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Biochar is produced from the thermo-chemical treatment of biomass. 

Its quality and yield differ remarkably depending on the thermo-

chemical technology and operational parameters deployed, which in 

turn influence its functionality in the agroforestry sector. In this 

review, different thermo-chemical technologies for biochar 

production such as pyrolysis (fast and slow), gasification, and 

torrefaction were analyzed and compared. It was discovered that 

biochar yield decreases with increase in heating rate and increase in 

oxygen amount. The benefits of applying biochar in agroforestry 

systems were examined. Enhancements in soil health, plant 

development, carbon sequestration, and mitigation of greenhouse gas 

emissions were observed in several instances, however, undesirable 

outcomes were equally discovered. This is an indication that the 

benefits from biochar application depend particularly on parameters 

such as the source of biochar, rate of biochar application, types of 

soil, climatic conditions, and species of plant. Limitations of available 

studies and recommendations for future investigations on biochar 

production and applications were also examined. Specifically, the 

influence of production technologies on biochar properties and its 

functionality in the agroforestry sector need to be further 

comprehended. 
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1.0. Introduction 

Biochar is predominantly obtained from diverse thermo-chemical treatment processes such 

as pyrolysis, gasification, and torrefaction, under varying operational parameters [1]. These 

treatments irrevocably alter the physicochemical composition of biomass and yield biochar, 

amongst other products, in an inert environment or a limited supply of oxygen at a specified 

temperature and pressure. During the treatments, biomass components are decomposed, 

depolymerized, and cross-linked to yield biochar (solid with high carbon content) and other products 

like bio-oil, tar, and synthesis gas depending on the treatment technology and parameters deployed 

[2]. 

Biochar has a huge prospect for carbon (C) sequestration, energy production, soil quality 

and productivity enhancement as well as conserving the environment [3-5]. These benefits indicate 

biochar’s capacity to advance the economic sustainability of emerging bioenergy projects [6-8]. In 

addition, biochar application on land has the potential to store carbon in soils and reduce emissions 

of greenhouse gases [9, 10]. Such biochar application has the potential to enhance crop production 
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by improving nutrient retention in the soil as well as soils’ physicochemical and biological 

properties [11, 12], by reducing sediments and pollutants in soils [13-15]. Biochar application can 

also provide a sustainable avenue to return vital organics removed from the soil when biomass is 

harvested for energy generation. Thus, biochar has two potential economic benefits; firstly, 

improving the agricultural and environmental sustainance of the agroforestry sector, and secondly, 

enhancing the economic feasibility of bioenergy ventures by defraying operational costs with 

proceeds from the sales of biochar.  

However, the effects of biochar on soils, the environment, and its agrarian attributes need to 

be studied comprehensively. Despite the capability of biochar to generate financial proceeds and 

improve agricultural and environmental sustainability, not much investment will be committed to 

its production until its impacts on soil health and crop yields have been fully ascertained. 

Commercialization of biochar production is hinged on the complete and lucid establishment of the 

copious advantages of biochar to the agroforestry sector and how these benefits are related to 

biochar properties, its propitious utilization, and the economic feasibility of the process.  To achieve 

this, an in-depth understanding of biochar production processes and how these processes influence 

biochar performance is required.  The gains of applying biochar for the improvement of soil, 

environment, and crop yield will be controvertible if they are not duplicatable and consistent.  

Therefore, the goal of this paper was to overview the various technologies for biochar 

production. The objectives include comparing these technologies, evaluating the influence of these 

technologies on biochar yield and quality, and ascertaining how biochar characteristics influence 

agroforestry systems. Technologies compared in this work include slow pyrolysis, fast pyrolysis, 

gasification, and torrefaction. Biochar applications in agroforestry settings and their impacts on soil 

health, crop yield, carbon sequestration efforts, and reduction of greenhouse gas emissions were 

analyzed. Finally, the deficiencies of recent studies on biochar production and applications were 

equally examined. 

 

2.0. Literature review methodology 

The literature review focused on works related to biochar production and application, especially 

in agroforestry systems. A systematic literature search was carried out in Scopus, Elsevier and 

ScienceDirect scientific databases, covering most of the peer-reviewed interdisciplinary research 

papers. Obtained literature were examined using the PRISMA-P (Preferred Reporting Items for 

Systematic Review and Meta-Analysis Protocols) [16]. The PRISMA-P workflow contains a 17-

item checklist intended to facilitate the preparation and reporting of a robust protocol for a 

systematic review. The search protocol was developed using the following steps. A search query 

was conducted in line with the objectives of the work as highlighted in Table 1. Several eligibility 

criteria were applied during the search protocol: (1) Coverage period: the publication period of 

articles was unlimited, (2) Search fields: title, abstract or keyword of articles, (3) Document types: 

all types of documents were considered, (4) Language: only literature published in English were 

considered. The search methodology was defined, and thereafter, the literature were identified, 

screened and assessed for eligibility to develop the most relevant literature. 

 
Table 1: Outputs of literature search in scientific databases 

Search strings Number of publications found 

Biochar production technologies 275 

Biochar application in soil 75 

Biochar application for plant growth 87 

Properties and uses of biochar 67 
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3.0. Thermo-chemical technologies for biochar production 

Biochar possesses varying physicochemical properties with respect to the operating 

parameters deployed during the thermo-chemical treatment and the innate nature of the biomass 

feedstock used. Thermo-chemical treatments are carried out in reactors. These reactors are akin in 

principles but differ in operating parameters (such as oxygen levels required, rate of heating, and 

temperature) which are crucial to the quality and yield of the produced biochar. Figure 1 highlights 

the different thermo-chemical treatments for obtaining biochar from biomass.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Thermo-chemical technologies for obtaining biochar from biomass 

 

3.1. Slow pyrolysis 

Slow pyrolysis involves the heating of biomass at a slow rate in an environment that is inert 

or has very limited amount of oxygen at about 300 - 700°C for a specific period of time. During 

slow pyrolysis, the biomass decomposes releasing vapours, known as pyrolysis vapours. The 

prolonged residence time of the process provides sufficient time for the secondary cracking of these 

vapours. However, these vapours can be condensed and collected as bio-oil, whose many organic 

constituents can be harnessed and utilized for various purposes [17 – 20]. The residue after the 

release of pyrolysis vapours is biochar, another important product from slow pyrolysis.  

Heating rates and operating temperature are critical to the quality and yield of biochar during 

slow pyrolysis [21]. In general, the quality of biochar is connected largely to its carbon content, pH 

value, specific surface area, and porosity, with carbon content having a greater influence than the 

others [22 – 23]. As highlighted in Table 2, parameters like high temperature, prolonged residence 

time, and low heating rate are vital to obtaining biochar with high carbon content. For example, 

Mousa et al. [24] and Jahanshahi et al. [25] reported that biochar produced from wood pyrolysis at 

an elevated temperature (550 - 700°C) and long residence time (>30 min) performed better than 

coal and coke for steel-making. Yang et al. [26] reported that biochar produced from the slow 

pyrolysis of red cedar wood at 500℃ and a heating rate of 6℃/min exhibited a carbon content of 

about 88.9% and a calorific value of about 33.0 MJ/kg. In slow pyrolysis, higher temperatures are 

vital for enhancing the quality of biochar, since more volatiles are released from the biochar as the 

temperature rises, thereby increasing their carbon levels. Additionally, a reduction in the rate of 
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heating enhances heat conduction that is conducive to the deposition of carbon, leading to the 

production of high-quality biochar [27].  

Other parameters that also directly influence the quality and yield of biochar are biomass 

type and particle sizes, as well as the use of catalysts. Biochar quality and yield can be enhanced by 

increasing the biomass/catalyst ratio, reducing biomass particle sizes, as well as increasing the 

residence time of biomass and pyrolysis vapours [27 – 28]. Generally, biomass type has been 

reported to largely affect the yield and quality of biochar. Solar et al. [29] obtained 30% biochar 

yield from slow pyrolysis of forestry plants at 500℃, 60 min residence time, and 10℃/min heating 

rate. In contrast, Farrokh et al. [30] reported a biochar yield of about 48% from the pyrolysis of 

lignin, indicating that lignin content is vital for biochar yield. Lee et al. [31] also observed that the 

levels of ash and carbon in biomass largely influence biochar yield. 

 
Table 2: Yield and ultimate analysis of biochar obtained from slow pyrolysis 

Biomass feedstock Operational 

parameters 

Yield 

(%) 

Elemental composition References 

T 

(℃) 

RT 

(min) 

HR 

(℃/min) 

C H N S 

Red cedar sapwood 500 30 6 30.90 85.80 2.40 0.35 0.35 [26]  

Red cedar 

heartwood 

500 30 6 21.00 88.90 2.60 0.35 0.40 [26]  

Cow manure 300 120 10 58.00 51.30 4.52 1.70 - [32]  

Pinewood 300 60 17 43.70 71.30 4.70 - - [33]  

Coffee husk 350 30 0.5 39.82 69.96 3.63 3.58 0.24 [17]  

Wheat straw 475 180 8 - 69.90 2.50 - - [34]  

Oil palm shell 500 60 10 35.50 60.12 9.21 0.42 0.92 [35]  

Lignin 500 480 5 45.69 85.90 3.56 1.23 0.12 [30]  

Algae 500 60 10 32.00 45.26 1.24 2.57 - [36]  

Walnut shell 500 60 15 30.00 77.97 3.22 1.13 - [37]  

Rubber wood 500 60 10 24.25 87.17 1.23 0.40 - [38]  

 *T: temperature; RT: residence time; HR: heating rate 

 

Fixed-bed reactors are mostly used for slow pyrolysis. In these reactors, a pile of biomass is 

heated in the absence of air for a long duration (several hours or days) [39]. The disadvantages of 

fixed-bed reactors are that the biomass particles may not be uniformly heated, and the vapours-solid 

contact is poor. Another type of pyrolysis reactor is the auger reactor. This reactor is usually 

deployed for pyrolysis in the industry because it is simple to construct and operate [27, 40]. Garcia-

Perez et al. [28] compared a fixed-bed reactor in batch mode and an auger reactor in continuous 

mode for the slow pyrolysis of pine. The observed biochar yield was very close for both reactors, 

with 30 wt% from the batch reactor and 31 wt% from the continuous reactor. Fluidized-bed reactors 

are other types of reactors utilized for the slow pyrolysis of biomass. It should be noted that despite 
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the type of reactor deployed for slow pyrolysis, the released pyrolysis vapours are usually burnt to 

provide more heat for the process.  

 

3.2. Fast pyrolysis 

Fast pyrolysis is a thermo-chemical process whereby biomass is rapidly heated to high 

temperatures in an inert environment. It occurs in a high-temperature range of 350 - 800°C at a 

faster heating rate of 10 - 200°C/s, with a short solid resistance time of about 0.5 - 10 s and with 

fine feedstock particle size (< 1 mm) [41]. During fast pyrolysis, the biomass feedstock decomposes 

rapidly to generate pyrolysis vapours and biochar (15 - 25 wt%). The pyrolysis vapours are cooled 

to form a dark-brown liquid known as bio-oil.  

It has been shown that rapid heating rates at higher temperatures reduce biochar yield due to 

the evaporation of more volatile matter [27]. Angin [42] reported that biochar yield from safflower 

seed decreased by 5% on average when the heating rate was increased from 10 to 50 °C/min. Chen 

et al. [43] observed a decrease in biochar yield from poplar wood from about 35 to about 32 wt% 

as the heating rate increases from 10 to 50℃/min at 400°C. Aguado et al. [44] observed that an 

increase in the heating rate from 5 to 40 °C/min decreased the biochar yield from about 39% to 

about 26%. However, an increase in pressure can improve biochar yield as vapour residence time 

within the biomass particles is prolonged, thereby promoting biochar-forming reactions [45]. Antal 

et al. [46] reported a biochar yield ranging from 41% - 62% from a high-pressure reactor. Wang et 

al. [47] reported a slight increase in biochar yield from pine sawdust from about 25wt% to about 

28wt% in a closed fixed-bed reactor. Additionally, the effects of various parameters and reactor 

designs on the quality and yield of biochar obtained from fast pyrolysis are highlighted in Table 3. 

The effects are observed to differ remarkably, and also with respect to the biomass feedstock used. 
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Table 3: Yield and ultimate analysis of biochar obtained from fast pyrolysis. 

 

Elevated pyrolysis temperatures have been proven to liberate volatiles from the biomass 

particles, and therefore increase the carbon content of biochar and its specific surface area. Zhao et 

al. [59] observed an increase in the specific surface area of biochar from rapeseed stem from 1 to 

Biomass  

feedstoc

k 

Reactor 

type 

Temperatur

e  

(℃) 

Yiel

d  

(%) 

Ultimate Analysis Reference

s 
C H N S O 

Wheat 

straw  

Airtight 

twin-

screw  

500 26.00  56.0

0 

2.3

0  

1.0

0  

- - [48]  

Sweet 

sorghum  

Fluidized-

bed  

500 23.80  69.0

3  

2.7

8  

0.5

9  

- 2.76  [49]  

Cornstalk  Fluidized- 

bed  

550 - 72.2

8  

3.1

4  

1.0

9  

0.9

0  

22.4

7  

[19]  

Yellow 

poplar  

Fluidized-

bed  

500 5.10  76.3

0  

2.3  0.7  - 20.7

0  

[50]  

Corn 

cobs  

Bubbling 

fluidized-

bed  

500 18.90  77.6

0 

3.0

5  

0.8

5  

0.0

2  

5.11  [51]  

Pine 

sawdust  

Fixed-bed  550 - 70.6

8  

3.6

0  

2.4

0  

0.2

1  

23.1

1  

[52]  

Rice husk  Conical 

spouted-

bed  

500 26.00  45.2

0  

1.5

0  

0.4

0  

- 1.70  [53]  

Pine 

sawdust  

Fixed-bed  500 - 70.6

8  

3.6

0  

2.4

0  

0.2

1  

23.1

1  

[54]  

Douglas 

fir  

Bubbling 

fluidized-

bed  

480 11.20  75.8

0  

1.5

6  

0.3

3  

0.1

3  

19.5

7  

[55]  

Ivory nut  lab-scale  500 15.82  69.5

9  

2.9

3  

- - 18.3

1  

[56]  

bamboo  Horizonta

l screw 

conveyor  

500 24.40  81.7

0  

3.7

0  

- - - [57]  

Rice husk  Fixed-bed  550 38.86  44.7

3  

1.8

0  

0.7

3  

–  7.69  [58] 

Brown 

algae 

Bubbling 

fluidized- 

bed 

375 56.08  30.6

7  

2.7

2  

2.0

9  

- 64.5

3  

[41] 
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about 45m2/g as temperature rises from 300 to 700℃, while Peng et al. [52] reported that increasing 

the temperature from 550 to 750℃ increased the carbon content of biochar obtained from pine 

sawdust from about 71% to about 79%. However, during fast pyrolysis, the rate of heating is the 

main factor that influences the quality of biochar. Onay [60] observed that varying the heating rates 

led to different volatilization rates and structures of biochar, and therefore opined that biochar 

obtained using high heating rates possesses higher carbon percentage and better specific surface 

area compared to biochar obtained using low heating rates. Chen et al. [43] also discovered that 

raising the heating rates improved the carbon content of biochar; but, its surface area exhibited a 

sinusoidal trend in values. However, Mohan et al. [45] observed that rapid heating reduced biochar’s 

specific surface area and porosity due to swift depolymerization at the biochar’s surface. These 

studies revealed that although high heating rates positively influence biochar’s carbon content, they 

have no direct impact on its specific surface area. 

Several reactors have been developed and extensively used for fast pyrolysis to optimize 

bio-oil yield. These reactors include fluidized-bed reactor, ablative reactor, rotary cone reactor, and 

auger reactor [60]. How these reactors operate has been described in several literatures [62 – 63]. 

Generally, produced biochar should be isolated, as much as possible, from the pyrolysis vapour to 

reduce the cracking effects of the vapours on it. About 15 wt% of biochar can be obtained during 

fast pyrolysis in fluidized-bed reactors, rotary cone reactors or ablative reactors [63], while biochar 

yield can be as high as 25 wt% in an auger reactor [64]. 

3.3. Gasification 

Gasification is a thermo-chemical process whereby biomass undergoes incomplete 

combustion at elevated temperatures (700 - 1200℃) in the presence of gasifying agents such as air, 

oxygen, and steam to produce a gaseous product (syngas). The main focus during biomass 

gasification is how to optimize the quality and yield of syngas, by reducing drastically or eliminating 

completely contaminants such as particulates and tars [65]. Despite being an undesirable by-product 

of biomass gasification, some researchers still carry out biochar evaluation at varying gasification 

conditions. Shackley et al. [22] observed that the quality of biochar obtained from biomass 

gasification is closely linked to its carbon content. The quality is affected majorly by parameters 

such as equivalence ratio (ER), temperature, biomass properties and particle sizes, gasifying agents, 

and pressure. However, ER is considered to have more influence on the gasification process than 

the other parameters, and its optimum value varies in correlation with the physicochemical 

properties of the biomass used [66]. Basically, an increase in ER increases the gasification 

temperature, which in turn affects biochar quality as highlighted in Table 4.  

 
Table 4: Ultimate analysis of biochar obtained from gasification 

Biomass  

Feedstock 
Reactor type Temperature  

(℃) 
Ultimate Analysis References 

C H N S O 

Rice straw  Dual fixed-bed   800 63.81  0.95  1.69  0.13  5.24  [67] 

Grape  Pilot drop-tube 1200 52.97  3.92  1.65  0.47  40.97  [68] 

Wood chips  Dual stage  900 78.97  0.68  0.20  - - [66] 

Wood pellet  Co-current  700 83.39  0.98 0.23  - 1.86  [69] 

Coconut 

shells  

Fluidized-bed  750 87.70  1.30  0.30  –  6.8  [70] 



 
Akhator, P.E and Aiwunu-Akuete, C.O /Journal of Science and Technology Research 

5(4) 2023 pp. 1-25 

8 

 

Japanese 

cedar  

Horizontal 

tube  

900 94.60  0.60 0.30 - - [71] 

Wood pellet  Nitrogen 

plasma torch  

700 83.48  1.89  0.41  - 14.22  [72] 

Pine sawdust  Fixed-bed  800 86.31  2.27  0.14  0.01  6.23  [73] 

Beech bark  Batch 

fluidized-bed  

850 75.49  0.56  - - 6.06  [74] 

 

The impacts of ER on the quality and yield of biochar have been widely studied in recent 

years. Yao et al. [23] observed that as the ER increased from 0.1 to 0.6, biochar yield decreased 

from about 0.22 to about 0.14 kg per kg of biomass, while its carbon content decreased from about 

88.20% to 71.20%. Muvhiiwa et al. [72] observed a reduction in the carbon content of biochar from 

89 percent to 80 percent at 700 degrees Celsius and from 93 percent to 86 percent at 900 degrees 

Celsius when the flow rate of oxygen was increased from 0.2 to 0.6kg/h. These studies revealed that 

increasing the ER during gasification decreases the yield of biochar and its carbon content. A higher 

ER implies the availability of more oxygen for gasification. This enhances the reactions that 

transform carbon from solid into the gaseous phase, thereby improving the porosity and specific 

surface area of biochar [75]. On the contrary, the presence of excess oxygen during gasification may 

lead to strong ablation of biochar; reducing its mechanical strength and yield, and increasing its ash 

content [75]. 

Biomass gasification is carried out in gasifiers. These gasifiers are of different types 

including fixed-bed gasifiers (such as the updraft, downdraft, and cross-draft gasifiers), and 

fluidized-bed gasifiers (such as the bubbling and circulating gasifiers). The development and 

advancement of these gasifiers was examined by [76]. Like the equivalence ratio, the type of gasifier 

deployed also influences the yield and properties of produced biochar, however, several experiments 

have shown that biochar’s carbon content depends majorly on the equivalence ratio rather than on 

the gasifier type [66, 68, 74]. Nevertheless, using an updraft gasifier; a biochar yield of about 39wt% 

was obtained from the gasification of rice hulls [77 - 78], and a biochar yield of about 14.3wt% was 

obtained from the gasification of elephant grass, and the specific surface area of the biochar was 

about 475m2/g [79]. 

 

3.4. Torrefaction 

Torrefaction is a thermo-chemical process in which biomass is thermally degraded in an 

inert or nitrogenous atmosphere, at a pressure of one atmosphere, a temperature between 200 - 

300℃, a low heating rate (< 40 ℃/min), and a residence time between 20 – 120 mins [80 - 81]. 

Torrefaction is majorly deployed for the production of a “charred” solid, which is fit for use as an 

energy source as well as for soil quality enhancement [80]. During torrefaction, about 30wt% of 

highly reactive volatiles are transformed into torrefied vapours [82], and torrefied biochar, a dark-

brown solid, which possesses about 90% of the biomass’ initial calorific value is obtained at the end 

of the process [83]. The calorific value of torrefied biochar can be enhanced for use as an energy 

source for purposes of heating and power generation [84 - 85]. To improve the calorific value of 

torrefied biochar, elevated temperature and long residence time are necessary, however, these 

factors lower the quality and energy yield of the torrefied biochar. Hence, Niu et al., [86] opined 

that the optimum torrefaction condition may be to sustain a solid yield of about 60 - 80%, so as to 

obtain biochar with high calorific value, mass density, and energy yield. 
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The quality of torrefied biochar is mainly affected by biomass physicochemical properties, 

such as moisture level, calorific value, and ash content [87]. Biomass moisture content has a more 

significant effect as it largely determines the energy input for the torrefaction process [83]. Biomass 

feedstocks are made up of cellulose, hemicellulose, and lignin, and torrefaction of these components 

has been investigated extensively to ascertain the main factors influencing torrefied biochar yield. 

According to [88], torrefaction of hemicellulose yields the lowest biochar quantity of the three 

components. Wang et al. [89] reported that increasing the temperature and residence time shrinks 

the levels of hemicellulose and cellulose in the obtained biochar, while the levels of lignin increase. 

Kai et al. [90] submitted that torrefaction temperature has more influence on the quality of torrefied 

biochar than biomass residence time. As highlighted in Table 5, irrespective of the biomass type, 

torrefaction yields biochar with enhanced carbon content, but with lower hydrogen content at 

elevated temperatures. Pala et al. [91] elucidated that dehydration and decarboxylation are the 

predominant degradation reactions responsible for significant losses in mass during torrefaction. 

Additionally, biomass torrefaction in the presence of various agents, such as air and nitrogen has 

also been studied. Brachi et al. [92] observed that the mass and energy yields of the torrefied biochar 

from oxidative torrefaction were lower than those from non-oxidative torrefaction. 

Slow pyrolysis yields high-quality biochar as the biomass is subjected to “deep pyrolysis” 

at a relatively low temperature for a long time, releasing a high percentage of the biomass volatiles, 

leading to a significant increase in the biochar carbon content. In comparison, torrefied biochar has 

lower moisture and volatile contents because the biomass is only subjected to “light pyrolysis” even 

at 200°C for about a significant length of time. At such low temperatures, biomass only undergoes 

drying and does not experience several chemical reactions. Nevertheless, torrefied biochar still gets  

 
Table 5: Yield and ultimate analysis of biochar obtained from torrefaction 

Biomass 

feedstock 

Temperature  

(℃) 

Mass 

yield 

(%) 

Energy 

yield 

(%) 

Elemental 

composition 

Elemental 

composition 

Refs 

C H C H 

Pine chips  

 

225 - 300  89 - 52  

 

94 - 71  

 

47.21  

 

6.64  

 

49.47 – 

63.67  

6.07 – 

5.58  

[84] 

Wood stem  260 - 310  97 - 46  99 - 63  50.30 6.20 51.40 – 

69.20  

5.90 – 

5.00  

[93] 

olive 

pomace 

pellets  

200 - 250  80 - 53  95 - 68  54.93  6.33  57.31 – 

63.61  

6.33 – 

4.68  

[92] 

Wood pellets  200 - 250  80 - 53  94 - 50  50.91  6.25 52.22 – 

66.65  

6.06 – 

3.34  

[92] 

Sugarcane 

bagasse  

200 - 300  79 - 52  99 - 79  98 – 

79  

32.50 5.01 34.50 – 

50.30 

[94] 

Corn stover  200 - 300  97 - 57 99 - 84  - - 45.80 – 

58.70  

5.50 – 

4.70  

[87] 

Peat  230 - 270  82 - 70  82 - 70  91.87 52.09  59.00 – 

65.30  

5.49 – 

5.26  

[95] 
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Rice straw  200 - 300  94 - 70  99 - 84  42.57  5.84  45.06 – 

50.94  

5.46 – 

4.90  

[90] 

Bamboo  210 - 300  95 - 60  97 - 75  46.12  6.11  48.54 – 

61.23  

6.08 – 

4.80  

[82] 

Empty fruit 

bunches  

200 - 300  88 - 67  90 - 71  43.00 6.00 46.20 – 

59.00  

5.50 – 

5.10  

[96] 

Spent coffee 

grounds  

200 - 300  97 - 63  98 - 79  53.00  7.29  53.94 – 

68.00  

7.28 – 

6.85  

[97] 

Micro algae 

residue 

200 - 275  89 - 63  92 - 79  36.49  6.12  41.27 – 

61.63  

5.95 – 

5.38  

[97] 

 

massive attention due to its advantages. For example, the biochar moisture content is reduced 

drastically, which reduces the cost of transportation and enhances the biochar storageability. The 

calorific value of the torrefied biochar can also be improved by decomposing the hemicellulosic 

fraction in the biomass [83].  

 

4.0. Effects of biomass properties on biochar quality and yield 

Lignocellulosic biomass comprises three main components viz; cellulose, hemicellulose, 

and lignin [99]. The pyrolysis of these components has been examined and it was reported that they 

decompose at varying temperatures; cellulose (240 - 310℃), hemicellulose (170 - 240℃), and lignin 

(300 - 550℃) [99 - 100], and they interact amongst themselves during pyrolysis [101], bringing to 

fore the complexity of biomass pyrolysis. Kan et al. [102] observed that during pyrolysis the 

reactions between cellulose and hemicellulose have no significant influence on biochar production. 

However, the reactions between cellulose and lignin hamper biochar production, as lignin inhibits 

the polymerization of levoglucosan from cellulose [103]. Hence, it is quite impracticable to foretell 

the quality and yield of biochar using just the thermal behaviour of these biomass components. 

Furthermore, it is worthy of note that other factors such as biomass types, pyrolysis conditions, and 

reactor types also influence, to a large extent, the quality and yield of biochar. This is an indication 

that prevalent studies on biomass pyrolysis are deficient to adequately estimate the properties of 

biochar. The effects of biomass on the quality and yield of biochar obtained from fast pyrolysis and 

gasification processes have not been significantly explored as their target products are bio-oil and 

synthesis gas respectively, and not biochar. 

Lignocellulosic biomass differs in chemical composition depending on the type and origin 

of the crop [104]. The type of lignocellulosic biomass utilized affects the physicochemical properties 

of the resulting biochar [105]. For example, biochar obtained from forest residues usually possesses 

more carbon than those obtained from agro-residues and animal residues [105]. The authors also 

reported that biochar obtained from algae contained more nitrogen than biochar produced from 

forest biomass, due to the high nitrogen content of algae. The intended use for biochar determines 

the type of feedstock to be utilized for their production [105]. Forest biomass is recommended when 

the biochar is to be utilized for barbecue, metallurgy, and activated carbon. While agro-residues are 

better if the biochar is intended for soil amendment [105]. The commercial viability of biochar 

production should be accentuated. It depends on several factors, including the cost of transportation, 

biomass cost, biochar quality, its utilization, and the cost of other necessary chemicals [106 - 107]. 
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5.0. Applications of biochar in agroforestry settings 

5.1. Soil quality enhancement 

5.1.1. Enhancing soil physical and chemical properties 

The benefits of biochar application on the physical properties of soil have been widely 

reported. Biochar has been found to increase the net surface area of soils and improve the aeration, 

bulk density, porosity, as well as packing of soils [108 - 109]. Furthermore, the application of 

biochar in soils has been reported to enhance soils’ aggregate stability, water penetration, and water 

retention capability [110 - 111]. Improved porosity contributes hugely to better circulation of water, 

heat, and gases in soils, thereby improving the soil’s quality [112 - 113]. The improvement in the 

physical properties of soil can be adduced to large surface area and low bulk density of biochar due 

to its porosity [114]. 

Besides improving soil physical properties, biochar application in soil also affects soil 

chemical properties. Biochar application can modify soils’ pH value, a benefit that is prominent 

distinctly for acidic soils [109, 115]. The reduction of soil acidity has been adduced to several factors 

including; (1) the alkalinity of several biochars, (2) the ability of biochar to buffer high pH values 

due to its high cation (such as potassium, calcium, magnesium and sodium) exchange capacities 

(CECs), (3) the presence of functional groups (such as –COO– and \\O\\ ) in biochar, which is 

instrumental to its alkalinity, and (4) formation of carbonates or oxides by mineral elements (like 

calcium, potassium, magnesium, sodium and silicon) in the feedstocks during the biochar formation, 

which then react with hydrogen ions and monomeric aluminum species in acidic soils thereby 

reducing their acidity and improving their pH [116 – 118]. Altering the pH of soils enables more 

nutrients (like potassium, phosphorus, calcium and magnesium) to dissolve into them, thereby 

making more nutrients available in the soils [12, 119], and reducing the toxicity of aluminum in 

acidic soils [111]. 

The ability of soils to exchange cations (CECs) is crucial to their fertility, and applying 

biochar to soils helps to improve this ability [120 - 121]. The enhanced CECs ability of these soils 

may be adduced to; (1) the development of carboxyl groups and oxidation of aromatic carbon in the 

biochar, (2) the presence of dominant negatively charged surface functional groups, and (3) an 

increase in biochar surface area [109, 120 - 122]. Increasing soils’ CECs ability enhances their 

ability to retain more nutrients, thereby making more nutrients available to plants' roots [123]. In 

view of these benefits of biochar application to soils’ physicochemical characteristics, it can be 

stated that biochar is vital for improving the quality and performance of soils. For instance, the 

presence of biochar can upgrade the physical qualities of clay and sandy soils by facilitating; better 

water retention, better aeration, more nutrient solubility and retention, more microbial interactions, 

and stimulating chemical reactions in the rhizosphere [124]. 

However, studies have also revealed conflicting influences of biochar applications on soil's 

physical, chemical, and biological properties. Busscher et al. [125] observed that the application of 

pecan shell biochar to loamy soil lowered the soil penetration resistance, but didn’t impact the 

stability of soil aggregate and water diffusion.  

 

5.1.2. Enhancing soil nutrition and fertility 

Biochar contains nutrients originally in the biomass feedstock [109], hence when applied to 

soils, it serves as a source or sink for nutrients [108, 126]. Adding biochar to soils has proven to be 

an effective method of improving nutrient cycling, as well as interactions between biochar and plant 

roots, thereby enhancing root development and the entire plant functionality [111, 124]. Biochar 

can also indirectly influence the levels and types of nutrients in the soil, as it can serve as a long-

acting fertilizer for the supply of exogenous nutrients to the soil [127]. In addition to the nutrients 

(nitrogen (N2), phosphorus, potassium, calcium, magnesium, sulphur, iron, manganese, copper, 
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zinc, and silicon) derived from the biomass feedstock, both macro- and micro-nutrients (e.g., copper 

ion (Cu2+), iron ion (Fe2/3+), manganese ion (Mn2+) and zinc ion (Zn2+)) can be absorbed and released 

slowly by biochar due to its large surface area and porous microstructure [128 - 129]. Specifically, 

biochar’s porous networks initiate some barriers or chemical sorption that facilitate slow desorbing 

nutrients for plant uptake [130 – 132]. Generally, applying biochar as a sustained-releasing fertilizer 

could limit nutrient leaching and run-off, boost nutrient availability, and therefore improve the 

efficiency of nutrient utilization and crop yield [133 - 134].  

Adding biochar to soil can help to circulate vital nutrients through physicochemical and 

microbial interactions [135 – 137]. The distinctive porosity of biochar coupled with its sundry 

functional groups can facilitate sustained adsorption of elements, surface conglomeration, and 

ligand exchange reactions, which basically controls the mobility of nutrients in soils [138 - 139]. 

Biochar application abates the leaching of soil nitrogen and boosts the recovery of nitrogen-based 

fertilizers, as the adsorption of some inorganic forms of nitrogen onto biochar mitigates the loss of 

ammonia and nitrate from soil [140]. Biochar application in soils also enables better nitrogen 

utilization and prevents nitrogen accumulation by regulating nitrogen mineralization, ammonia 

volatilization, and nitrification/denitrification in soils [141 - 142]. The improved capacity of soils to 

exchange positive and negative ions, due to the presence of biochar, further aid nitrogen retention 

in soils [129, 143 - 144]. Biochar being a carbon (C) rich substrate with a high carbon-to-nitrogen 

(C/N) ratio, can boost microorganisms’ population in soils and trigger them to rapidly decompose 

organic matter in soils [145]. Other nutrients biochar addition can help to boost and retain in soils 

include phosphorus, and potassium [111, 121, 137].  

Generally, applying biochar to soils can assist in boosting soil nutrition, by aiding better 

nutrient retention and utilization, lowering nutrient run-off, and consequently enhancing soil fertility 

[122, 146, 147]. However, the impact of application varies with respect to soil type. Van Zwieten et 

al. [148] observed a more significant response to biochar in acidic soils than in calcareous soils. 

Several other studies concentrated on the impact of biochar application on nutrient-deficient acidic 

soils, and the observed improvement in crop yields has been attributed to increased levels of nitrogen 

and phosphorus, better fertilizer usage, increased concentration of cations, and reduced pH, with a 

proportionate reduction in substitutable aluminum [112, 149 – 151], however, negligible impacts 

were observed in soils with high nutrient levels.  

 

5.1.3. Enhancing plant development 

Biochar addition to soils influences their physical properties, which may subsequently have 

a direct impact on plant development. Application of biochar to degenerated and nutrient-deficient 

soils has been found to be more effective than application to healthy fertile soils [152 - 153]. Biochar 

contributes to the amendment of nutrient-deficient soils, resulting in better plant development by; 

(1) enhancing nutrient availability and circulation, (2) boosting efficient use of fertilizers [131 - 

132], (3) improving soil CECs,  pH, as well as retention of water and nutrients, (4) lowering the 

tensile strength of soils and improving their structure [133 – 134, 154], and (5) instigating a 

rhizosphere environment conducive for earthworms’ growth and microbial interactions [110, 155, 

150]. Generally, a major challenge for plants growing in degenerated soils is root development. 

Improving the soil quality essentially improves the rhizosphere conditions and enables the root to 

develop easily, which is beneficial for more nutrient retention and better plant development [156].  

Plant stress is a major predicament experienced in agroforestry environments. Biochar has 

been reported to display great potential to alleviate both biotic and abiotic stresses in plants [157]. 

According to Thomas et al. [158] and Ramzani et al. [159], treating soils with biochar increased the 

growth-promoting hormones in quinoa, thereby enhancing its antioxidant response to drought and 

salt accumulation. Treating saline and sodic soils with biochar ameliorates the adverse effects of 

salts, as more cations on the surface of biochar can replace sodium ions in the soils, consequently 

reducing the percentage of exchangeable sodium [160 – 161]. Besides alleviating biotic stresses, 
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biochar addition can instigate microbial activities capable of mitigating plant pathogenicity that 

poses threats to plant development, or encourage the release of microbial inhibitors that can dissuade 

soil pathogens thereby, enhancing plant development [162].  

Field studies have yielded mixed results of biochar application on crop cultivation. Biochar 

application may [11 - 12] or may not [163] improve crop yields, depending on the type of soil and 

efficiency of fertilizer usage. Asai et al. [12] reported that biochar application to soils with low 

phosphorus (P) content improved rice yield, but recorded no improvement in rice yield in soils with 

high phosphorus amount. Yamato et al. [11] also observed that biochar promotes crop yield when 

added to low-phosphorus soils. Several authors also reported enhanced crop yields when biochar 

was applied to soils due to more nutrient availability, but however, didn’t provide any explanation 

of the mechanisms responsible for the yield improvement [8, 163 – 164]. Gaskin et al. [165] 

revealed that the application of biochar both increased and decreased crop yield with respect to 

application rate, soil type, source of biochar, and season. Hence, a distinct relationship between 

biochar application and crop yields has not been fully established.  

 

5.2. Soil remediation and wastewater treatment 

Besides improving soil fertility, biochar can also be deployed to remediate polluted soils. 

The structure of biochar enables it to interact with inorganic and organic pollutants in the soil in 

such a manner that affects the movement and availability of the pollutants thereby instigating 

remediation of contaminated soils [166].  

Microorganisms in soils cannot degrade heavy metals, making soils contaminated with 

heavy metals a major cause of health and environmental concerns through food crop consumption 

and direct exposure [155]. Several studies have revealed that biochar’s ability to remediate 

contaminated soils is not only due to their surface adsorption but also to the presence of several 

functional groups and inorganic ions in the biochar that probably contribute hugely to stabilizing 

heavy metals in the soils [164 – 170]. Basically, biochar influences the aggregate and migration of 

heavy metals in soils according to the mechanisms shown in Figure 2. These mechanisms include; 

(1) Electrostatic attraction between the negative charges in biochar and the positively charged metals 

[157, 171 – 172], (2) exchange of ions between the biochar and the heavy metals in the soils [173],  

 

 
Figure 2. The mechanisms of biochar influence on the availability and mobility of heavy metals in soils 

(adapted from [172]) 
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(3) Complexation with functional groups in the biochar [174 – 175], (4) Precipitation: the 

mineral elements in biochar may combine with heavy metals in the soils to form insoluble 

precipitates. Furthermore, the alkalinity of some biochar can instigate liming effects in soils thereby 

inducing precipitation of heavy metals [131 - 132, 174]. In addition, biochar also immobilizes heavy 

metals in soils through soil pH modification, CECs enhancement, reordering the redox state of heavy 

metals, and increasing contents of carbon and minerals in soil [109, 176]. 

Generally, several mechanisms can be involved in the adsorption process for a specific 

metal, while in a multi-contaminant system, metals can compete with each other for the same sites 

and functional groups to initiate corresponding inhibition [170, 177]. In addition, the methods 

through which biochar stabilizes heavy metals differ according to the type of metals. For example, 

the adsorption of lead and cadmium may be influenced by biochar’s porosity and prominently 

controlled by the exchange of ions, while the removal of copper may be linked to surface functional 

groups, which could promote complexation with the metals [169]. 

Unlike for inorganic contaminants, reports on the utilization of biochar for remediation of 

soils polluted with organic contaminants are quite limited, even though biochar possesses the 

necessary carbon required to absorb organic compounds such as polyaromatic hydrocarbons (PAHs) 

[178]. Furthermore, biochar can stimulate the decomposition and redox reactions of organic 

compounds due to its graphite and semi-quinone structures that are capable of accepting or donating 

electrons and producing free radicals [131 – 132]. However, biochar’s effectiveness to remediate 

organic pollutants in agroforestry soils depends on the type of biomass feedstock and reactor 

temperature [179]. For instance, only biochar containing high carbon and sulphur contents can be 

used for remediating soils polluted with compounds like sulfamethazine [180].  

Unique features such as large surface area, porosity, surface functional groups, and enriched 

mineral components have positioned biochar as a potential adsorbent to eradicate pollutants from 

aqueous solutions [181 – 182]. Biochar has already demonstrated impressive ability as an adsorbent 

to eliminate several heavy metals and toxic organic pollutants (e.g. dyes, pesticides, herbicides, 

antibiotics) from water [181 – 182]. Studies by Kostas et al. [183] and Inyang et al. [184] revealed 

that both the Langmuir and Freundlich isotherm models demonstrated a perfect fit of the adsorption 

data when utilized to model how these pollutants interact with biochar, and the pseudo-second-order 

kinetic model concurs with experimental data. The possible methods of adsorption usually involve 

the integration of several mechanisms as depicted in Figure 2. 

 

5.3. Carbon sequestration 

Carbon sequestration is a process whereby carbon is captured and stored, probably in soil, 

consequently increasing soil carbon sink [185]. Biochar has been globally endorsed as a potential 

carbon sequestration medium for building carbon sinks in soils. This is because biochar can highly 

resist soil chemical and biological decomposition due to the recalcitrance and stability of its carbon 

acquired during its production processes [186]. In addition, the improved chemical stability of 

biochar is accredited to its dense aromatic contents [187 – 188]. According to Wang et al. [189], the 

labile fraction of biochar has an average chemical half-life of about 556 days, while Graber and 

Hadas [190] and Gwenzi et al. [134] reported that about 63 percent of the carbon in biochar is 

sustained on an anhydrous basis. Therefore, the application of biochar can potentially sequester 

carbon in the soil for centuries, probably because; (1) biochar application in soil may inhibit the 

mineralization of endemic soil organic carbon (SOC) indelibly [189 - 191], and reduces significantly 

the amount of dissolved organic carbon (DOC) in soil due to its adsorption onto the surface of 

biochar [124, 192], (2) Biochar application in soil can boost microbial carbon and decrease their 

metabolic quotient due to its influence on availability of carbon and nitrogen [192 – 193].  

Biochar application for the amendment of poor fertile soils has been deemed as a potent 

method to sustain SOC [8 – 9]. Sustaining or improving SOC has beneficial effects on the health 
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and performance of agroforestry soils, such as improving aggregate stability, eliminating pollutants, 

enhancing water penetration, and lowering water run-off [194]. These effects incidentally mitigate 

climate change by reducing the demand for fertilizers for crop production [195]. Generally, biochar 

transmutes labile carbon from the active carbon pool to the passive pool, and its application could 

advance carbon sequestration and soil management practices [134].  

 

5.4. Mitigation of greenhouse gas emissions 

The agroforestry sector is a major contributor to greenhouse gas (GHG) emissions [157]. 

Biochar application in soil does not only assist in carbon sequestration but also in lowering 

emissions of GHG. During biochar production, irrespective of the biomass type used, more GHG is 

consumed than discharged leading to a net negative GHG emission, an indication that biochar 

application to soil supports climate change mitigation efforts [196 – 197].  

Biochar potentially assists in reducing the emission of greenhouse gases such as methane 

(CH4), nitrous oxide (N2O), ammonia (NH3), and carbon dioxide (CO2) [198]. During respiration, 

soil emits CO2 amount that is about ten times higher than CO2 emitted during the burning of fossil 

fuels, hence, it is quite pertinent to decrease the amount of CO2 emitted from soil to mitigate climate 

change [199]. During photosynthesis, plants absorb CO2 from the atmosphere and more than 90% 

of this carbon is passed on to the resulting biomass [200], and when the biomass is decomposed by 

microorganisms in the soil, CO2 is released into the atmosphere [110]. However, if the biomass is 

converted to biochar, and the biochar is added to the soil, its features enable it to capture carbon 

from the soil and store it for long durations [134, 155]. The application of biochar in soil also 

indirectly reduces GHG emissions through savings in energy meant for irrigation by enhancing soil 

quality [8].  

Methane (CH4) has more capacity to trap radiation in the earth's troposphere than CO2, 

making it a huge contributor to global warming [201]. Methane is emitted through methanogenesis 

under conducive anaerobic conditions, such as neutral pH and sufficient nutrients. Applying biochar 

to soil improves its aeration, thereby enhancing methanotrophic activities and hampering 

methanogenic activities resulting in a reduction in CH4 emissions [202 – 203]. Similarly, biochar 

supports the biological immobilization of inorganic nitrogen, which aids its retention and minimizes 

ammonia volatilization [204]. Also, adding biochar to soil has been observed to significantly reduce 

denitrification by lowering the nitrous oxide-to-nitrogen + nitrous oxide (N2O/(N2 + N2O)) ratio, 

leading to a reduction of N2O by up to about 90 percent [205]. Reduction of nitrous oxide emission 

can be adduced to; (1) biochar playing the role of “electron shuttle” by transmitting electrons to 

denitrifying microorganisms in the soil, which fosters the reduction of nitrous oxide to nitrogen, (2) 

nitrification by the amended soil, (3) nitrifier inhibitors in biochar, which are capable of reducing 

nitrous oxide emissions and producing nitrous oxide ions [206 – 207].  

Influence of biochar application on GHG emissions has also been reported with varying 

outcomes. The scope of application ranged from soybeans, grass ecosystems [208], common beans 

[209], rice production [210] or wheat parcels [211] to diverse agro-soils [207]. Rondon et al. [210] 

reported a decrease in nitrous oxide emissions of about 50% for soybeans and about 80% for grasses 

growing in low-fertile soil from the Colombian savanna. Castaldi et al. [211] cultivated wheat in 

biochar-amended soil and discovered that the fluxes of N2O were from 76% to 26% lower than the 

N2O fluxes observed in the control parcel. Similar results were observed by Zhang et al. [210], who 

studied the impacts of biochar application on N2O emission in rice paddy. They reported a consistent 

reduction in nitrous oxide emission in a single crop cycle after biochar amendment. On the contrary, 

capacious variations in CO2 emissions rates from biochar-amended soils have equally been 

highlighted by researchers. Spokas et al. [212] observed a reduction of more than 20% in CO2 

emissions from loamy soil treated with biochar compared to untreated loamy soil. Liu et al. [213] 

observed a reduction in CO2 emission when paddy soil was treated with biochar obtained from the 
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pyrolysis of bamboo and rice straw. In contrast, Bell and Worrall [214] reported a significant 

increase in CO2 emissions from uncultivated soils treated with wood biochar, but observed no 

increase in cultivated plots. Similarly, another study conducted by Spokas et al. [215] observed that 

when three different soil types were treated with sixteen different biochars, three different effects 

were observed including reduction, no change and increase in CO2 emissions. Reduction in methane 

emissions has been observed in most soils treated with biochar. Liu et al. [213] also reported a 

decrease of about 91% in methane emission from paddy soil treated with biochar compared with 

untreated paddy soil. Karhu et al. [216] observed a reduction in methane emission from southern 

Finland soil treated with biochar obtained from birch. A contrary result was reported by Castaldi et 

al. [211] who concluded that there was no significant reduction in methane emissions on applying 

biochar for Mediterranean wheat cultivation. 

 

6.0. knowledge gaps and future perspectives 

The potential benefits of biochar to the agroforestry sector have been examined in this 

review, and illustrated pictorially in Figure 3. Apparently, the correlations between production 

technologies and vital properties of biochar are non-existence in literatures. The diverse parameters 

at play during biochar production result in biochar obtained from distinct technologies that are 

extremely dissimilar, making it difficult to contrast the produced biochar. Furthermore, most 

researchers have typically focused on carbon content as the measure of quality for biochar, whereas, 

properties like pH, surface area, porosity, water retention capability, cation/anion exchange 

capability, and surface functional groups are equally crucial to how biochar application can impact 

soils. Consequently, it is virtually impracticable to predict or standardize the properties of biochar 

produced from distinct technologies. The most appropriate properties of biochar would invariably 

equally be reliant on the desired usage for them.  

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 3. Benefits of biochar to agroforestry systems 
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Particularly, biochar meant for energy generation would be distinct from biochar meant for 

wastewater treatment. The former needs a high calorific value, whereas the latter requires a high 

adsorption capacity. Therefore, future studies on explicating the influence of biochar production 

technologies on their properties are essential.   

Similarly, the correlations between biochar properties and their functionality in the 

agroforestry sector have not been extensively examined according to the available literature. 

Conflicting impacts of biochar on plant development, crop yield, and emissions of greenhouse gas 

from soils have been reported, due to differences in biochar properties, rate and methods of 

application, type of soil, crop species, and even climatic conditions. Evidently, the process of 

biochar interactions with soils and plants is essential but the systematic processes of how these 

interactions occur are still largely unknown. Considering the diverse properties of biochar, it is 

virtually difficult, if not impracticable to estimate how biochar would perform in specific systems. 

Therefore, concerted efforts would be required to correlate the properties of biochar to crop and soil 

responses in both controlled and uncontrolled environments. 

 

7.0. Conclusions 

Biochar production and its application in the agroforestry sector have been explicated in this 

paper. It was discovered that the quality and yield of biochar obtained from biomass using distinct 

thermo-chemical technologies are quite different, attributable to the differences in operating 

parameters, which include oxidant requirement, rate of heating, residence time, and temperature. 

Basically, biochar yield decreases with rapid heating and increasing amounts of oxygen. Although 

biochar applications in agroforestry sectors have huge benefits, like enhancing soil health, 

improving plant development, carbon sequestration, and lowering emissions of greenhouse gas, the 

mechanisms of biochar interactions in such systems are yet to be fully delineated. Furthermore, 

conflicting results from such applications have also been duly reported, hence, the benefits from 

biochar application are oftentimes restricted to specific parameters like the source of biochar, 

biochar application rates, types of soil, and species of plants. Therefore, systematic analyses are 

essential to explicate the correlations amongst biochar production technologies, biochar properties, 

and their performance in the agroforestry sector. 
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