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The accurate prediction or measurement of bottom-hole pressures in 

oil and gas reservoirs cannot be over-emphasized in the Petroleum 

Industry. Mechanistic, numerical and analytical models have been 

developed and deployed to determine bottom-hole pressure. Some of 

these models developed have failed to predict bottom-hole pressures 

to an acceptable accuracy. However, the down-hole gauges measure 

the bottom-hole pressures to an acceptable accuracy, but, are 

expensive to use and maintain. This study focused on developing 

models using random forest regression and gradient boosting 

regression to predict bottom-hole pressures in oil and gas reservoirs 

accurately. The input data used was collected from the Volve Field 

(Jurassic sandstone reservoir) and filtered and correlated 

successively. The data was normalized using Python programming 

to prepare the data sets for input into the model. The results showed 

that the random forest regression model has an accuracy of 97.80% 

while the gradient boosting regression model has an accuracy of 

95.83%. The average magnitudes of the errors are 0.0067 and 

0.01266 for random forest and gradient boosting regression models 

respectively. The developed models predicted the bottom-hole 

pressures for the reservoir with an acceptable degree of accuracy 

and error magnitude. The Random Forest Regression and the 

Gradient Boosting Regression models were seen to be economical 

and accurate in solving the problem of predicting bottom-hole 

pressures in oil and gas reservoirs. 
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1.0  Introduction 

In the upstream sector of oil and gas industry, the accurate determination of bottom-hole pressures 

facilitates the determination of the productivity of wells and adequate management of the well 

production system can be achieved. With the increased use of permanent down-hole gauges, 

measuring bottom-hole pressure (BHP) gets faster. However, these down-hole gauges require 

continuous maintenance and calibration which are very costly to carry out. Also, by engaging 

in well intervening operations to measure BHP is an expensive task, associated with 

production risk and interruption. For these reasons, the motivation of the prediction of BHP 

has been argued. The bottom-hole pressure (BHP) is the pressure acting on the walls of the 

hole. In large diameters, this pressure has limited impacts on the wellbore, but in the case of 

smaller diameters, it can generate down-hole problem such as total circulating loss [1]. When 

the wall is static, the bottom-hole pressure can equal to the hydrostatic pressure generated 

by the column of the drilling fluids. During the circulation, the bottom-hole pressure equals 
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to the sum of hydrostatic pressure and frictions generated through the circulating system [2]. 

There is nothing more important in petroleum engineering than a definite knowledge of the 

pressure at the bottom of an oil well at any existing operating condition and the relationship 

between this pressure and the pressure within the producing formation. Knowledge of bottom-

hole pressures is fundamental in determining the most efficient methods of recovery and the 

most efficient lifting procedure, yet there is less information about these pressures than about 

any other part of the general problem of producing oil [1]. 
 
Models have been developed to determine BHP directly from surface readings using 

multiphase correlations or mechanistic methods [3]. Technological advancements have 

contributed to the accurate predictions of BHP data because machine learning algorithms 

have been developed to better determine BHP data from surface measurements [3]. Multi-

phase correlations analysis is the key to determining bottom-hole pressure from wellhead data 

because the pressure gradient of the multiphase flow pattern is obtained for a particular length 

of tubing, but, the prediction is not a single estimation of pressure gradient; the flow pattern 

has to be actively considered [3]. There are several multiphase correlations, mechanistic 

models and machine learning algorithms that have been used to predict bottom-hole pressure 

in multiphase flow [4, 5, 6, 7, and 8]. However, their general applicability is questionable. 

Correlations that address only a specific class of problems exist and these types of correlation 

usually perform better than those which attempt to solve a variety of problems. Usually, the 

higher the number of variables in the model the lesser the reliability and general applicability 

of the correlations and with advances in drilling and completions operations, complex 

completion design and various wellbore trajectories which result in different pipe configuration 

and changing inclination, the multiphase correlation is affected. Modern advancements in 

pressure prediction methods revealed that most of the mechanistic models produced with 

lesser accuracy and adjustments are still needed. Machine learning models such as artificial 

neural network (ANN) and regression techniques such as linear regression have been of great 

help in this area with an acceptable degree of accuracy. 
 
Regression analysis is a form of predictive modeling technique which investigates the 

relationship between a dependent (target) and independent (predictor) variables. This 

technique is used for forecasting, time series modeling and finding the causal effect relationship 

between the variables [9]. For example, relationship between rash driving and number of road 

accidents by a driver is best studied through regression. Regression analysis is an important 

tool for modeling and analyzing data. Here, we fit a curve or line to the data points, in 

such a manner that the differences between the distances of data points from the curve or line 

is minimized [10]. Gradient Boosting is a machine learning technique for regression and 

classification problems, which produces a prediction model in the form of an ensemble 

of weak prediction models, typically decision trees [11]. Also, gradient boosting machines 

or simply, GBMs, the learning procedure consecutively fits new models to provide a more 

accurate estimate of the response variable. The principle idea behind this algorithm is to 

construct the new base-learners to be maximally correlated with the negative gradient of 

the loss function, associated with the whole ensemble [11]. The objective of any supervised 

learning algorithm is to define a loss function and minimize it. Equation 1 can be used to 

develop Gradient Boosting algorithm by determining the Mean Squared Error (MSE) as loss 

which is defined as; 

 

 

 

Loss =  MSE = ∑ (𝑦𝑖 − 𝑦𝑖
𝑝)

2𝑛
𝑖=1        (1) 
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Where,  

𝑦𝑖 = 𝑖𝑡ℎ 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒,  𝑦𝑖
𝑝  = 𝑖𝑡ℎ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛,   𝐿(𝑦𝑖𝑦𝑖

𝑝) =

𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
 
The target is to have minimum loss function (MSE). By using gradient descent and updating 

our predictions based on a learning rate, we can find the minimum value of MSE. Boosting 

model is an ensemble technique in which the predictors are not made independently, but 

sequentially. This technique employs the logic in which the subsequent predictors learn from 

the mistakes of the previous predictors. Therefore, the observations have an unequal probability 

of appearing in subsequent models and ones with the highest error appear most. So the 

observations are not chosen based on the bootstrap process, but based on the error. The 

predictors can be chosen from a range of models like decision trees, regressors, classifiers etc. 

Because new predictors are learning from mistakes committed by previous predictors, it takes 

less time or iterations to get close to actual predictions. But we have to choose the stopping 

criteria carefully or it could lead to over fitting on training data. Gradient boosting is an example 

of boosting algorithm. 

 

Random forest is a machine learning technique which uses ensemble learning method for 

classification and regression. Random forest is a bagging technique and not a boosting 

technique. The trees in random forests are run in parallel. There is no interaction between these 

trees while building the trees. It operates by constructing a multitude of decision trees at training 

time and outputting the class that is the mode of the classes (classification) or mean prediction 

(regression) of the individual trees. A random forest is a meta-estimator (i.e. it combines the 

result of multiple predictions) which aggregates many decision trees, with some helpful 

modifications [12]. The data used in this study were obtained from the Volve Field, located in 

the central part of the North Sea, Norway. The reservoir contains oil in a combined stratigraphic 

and structural trap in Jurassic sandstones in the Hugin Formation. 

 

2.0 Methodology 
 

The method adopted to achieve the set objectives of this study involved data collection from 

reservoirs located in Volve Field. These data were normalized for adequate application in the 

Python programming language because, from its raw state, it falls short of what is required 

to achieve the desired modeling and prediction of bottom-hole pressures. The Anaconda 

software which has the Python programming language was used to carry out the coding on the 

Jupyter environment. Python is a high level programming language which emphasizes code 

readability.  The Python was used to develop Random Forest Regression and Gradient 

Boosting Regression models for the prediction of bottom-hole pressure (BHP). The Microsoft 

Excel tool was also used for data filtering and preparation before using in the Python 

Programming. The number of datasets used for the models are same. It consists of 3522 rows 

and 11 columns after normalization of the data sets for use. The features of the columns of 

datasets that were used are as follows; well depth, average down-hole pressure, average down-

hole temperature, average annulus pressure, average choke size, average well-head pressure, 

average well-head temperature, pressure differential in chokes, bore gas volume, bore oil 

volume and bore water volume. 
 
 

2.1 Random Forest Regression Algorithm 
 

The following sequences were adopted to run the datasets in the random forest regression 
algorithm; 
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a) Initialize the random forest regression model. 

b) Fit the training data set of both the input variables and the output variables to the 

random forest regression model. 

c) Train the model with the training set data using the random forest regression 

model. 

d) Evaluate the model by fitting the test data set to the model for the bottom hole 

prediction process. 

e) Compute the accuracy of the prediction model, the mean absolute error (MAE) and the 

mean squared error (MSE). 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐼𝑛𝑝𝑢𝑡 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡

𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡
 ∗ 100    (2) 

 𝑀𝐴𝐸 =  1

𝑛
 ∑ |𝑦𝑖 −  𝑦𝑎𝑣𝑔|𝑛

𝑖=1       (3)  

 𝑀𝑆𝐸 =  1

𝑛
 ∑ (|𝑦𝑖 −  𝑦𝑎𝑣𝑔|)

2𝑛
𝑖=1      (4)  

 
 
2.2 Gradient Boosting Regression Algorithm 

 
The following sequences were adopted to run the datasets in the gradient boosting regression 
algorithm; 
 
a) Initialize the gradient boosting regression model. 

b) Fit the training data set of both the top features/input variables and the target/output 

variables to the gradient boosting regression model. 

c) Train the model with the training set data using the gradient boosting regression 

model. 

d) Evaluate the model by fitting the test data set to the model for the bottom hole 

prediction process. 

e) Compute the accuracy of the prediction model, the mean absolute error (MAE) and the 

mean squared error (MSE). 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐼𝑛𝑝𝑢𝑡 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡

𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡
 ∗ 100    (5) 

  𝑀𝐴𝐸 =  1

𝑛
 ∑ |𝑦𝑖 −  𝑦𝑎𝑣𝑔|𝑛

𝑖=1       (6)  

 

  𝑀𝑆𝐸 =  1

𝑛
 ∑ (|𝑦𝑖 −  𝑦𝑎𝑣𝑔|)

2𝑛
𝑖=1       (7)  

 

3.0 Results and Discussions  
 

The results presented in Table 1 showed the full datasets collected from reservoirs in Volve Field 

transformed in a descriptive statistical summary generated in excel, which include the central 

tendency, dispersion, percentiles, and standard deviation as shown in the Figure 1 to Figure 16 

These statistical summary data gives the general statistical description of all the available data 

which is presented in the appendix and appeared too cumbersome or bulky to appreciate in the 

usage for the models developed and to also appreciate the extent of the normalization of these 

data. A closer look at the Table 1 from the first column which captured the well depth, counting 

from the serial number 3522, you have the mean and standard deviation of all the data in that 

column to be 5978.644 and 768.173 respectively. While the first and second quantiles of 25% 
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and 50% are 5351 and 5599, the minimum and maximum values on that column are 5351 and 

7078. The minimum values is seen to be zeros (0) in the average down-hole pressure and 

temperature, which are also recorded in average choke size, average wellhead pressure and 

temperature, as well as the average annulus pressure. As earlier stated Table 1 summarizes what 

is presented in Appendix A and also shows the statistical behavior of the datasets.  

 

 Table 1 Descriptive statistical summary 

 

Well 

Depth 

Average 

Down-hole 

Pressure 

Average 

Down-

hole 

Temp. 

Average 

Annulus 

pressure 

Average 

Choke 

Size 

Average 

Wellhead 

Pressure 

Average 

Wellhea

d Temp. 

Differential 

Pressure in 

Choke 

Count 3522 3516 3516 3509 3493 3522 3522 3522 

Mean 5978.644 251.264 103.403 18.084 60.922 48.681 77.288 20.113 

Std 768.173 22.400 5.2998 5.978 35.680 22.754 15.813 20.982 

Min 5351 0 0 0 0 0 0 0.013 

25% 5351 238.329 100.018 13.964 24.882 31.092 74.800 2.773 

50% 5599 253.1395 105.585 19.662 62.6692 39.976 81.675 10.9215 

75% 7078 265.652 106.376 22.217 100 64.5572 87.42 32.5502 

Max 7078 334.656 107.508 30.02 100 120.889 92.071 111.525 

 
 
3.2 Data Filtering and Normalization 

The data were distributed in a way that does not encourage the application of Python programing 

language algorithm and it is important to understand how the variables in these data are 

distributed. The univariate distribution of each feature is plotted as a histogram and fitted 

with a kernel density estimate (KDE) as shown in Figure 1 to 16. These normalizations 

revealed how the data are either skewed to a particular direction or abnormal in distribution. 

KDE were adopted to represent these data in density probability functions and it i s  referred 

to  as  the non-parametric way to estimate the probability density function of the variables, 

most of which in this case have distributions which are not normal, as some are bimodal and 

others skewed to the left. Hence, there is a need for the data to be normalized using data 

transformation, to enable the model to perform better. The Figures 1 to 16 showed the 

probability plots of the datasets and the normalized distribution of the datasets. These data 

make up the buildup data for the random forest regression and the gradient boosting regression 

models. 

 

 

 

 

 

 

3.2.1 Normalization of Well Depth 
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3.2.2 Normalization of Down-hole Pressure 

 
 

3.2.3 Normalization of Down-hole Temperature 

 
 
3.2.4 Normalization of Annulus Pressure 

 

 
 

3.2.5 Normalization of Choke Size 
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3.2.6 Normalization of Wellhead Pressure 

 

 
3.2.7 Normalization of Wellhead Temperature 
 

 
 

3.2.8 Normalization of Differential Pressure in Chokes 

 
3.3  The Reservoir Data Relationship 
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Heat map visualization technique helped in the analysis of relationship of variables as shown 

in Figure 17, it showed the colour ranges from -1 to +1. For better understanding of the 

relationship between the variables, with a high observation on the target variable, it is 

important that the correlation heat map be visualized. In this research, it helped to 

understand the relationship of all features with the average down-hole pressure, as there are 

negative and positive correlations with the target variable. These negative and positive 

correlations indicate an increase to increase relationship, for example, the average down-hole 

pressure relationship with the average choke size pressure is 0.11, an increase in the average 

down-hole pressure resulted in an increase in the average choke size pressure. While an 

increase to a decrease relationship between the average down-hole pressure and average 

annulus pressure is -0.19, meaning they both have an inverse relationship. A closer look at 

the heat map showed all the variables relationship either in the increasing order or decreasing 

manner. Perfectly correlated variables gave a unity value indicating an over-fitting data while 

the non-correlated variable gave zero value, the other positive or negative values as seen in 

Figure 17 were the areas of interest applied in the building of the random forest regression 

and gradient boosting regression models. The axis AB in the vertical and horizontal direction 

is the well depth, similarly, BC is the average down-hole pressure, CD is the average down-

hole temperature, DE is the average annulus pressure, EF is the average choke size pressure, 

FG is the average wellhead pressure, GH is the average wellhead temperature and HI is the 

differential pressure in choke. 
 

 

Figure 17: The Heat Map Variable Relationship of the Dataset Features 

3.4  Random Forest Regression and Gradient Boosting Regression Results 
 
The  models  predicted  future  values  of  the  average  down-hole  pressure  and  the  results  

were compared with the real value of the average down-hole pressure. 
 
Table 2: Real Values of the Bottom-hole Pressure and Predicted Bottom-hole Pressure 

 

S/N Real Values (Psi) 
Random Forest 

Regression (Psi) 

Gradient Boosting 

Regression (Psi) 

1 273.94693 273.8574452 274.509041 

2 316.01419 315.9951645 316.003403 

3 317.55131 317.7651927 317.485427 

4 277.79768 277.8411459 277.822714 

5 273.59437 273.4923454 273.278095 

6 272.29849 272.1972860 272.139310 
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7 271.56095 271.4266188 272.145176 

8 271.07159 271.4393995 271.794827 

9 270.69052 270.6281025 271.242867 

10 270.24503 270.2176104 270.047943 

11 269.99314 269.9569647 270.442691 
 

Table 3: Accuracy, MAE and MSE of the Models 
 

In Percent  values Random  Forest regression Gradient Boosting regression 

Accuracy 97.79909589 95.83176645 

Mean Absolute Error 

(MAE) 

0.00671815 0.012661687 

Mean Squared Error 

(MSE) 

0.001122985 0.002126792 

 

The results show that the models gave an accuracy of above 95percent which is a high degree 

of accuracy for use. It shows that any of the models can be used for bottom-hole pressure 

prediction. From the results compared in Table 3, the Random Forest Regression model 

gives the highest accuracy of bottom-hole pressure prediction with least Mean Absolute and 

Mean Squared Error 
 
4.0  Conclusion 

Based on the results obtained from the procedure outlined in the methodology section of this 

work the following conclusions can be drawn: 
 

a. The datasets affecting the bottom-hole pressure were fi l tered and successfully 

correlated as shown on the heat map. 

b. A Random Forest Regression model and Gradient Boosting Regression model were 

successfully developed. 

c. The bottom-hole pressures of the Volve field were successfully predicted using the 

Random Forest Regression model and Gradient Boosting Regression model and produced 

a high degree of accuracy of 95 % and above. Indicating that both models can be effectively 

deployed in predicting bottom-hole pressure having input data similar to that applied in 

this study.  

d. The Random Forest regression model was seen to be the model that performed better 

than the Gradient Boosting Regression model with a higher accuracy 97 .8% for the 

bottom-hole prediction for the reservoir and having a 0.67% and 0.11% for mean absolute 

error and mean squared error respectively. 
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Appendix 

 

Table A1: Input Datasets 

 

S/N Well 

Depth 

Average 

Downhole 

Pressure 

Average 

Downhole 

Temp 

Average 

Annulus 

pressure 

Average 

Choke 

Size 

Average 

Wellhead 

Pressure 

Average 

Wellhead 

Temp 

Differenti

al 

Pressure 

in Choke 

size 

Bore 

Oil 

Volume 

Bore 

Gas 

Volume 

Bore 

Water 

Volume 

1 7078 273.947 105.551 21.55 2.5408 94.565 55.959 66.404 190 29,120 0 

2 7078 316.014 102.196 0 0.0036 0.849 18.786 0.449 0 0 0 

3 7078 317.551 101.74 0 0 0.819 16.437 0.348 0 0 0 

4 7078 277.798 104.933 1.653 6.11618 96.496 41.019 68.441 590 88,733 0 

5 7078 273.594 105.44 17.309 9.95129 96.201 52.455 67.944 1,066 161,227 0 

6 7078 272.298 105.538 24.75 9.75875 95.512 55.184 67.258 1,060 160,270 0 

7 7078 271.561 105.585 28.259 9.88211 95.042 57.214 66.797 1,070 160,951 0 

8 7078 271.072 105.614 22.087 9.78896 94.743 58.377 66.511 1,070 160,232 0 

9 7078 270.691 105.64 22.075 9.78433 94.516 58.627 66.283 1,062 159,484 0 

10 7078 270.245 105.667 23.186 9.91491 94.298 57.726 66.063 1,074 162,197 0 

11 7078 269.993 105.695 24.284 9.8808 94.06 58.426 65.84 1,070 161,999 0 

12 7078 269.958 105.718 25.182 9.88084 93.969 58.197 65.426 1,054 160,095 0 

13 7078 269.873 105.742 26.022 9.84737 93.86 58.751 65.156 1,039 159,050 0 

14 7078 269.561 105.776 26.623 9.86483 93.555 58.551 65.221 1,051 160,116 0 

15 7078 269.412 105.803 27.543 9.7961 93.228 58.849 64.991 1,045 158,507 0 

16 7078 269.362 105.824 27.969 9.83735 93.079 57.457 64.819 1,045 158,972 0 

17 7078 267.613 105.886 23.733 9.91057 91.851 58.585 63.583 1,076 162,410 0 

18 7078 266.957 105.925 21.241 10.09222 91.445 57.518 63.179 1,089 165,357 0 

19 7078 268.022 105.907 20.317 9.78648 91.937 56.503 63.668 1,042 158,398 0 

20 7078 266.027 105.982 23.008 9.86604 90.752 60.084 62.49 1,047 158,557 59 

http://www.frontiersin.org/
http://www.researchgate.net/publication/228451484
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21 7078 266.56 105.978 23.037 9.81311 91.007 59.501 62.765 1,024 156,092 59 

22 7078 266.43 105.995 23.65 10.10168 90.856 59.891 62.611 1,050 160,103 60 

… … … … … … … … … … … … 
… … … … … … … … … … … … 
3218 5351 298.614 98.06 0.061 1.2028 0.071 0 0.126 0 0 0 

3219 5351 298.925 98.04 0.062 1.11962 0.073 0 0.154 0 0 0 

3220 5351 299.549 98.018 0.058 1.28649 0.599 0 0.337 0 0 0 
3221 5351 302.878 90.783 0.136 1.19928 16.28 0 15.997 0 0 0 

3222 5351 334.656 78.804 0 1.18873 72.136 0 71.816 0 0 0 

 


