the property: rigidity, non-dependence, unity,

and identity. Rigidity was assigned because every instance of a software process is a software

process. Non-dependence was assigned because a software process does not depend on external

concept. Unity was assigned because an instance of a software process cannot be fragmented.

Identity was assigned because every instance of a software process has a unique identity criteria.

Also, business rules were assigned: non-rigidity, dependence, unity and identity. It was assigned

non-rigidity because business rules can change, dependence because every instance of business rule

depends on external concept, unity because every instance of business rule cannot be fragmented,

identity because every instance of a business rule has unique identity criteria. Metaproperites was

assigned to all the concepts in Figure 2 based on their properties in software process domain. Figure

3 was checked for any violation of the five (5) restrictions in Ontoclean. A violation was identified

and corrected. The violation was with regard to identity metaproperty in version control (between

code ownership and version control) subsuming a non-identity subclass. It was corrected by placing

version control as a subclass of coding. The resultant software process ontology produced in Figure

3 is free from violation and said to have a good cohesion in terms of structure as posited in [3, 27].

4. Conclusion

Software process knowledge is a knowledge driven process with sub-processes. This knowledge is

latent and could be lost if not formally harvested and documented. An improved use of this

knowledge could lead to maximum payoff in software organisations. This is the heart of knowledge

management, which focuses on knowledge capturing and sharing. This paper used Ontoclean to

evaluate Software Process Knowledge Ontology. The result showed that the ontology was built

correctly and it is suitable for reuse in knowledge management of software process.

References

[1] Aurum, A., Jeffery, R., Wohlin, C., Handzic, M. (2003). Managing Software Engineering Knowledge. Springer-Verlag Berlin

Heidelberg

[2] Rus, I. and Lindvall M. (2002) Knowledge Management in Software Engineering, IEEE Software, 19(3) 26-38.

[3] Oveh R.O. and Egbokhare F.A. (2019) Harvesting and Informal Representation of Software Process Domain Knowledge.

Intelligent Computing Conference, 2, 936–947. Springer Nature Switzerland

[4] Davenport T.H. and Prusak L. (1998) Working Knowledge – How Organizations Manage What They Know. Harvard

Business School Press, Boston, Massachusetts.

[5] Alavi M. and Leidner D. E. (2001). Knowledge management and knowledge management systems: Conceptual foundations

and research issues. MIS Quarterly, 25(1), 107-136.

[6] Taluja, R.K. , Tewari C.K. and Kaur A. (2010). Concept of Knowledge Management and Its Usage in Higher Learning

Institutions. VSRD-TNTJ. I (4), 255-265

[7] Perez E. (1999) Knowledge Management in the Library—Not. Database Magazine 22(2), 75–78

[8] Kidwell, K.M., Vander L and Johnson S.L. (2000). Applying corporate knowledge management practices in higher education,

Journal of Educause Quarterly 4, 28-33.

[9] Firestone (2001) Key Issues in Knowledge Management, Knowledge and Innovation. Journal of the KMCI; 1(3), 8-38.

[10] Abdul-Kalam A.P.J. (2004) Digital Library and its multidimensions. President of India’s speech at the “Inauguration of

International Conference on Digital Libraries (ICDL) retrieved 16/9/18 from:

http://www.presidentofindia.nic.in/scripts/sllatest1.jsp?id=282

[11] Mendes, O. and Abran A. (2005) Issues in the Development of an Ontology for an Emerging Engineering Discipline. First

Workshop on Ontology, Conceptualizations and Epistemology for Software and Systems Eng. (ONTOSE). Alcalá Henares,

Spain

[12] Sicilia, M.A., Cuadrado, J.J., García, E., Rodríguez, D. and Hilera J.R. (2005) The Evaluation of Ontological Representation

of the SWEBOK as a Revision Tool. In: 29th Int. Computer Software and Application Conference (COMPSAC), 26-28.

Edinburgh, UK.

[13] Wongthongtham, P.,Chang, E., Dillon, T. and Sommerville I. (2009) Development of a Software Engineering Ontology for

Multisite Software Development. IEEE Transactions on Knowledge and Data Engineering, 21 (8) 1205-1217

[14] Calero, C., Ruiz, F. and Piattini M. (2006) Ontologies for Software Engineering and Soft-ware Technology. Springer Science

& Business Media.

http://www.presidentofindia.nic.in/scripts/sllatest1.jsp?id=282

Oveh, R.O and Egbokhare, F.A. / Journal of Science and Technology Research

2(1) 2020 pp. 55-61

61

[15] Souza, E.F., Falbo, R.A. and Vijaykumar, N.L. (2013) Using Ontology Patterns for Building a Reference Software Testing

Ontology. In: 17th IEEE Int. Enterprise Distributed Object Computing Conference Workshops (EDOCW), 21-30. Vancouver

[16] González-Pérez, C., and Henderson-Sellers B. (2006) An Ontology for Software Development Methodologies and

Endeavours. In: Calero C., Ruiz F., Piattini M. (eds) Ontologies for Software Engineering and Software Technology. Springer,

Berlin, Heidelberg

[17] Bringuente, A.C., Falbo, R.A. and Guizzardi G. (2011) Using a Foundational Ontology for Reengineering a Software Process

Ontology. Journal of Information and Data Management, 2(3) 511.

[18] Calhau, R.F. and Falbo R.A. (2010) An Ontology-based Approach for Semantic Integration. In: 14th IEEE International

Enterprise Distributed Object Computing Conference, Vitória, Brazil. Los Alamitos: IEEE Computer Society, 111-120

[19] Borges-Ruy, F., de Almeida Falbo R. , Perini Barcellos, M.,Dornelas Costa S. and Guizzardi G. (2016) SEON: A Software

Engineering Ontology Network. In: Blomqvist E., Ciancarini P., Poggi F., Vitali F. (eds) Knowledge Engineering and

Knowledge Management. EKAW 2016. Lecture Notes in Computer Science, vol 10024. Springer, Cham

[20] Gruber T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing?. International Journal of

Human-Computer Studies, 43, 907–928. http://dx.doi.org/10.1006/ijhc.1995.1081

[21] Zouaq A. and Nkambou R. (2008). Building domain ontologies from text for educational purposes. IEEE Transactions on

Learning Technologies, 1, 49–62. http://dx.doi.org/10.1109/TLT.2008.12

[22] Kickmeier-Rust M. D. and Albert D. (2008). The ELEKTRA ontology model: A learner-centered approach to resource

description. Advances in Web Based Learning – ICWL 2007. Lecture Notes in Computer Science. 4823, 78–89. Berlin:

Springer.

[23] Falbo R. A. and Bertollo G. (2009) A Software Process Ontology as a Common Vocabulary about Software Processes.

International Journal of Business Process Integration and Management. 4(4) 239-250

[24] Rocha, R. Araujo, A., Cordeiro, D. Ximenes, A. Teixeira, J. , Silva, G., Espinhara, D., Fernandes, R., Ambrosio, J. , Duartec,

M. and Azevedo R. (2018) DKDOnto: An Ontology to Support Software Development with Distributed Teams. 22nd

International Conference on Knowledge-Based and Intelligent Information & Engineering Systems. Elsevier, Procedia

Computer Science 126 (2018) 373–382.

[25] Wongthongtham, P., Kasisopha, N. , Chang, E. and Dillon T. (2008) A Software Engineering Ontology as Software

Engineering Knowledge Representation. International Conference on Convergence and Hybrid Information Technology.

IEEE. 668-675

[26] Gazel S., Sezer, E. A. and Tarhan A. (2011) An Ontology Based Infrastructure To Support CMMI Based Software Process

Assessment. Gazi University Journal of Science. 25(1) 155-164

[27] Oveh, R.O., Efevberha-Ogodo O. & Egbokhare, F.A.(2019) Software Process Ontology: A case study of software

organisations software process sub domains. Journal of the Nigerian Society of Physical Sciences.1(4), 122-130. Retrieved

from https://journal.nsps.org.ng/index.php/jnsps/article/view/28

[28] Ward J. and Aurum A. (2004) Knowledge Management in Software Engineering - Describing the Process. Proceedings of

the Australian Software Engineering Conference (ASWEC’04)

[29] Guarino N. and Welty C. (2002) Evaluating Ontological Decisions with Ontoclean. Communications of the ACM, 45(2):61–

65.

[30] Rodrigues, C.M., Freitas, F.L., and Azevedo, R.R. (2015). OCIP - An OntoClean Evaluation System Based on a Constraint

Prolog Extension Language. ONTOBRAS. 1442 retrieved from http://ceur-ws.org/Vol-1442/paper_16.pdf

[31] Welty, C. A. and Guarino, N. (2001). Supporting ontological analysis of taxonomic relationships. Data and Knowledge

Engineering, 39(1):51–74

http://dx.doi.org/10.1109/TLT.2008.12
http://ceur-ws.org/Vol-1442/paper_16.pdf

