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In this work, variational calculus was applied to the analysis of 

stresses and displacement of a rectangular plate carrying a 

uniformly distributed lateral load. A 3-D trigonometric shear 

deformation model was developed using the elastic static principle 

and applied in the coupling the 3-D kinematics and constitutive 

relations from which the total potential energy equation was 

formulated. The formulated energy equation was transformed into 

the equilibrium equation which was used to obtain the shape 

function of the plate. An exact trigonometric deflection of the plate 

which is a product of its coefficient and shape function was 

obtained analytically through the principle of general variation. 

Furthermore, the formula for calculation of the displacements and 

stresses induced due to application of a lateral load in the plate 

was obtained by the direct variation of the total potential energy 

equation to produce a reliable solution for the statically bending 

analysis of the plate. The outcome of the numerical analysis 

revealed that increase in the span-thickness ratio led to the 

decrease in the value of displacement and stresses induced in the 

plate. On the other hand, as the longest-breadth ratio of the plate 

increased, the value of the displacement and stresses in the plate 

increases. The result showed that the present model developed 

gives distinct and satisfactory solution but still followed an 

identical pattern when compared with previous studies, this shows 

the credibility of the derived relationships. The percentage error 

analysis showed that the present model stress prediction for the 

analysis proved more reliable and can be used with confidence for 

the analysis of any type of rectangular plate compared to the 

approximate or 2-D model for the given edge condition.  
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1.0. Introduction 

Plates are three-dimensional structural members having spatial dimensions along x, y, z-axes whose 

thickness is geometrically less compared to other dimensions [1-2]. They are vastly applied in 

aeronautical, naval, mechanical, Geotechnical and structural engineering for modelling water tanks, 

bridge deck slabs, turbine disks, ship hulls, retaining walls, machine parts, architectural structures 

[3-5]. Plates can be classified according to shapes such as; quadrilateral, square, circular or 

rectangular; they can be classified based on the integral constituents as homogeneous, non-

homogeneous, orthotropic, anisotropic or isotropic [6-7]. Considering boundary status, plates are 

either fixed, free or simply supported, and they can be thin, moderately thick or thick according to 

their weight [8-10].  

https://doi.org/10.5281/zenodo.8014418
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Rectangular plates a/t ≤ 20 are addressed as thick plate, while 20 ≤ a/t ≤ 50 as moderately-thick 

plates and 50 ≤ a/t ≤ 100 as thin plate, where a/t is the span-to-depth ratio [11]. There is increasing 

research interest for thick plates in engineering structures among scholars due to their pertinence 

and captivating attributes, features such as lightweight, heavy loads carrying-capacities, cost 

reduction, high mechanical properties and ability to be customized to the desired state [12]. The 

properties of thick plates can be improved with adequate perspicacity of its failure form and 

structural trait.  

The investigation on thick plates can be generally and thoroughly made through bending, vibration 

or buckling [13-15]. The deformation of plates, due to the application of lateral loads or external 

forces on the plate, at right angles towards the surface of the plate is considered as a bending 

phenomenon. Deformation extends as the induced load exceeds the critical load [16-17]. This results 

to plate failure. This study is of great essence because the bending mannerism of thick plates requires 

adequate attention to circumvent structural instability emanating from deformations and obtain an 

exact solution.  

Several theories such as the classical plate theory (CPT), refined plate theories (RPTs), and three-

dimensional theory (3-D) [18] were formulated and deployed by diverse scholars to solve the plight 

of instability arising from bending. RPTs consist of FSDT [19-20], TSDT [21-22], ESDT [23], 

PSDT [24] and HSDT [25-26]. An accurate solution for the bending of thick plates cannot be 

actualized using Kirchhoff plate theory (CPT) [27] because it neglects transverse shear effects. 

Although RPTs give a better analytical result, their solution is incomplete and inconsistent as they 

overlook the normal stress and strain along the thickness axis of the plate.  

The solutions of the 3D model are accurate and reliable as the limitations of 2D-RPT is terminated 

with the comprehensive system of fifteen governing equations which consists of material 

constitutive laws for generalized stress - strain equations, the kinematic relations for six strains and 

displacements and the three differential equations of equilibrium [28-30]. This study is needful as 

thick plate analysis a three-dimensional problem and it is advantageous as it investigates thick plates 

with SCFC support order. 

Studies on bending can be carried out numerically, analytically or using an energy approach or a 

miscellany of any [31]. In the analytical approach, the outcome of the bending issue covers the edge 

requirements of the plate in the governing equations at different positions of the plate surface. This 

method includes; Integral transforms, Eigen expansion, Naiver and Levy series [1, 32], while the 

numerical approach whose solutions are approximate [33-34], consists of; Galerkin, Collocation, 

Bubnov-Galerkin, truncated double Fourier series, Kantorovich methods, boundary element, Ritz, 

and finite difference. The energy method whose total energy is equal to the sum of strain and 

potential energy or external work on the continuum [35]; can be in an analytical or a numerical 

form. 

Unlike the preceding works, this study evaluates the deflection, shear stresses at the x-y axis, x-z 

axis and y-z axis, the normal stresses along x, y and z co-ordinates produced due to the applied load 

on the plate, as well as the in-plane displacement in the direction of x and y co-ordinates. Inexact 

solutions were obtained by past authors that employed assumed displacement-shape functions and 

others that used an exact process only applied it to the solution of the 2-D bending problem of the 

thick plate. The nature of the shape functions used during analysis matters so much to the designer 

as it affects the applicability and performance of the structure; to enhance the robustness of the 

process and at the same time ensure structural integrity and accuracy of solutions in the plate 

bending problem, a 3-D polynomial theory is required. This study also addresses this gap by 

excellently combining RPT of fourth order polynomial with a 3-D elasticity plate theory which is 

an improvement to past works and more advantageous as it can easily be employed to analyze plates 

with any boundary condition. A thick plate that is subjected to a uniformly-distributed transverse 

loads, and simply supported on one edge, free at one edge and clamped at the two other edges 

(SCFC) were evaluated herein, using a 3-D polynomial plate theory and exact polynomial 
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displacement function to determine value of displacements, moments and stresses along x, y and z 

co-ordinate at arbitrary nodes of plates. 

1.1. Review of Previous Studies 

Bi-directional bending investigation of thick isotropic plates was carried out by Bhaskar et al., [36] 

using a new inverse TSDT and a finite element solution was developed, considering the effects of 

transverse shear deflection and rotating inertia. With the application of the dynamic version of the 

virtual work principle, the dominant equations and edge conditions of the theory were obtained. 

Although their model showed precise predictions of stresses-displacements when collated with other 

RPTs, it was unable to capture thick plates with SCFC-support order, polynomial functions, and an 

analytical and 3D approach.  

Neglecting the use of shear correction elements connected with FSDTs, Sayyad and Ghugal [37], 

as well as Ghugal and Gajbhiye [38] captured the effect of shear and strain deformation in their 

bending study. The phenomenon of zero-shear transverse stresses was satisfactory. Polynomial 

displacement functions with 3D theory and SCFC plates were not considered in their assessment.  

Simply-supported plates under transverse bi-sinusoidal loads were evaluated by Mantari and Soares 

[39] using the precept of virtual work and HSDT with an assumed variation of the mechanical 

properties of the plates in the thickness axis. The authors obtained a Navier-type analytical solution 

which showed a level of accuracy compared to the previous shear deformation model. The 3D theory 

and polynomial shape functions were not applied.  Plates with SCFC edge status were not covered.  

Both trigonometric and polynomial displacement functions were employed by Onyeka and Okeke 

[40] to formulate the governing differential equation for SSFS plates. They used the direct energy 

method in their bending analysis and the deflection and stresses obtained in their study were in good 

agreement with the other RPTs. 3-D theory and SCFC plates were not encapsulated in their study.  

Mantari et al. [41] employed trigonometric functions and shear deformation plate theory to obtain 

the displacement and stresses in thick rectangular plate. The approach applied by the authors cannot 

be reliable for a thick plate analysis as they cannot give an exact solution. The authors did not apply 

3D theory, neither were polynomial functions incorporated. Plates with SSFS support status was not 

addressed in their study. An alternate refined plate model was developed by Onyeka et al., (2021) 

[42] for analyzing the effect of bending CCFC thick plates using the energy method. The authors 

obtained exact solutions as 3-D kinematic and constitutive relations were applied to formulate the 

equilibrium equations and total energy function.  The beauty of their analytical approach and 

solutions is undeniable but their model was not a blend of the polynomial RPT and the 3D plate 

theory rather a trigonometric displacement function was used. In addition, plates with SCFC edge 

status were not considered in their study.  

The spline-collocation method with two-coordinate directions and a numerical approach based on 

the 3-D theory was employed by Grigorenko et al., [43] to get the bending solutions of a thick plate. 

They determined the displacements-stresses in clamped plates. Their approach did not capture 

accurately the value for out-of-plane displacements at any given point in the plate. They did not 

cover plates with the SCFC support - condition. Onyeka et al. [1], Onyeka and Mama [44] presented 

a 3D trigonometric model for CSCS and SSSS plates respectively. The authors solved the bending 

issue of these plates using a direct variational energy approach. The solutions obtained in their study 

validate the accuracy of 3D prediction. But a combination of 2D-RPT and 3D theory with the 

polynomial function were not considered in their study. Plates with the SCFC boundary condition 

was also not addressed.   

The 3-D model was adopted by Hadi et al., [45] to examine the bending characteristics of 

functionally graded rectangular plates with variable exponential properties. The authors numerically 

expressed the impact of different functionally-graded inequality on the stress and displacement 

fields. They presented the exact solutions of the stresses-displacements and the effects of the graded-
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material’s properties on the plate’s behavior, without considering polynomial functions and SCFC 

isotropic thick rectangular plates.  

The study of the behavior of plates using non-classical elasticity theories, have gained more 

attention in recent times. Many authors have investigated nanostructures using nonlocal elasticity, 

strain gradient and nonlocal strain gradient theory. Functionally graded material has been the subject 

of concentration. 

These studies include those of Farajpour et al. [46], Rahmani et al. [47], Shishesaz et al. [48], 

Ebrahimi and Haghi [49], Hosseini et al. [50], Nejad and Hadi [51, 52], Nejad et al. [53], Farajpour 

and Rastgoo [54], Farajpour et al. [55, 56], Hosseini et al. [57], Ebrahimi and Salari [58], Ebrahimi 

and Barati [59, 60], Hadi et al. [61], Asemi and Farajpour [62]. Plate bending features was not 

considered by these authors, neither was isotropic thick SCFC rectangular plates covered. The 3D 

elasticity plate theory was also not addressed in their studies.  Antecedently, refined plate theories 

were mostly used by many scholars in the bending investigation of rectangular plates while 3D 

model was used by few authors as shown in the available literatures. The solutions obtained by those 

that employed 2D-RPTs were inexact because the stresses along the thickness axis were not 

analyzed. Previous scholars that used 3D theory unlike the present, applied polynomial 

displacement-shape functions which made their solutions inexact. This study addressed these 

research gaps and distinctively presented the coalescence of 3-D trigonometry function which was 

not seen in preceding studies. The assumed shape functions applied in prior studies birthed 

erroneous and unreliable solutions as the functions were not derived from the governing 

compatibility equation that was obtained from the first principle. Close-form solutions, safe and 

cost-effective analysis is achieved in this work as it employed exact displacement functions in the 

form of trigonometry.  

An exact bending solution for thick plates under uniformly distributed transverse loads with one 

simply supported edge, one free edge and clamped at the two outer edges (SCFC), is presented in 

this study using 3-D trigonometric plate theory. Exact trigonometric-displacement-functions were 

used to determine the variation of displacements and stresses with respect to the aspect ratio in the 

plate structure. 

2. Methodology  

2.1 Model Formulation 

         The model of this study was formulated by considering a rectangular plate in Figure 1 as a 

three-dimensional element in which the deformation exists in the three axis: length (a), width (b) 

and thickness (t). The displacement field which includes the displacements along x, y and z-axes: 

p, q and U are obtained assuming that the x-z section and y-z section, which are initially normal to 

the x-y plane before bending go off normal to the x-y plane after bending of the plate (see Figure 

1). 

 

 

 

 

 

 

 

Figure 1: Displacement of x-z (or y-z) section after bending [4] 
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2.2. Kinematics 

The kinematics of the study if formulated by taking the assumption of the plate that the x-z section 

and y-z section, is no longer normal to the x-y plane after bending. Thus, the 3-D displacement 

kinematics along x, y and z axis are obtained in line with the work of Onyeka et al. [2], as: 

𝑝 = 𝑧. ∅𝑥   (1) 

𝑞 = 𝑧. ∅𝑦 (2) 

Given that:  

𝑧 = 𝑘𝑡 (3) 

𝛽 =
a

𝑡
 (4) 

𝛾 =
b

𝑎
 

(5) 

 

Thus, the six non-dimensional coordinates strain components were derived using strain-

displacement expression according to Hooke’s law and presented in Equation (6) - (11): 

𝑥 = 
1

a
.
𝜕𝑝

𝜕𝑢
 

(6) 

𝑦 =
1

aγ
.
𝜕𝑞

𝜕𝑣
 

(7) 

𝑧 =
1

t
.
𝜕 ∪

𝜕𝑘
 

(8) 


𝑥𝑦

=
1

a
.
𝜕𝑞

𝜕𝑢
+

1

aγ
.
𝜕𝑝

𝜕𝑣
 

(9) 


𝑥𝑧

=
1

a
.
𝜕 ∪

𝜕𝑢
+

1

t
.
𝜕𝑝

𝜕𝑘
 

(10) 


𝑦𝑧

=
1

aγ
.
𝜕 ∪

𝜕𝑣
+

1

t
.
𝜕𝑞

𝜕𝑘
 

(11) 

2.3. Constitutive Relations 

The three dimensional constitutive relation for isotropic material is given as (see [65]): 

[
 
 
 
 
 
εx

εy

εz
γxz

γyz

γxy]
 
 
 
 
 

=
1

E

[
 
 
 
 
 

1 −μ −μ 0 0 0
−μ 1 −μ 0 0 0
−μ −μ 1 0 0 0

0 0 0 2(1 + μ) 0 0

0 0 0 0 2(1 + μ) 0

0 0 0 0 0 2(1 + μ)]
 
 
 
 
 

[
 
 
 
 
 
σx

σy

σz
τxz

τyz

τxy]
 
 
 
 
 

 

(12) 



 
Festus Chukwudi Onyeka / NIPES Journal of Science and Technology Research 

5(2) 2023 pp. 220-237 

225 

 

The six stress components were obtained by substituting Equations 6 to 11 into Equation 12 and 

simplifying the outcome gave: 

𝑥 = [
kt

γa
∗

𝜕∅𝑦

𝜕𝑣
+ (1 − μ) 

kt

a
∗
𝜕∅𝑥

𝜕𝑢
+ 

1

t

∗
∂ ∪

∂k
]

E

(1 + μ)(1 − 2μ)
 

(13) 

𝑦 = [𝑘t ∗
𝜕∅𝑥

𝑎𝜕𝑢
+


𝑡
∗
𝜕 ∪

𝜕𝑘
+

(1 − 𝜇)kt

𝛾𝑎

∗
𝜕∅𝑦

𝜕𝑣
]

E

(1 + μ)(1 − 2μ)
 

(14) 

𝑧 = [
𝑘t

𝛾𝑎
∗
𝜕∅𝑦

𝜕𝑣
+

(1 − 𝜇)

𝑡
∗

𝜕 ∪

𝜕𝑘
+ 𝑘t

∗
𝜕∅𝑥

𝑎𝜕𝑢
]

E

(1 + μ)(1 − 2μ)
 

(15) 

𝑥𝑦 = [
kt𝜕∅𝑦

𝑎2𝜕𝑢
∗

kt

2𝛾𝑎

𝜕∅𝑥

𝜕𝑣
]

𝐸(1 − 2)

(1 + 𝜇)(1 − 2𝜇)
  

(16) 

𝑦𝑧 = [
1

𝑎2𝛾

𝜕 ∪

𝜕𝑄
+

∅𝑦

2
]

(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
 

(17) 

𝑥𝑧 = [
1

𝑎

𝜕 ∪

2𝜕𝑢
+

∅𝑥

2
]

(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
 

(18) 

 

2.4. Formulation of Energy 

The potential energy which is the summation of all the external work done on the body of the 

material and strain energy generated due to the applied load on the plate is mathematically defined 

as: 

∄ = ∈ −∋ (19) 

Given that; 

∋ = 𝑤𝑎𝑏 ∩ ∫ ∫ ∁
1

0

1

0
𝑑𝑢 𝑑𝑣  (20) 

And; 

∈ =
𝑡𝑎𝑏

2
∫ ∫ ∫ (𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 + 𝜏𝑥𝑦𝑥𝑦

+ 𝜏𝑥𝑧𝑥𝑧
+ 𝜏𝑦𝑧𝑦𝑧

)
0.5

−0.5

1

0

1

0
𝑑𝑢 𝑑𝑣 𝑑𝑘  (21) 

Substituting Equations 22 and 25 into Equation 24 to get the energy equation as: 
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∄ =
Et3𝛾

24(1 + μ)(1 − 2μ)
∫∫[(

𝜕∅𝑦

𝜕𝑢
)

2
(1 − 2)

2
 +

1

𝛾

𝜕∅𝑥

𝜕𝑢
∗

𝜕∅𝑦

𝜕𝑣
+

(1 − 𝜇)

𝛾2
(
𝜕∅𝑦

𝜕𝑣
)

21

0

1

0

+
(1 − 𝜇)

𝑡2
∗ (

𝜕 ∪

𝜕𝑘
)
2

𝛽2 +
(1 − 2)

2𝛾2
(
𝜕∅𝑥

𝜕𝑣
)
2

+
6(1 − 2)

𝑡2
{𝑎2∅𝑥

2 + (
𝜕 ∪

𝜕𝑢
)
2

+ 𝑎2∅𝑦
2 + (

𝜕 ∪

𝜕𝑣
)
2 1

𝛾2
+ 𝑎 (

𝜕 ∪

𝜕𝑢
) 2∅𝑥

+ (
𝜕 ∪

𝜕𝑣
) 2𝑎 ∗

∅𝑦

𝛾
} + (

𝜕∅𝑥

𝜕𝑢
)
2

(1 − 𝜇)] 𝜕𝑢𝜕𝑣 − 𝑤𝛾𝑎2 ∫ ∫ ∁𝑆 𝜕𝑢𝜕𝑣 
1

0

1

0

 

(22) 

2.5. Solution to the Equilibrium Equation 

The two compatibility equations were obtained by minimizing the total potential energy functional 

with respect to rotations in x-z and in y-z plane to give: 

Et3𝛾

24(1 + μ)(1 − 2μ)
∫∫[2(1 − μ)

𝜕2∅𝑥

𝜕𝑢2
 +

𝜕2∅𝑦

𝜕𝑢𝜕𝑣
∗

1

𝛾
+

(1 − 2)

γ2

𝜕2∅𝑥

𝜕𝑣2

1

0

1

0

+ (2a2𝑠𝑥 + 2a.
𝜕 ∪

𝜕𝑢
)
6(1 − 2)

t2
] 𝜕𝑢𝜕𝑣 = 0  

(23) 

Et3𝛾

24(1 + μ)(1 − 2μ)
∫∫[

𝜕2∅𝑥

𝜕𝑢𝜕𝑣 
∗
1

𝛾
+ 2

𝜕2∅𝑦

𝜕𝑣2
∗
(1 − μ)

𝛾2
+ 2

(1 − 2)

2

𝜕2∅𝑦

𝜕𝑢2

1

0

1

0

+ (2a2∅𝑦 +
2a.

𝛾

𝜕 ∪

𝜕𝑣
)
6(1 − 2)

t2
] 𝜕𝑢𝜕𝑣 = 0 

(24) 

The solution of the equilibrium differential equation gives the characteristics trigonometric 

displacement and rotation functions as presented in the Equation 25-27 as: 

∪= [1   𝑢   𝐶𝑜𝑠 (𝑢𝑐1)  𝑆𝑖𝑛 (𝑢𝑐1)] [

𝑎0

𝑎1
𝑎2

𝑎3

] . [1   𝑣   𝐶𝑜𝑠 (𝑣𝑐1)  𝑆𝑖𝑛 (𝑣𝑐1)] [

𝑏0

𝑏1

𝑏2

𝑏3

] 

(25) 

∅𝑥 =
𝑐

𝑎
. H0. [1   𝑐1𝑆𝑖𝑛 (𝑢𝑐1)  𝑐1𝐶𝑜𝑠 (𝑢𝑐1)] [

𝑎1

𝑎2

𝑎3

] . [1   𝑣   𝐶𝑜𝑠 (𝑣𝑐1)  𝑆𝑖𝑛 (𝑣𝑐1)] [

𝑏0

𝑏1

𝑏2

𝑏3

] 

(26) 

∅𝑦 =
𝑐

𝑎β
.𝐻0. [1   𝑢   𝐶𝑜𝑠 (𝑢𝑐1)  𝑆𝑖𝑛 (𝑢𝑐1)] [

𝑎0

𝑎1
𝑎2

𝑎3

] . [1     𝑐1𝑆𝑖𝑛 (𝑣𝑐1)  𝑐1𝐶𝑜𝑠 (𝑣𝑐1)] [

𝑏1

𝑏2

𝑏3

] 

(27) 

Considering a transversely loaded rectangular thick plate whose Poisson’s ratio is 0.3 under 

uniformly distributed load as shown in the Figure 2, the derived trigonometric deflection functions 

is subjected to a SCFC boundary condition to get the particular solution of the deflection. 
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Figure 2: SCFC Rectangular Plate 

Applying the initial conditions of the plate in Figure 2, the relationship between the displacement 

and shape function of the plate as: 

 

∪ = ∁.∩   (28) 

∅𝑥 =
ℎ

𝑎
.
𝜕∁

𝜕𝑢
 

(29) 

∅𝑦 =
𝑔

𝛾𝑎
.
𝜕∁

𝜕𝑣
  

(30) 

The in trigonometric form of the shape function of the plate after satisfying the boundary conditions 

is given as: 

∁= (𝑆𝑖𝑛 𝜋𝑢). (𝐶𝑜𝑠
𝜋𝑣

2
− 1) (31) 

Substituting Equation 28, 29 and 30 into 22, gives: 

∄ =
Et3𝛾

24(1 + μ)(1 − 2μ)
[(1 − 𝜇)ℎ2𝑟𝑥  

+
1

𝛾2
[ℎ. 𝑔 +

(1 − 2)ℎ2

2
+

(1 − 2)𝑔2

2
] 𝑟𝑥𝑦 +

(1 − 𝜇)𝑔2

𝛾4
𝑟𝑦

+ 6(1 − 2)𝛽2 ([ℎ2 +∩2+ 2 ∩ ℎ]. 𝑟𝑧 +
1

𝛾2
. [𝑔2 +∩2+ 2 ∩ 𝑔]. 𝑟2𝑧)

−
2𝑞𝑎4𝑟𝑐 ∩

𝐷∗
] 

(32) 

Where: 

𝑟𝑥 = ∫∫(
𝜕2∁

𝜕𝑢2
)

21

0

1

0

𝜕𝑢𝜕𝑣 

(33) 

F 

C 

S 

C 

b 

𝑸 

𝑹 

a 

O 
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𝑟𝑥𝑦 = ∫∫(
𝜕2∁

𝜕𝑢𝜕𝑣
)

21

0

1

0

𝜕𝑢𝜕𝑣    

(34) 

𝑟𝑦 = ∫∫(
𝜕2∁

𝜕𝑣2
)

21

0

1

0

𝜕𝑢𝜕𝑣  

(35) 

𝑟𝑧 = ∫∫(
𝜕∁

𝜕𝑢
)
2

1

0

1

0

𝜕𝑢𝜕𝑣   

(36) 

𝑟2𝑧 = ∫∫(
𝜕∁

𝜕𝑣
)
2

1

0

1

0

𝜕𝑢𝜕𝑣 

(37) 

𝑟𝑐 = ∫∫∁

1

0

1

0

𝜕𝑢𝜕𝑣   

(38) 

Minimizing Equation 32 with respect to ℎ gives: 

1

2𝛾2
[𝑔 + ℎ(1 − 2)]𝑟𝑥𝑦 + ℎ𝑟𝑥(1 − 𝜇)  = −6(1 − 2)𝛽2[ℎ +∩]. 𝑟𝑧  

(39) 

Minimizing Equation 32 with respect to 𝑔 gives: 

1

2𝛾2
[ℎ + 𝑔(1 − 2)]𝑟𝑥𝑦 +

(1 − 𝜇)𝑔

𝛾4
𝑘𝑦 = +

6

𝛾2
(1 − 2)𝛽2([𝑔 +∩]. 𝑟2𝑧) 

(40) 

Re-write the Equation (39) and (40) and simplifying to give: 

ℎ =∩
(𝑘12𝑘23 − 𝑘13𝑘22)

(𝑘12𝑘12 − 𝑘11𝑘22)
 

(41) 

𝑔 =∩
(𝑘12𝑘13 − 𝑘11𝑘23)

(𝑘12𝑘12 − 𝑘11𝑘22)
 

(42) 

Where; 

𝑘11 = (1 − 𝜇)𝑟𝑥 +
1

2𝛾2
(1 − 2)𝑟𝑥𝑦 + 6(1 − 2)𝛽2𝑟𝑧 

(43) 

𝑘12 = 𝑘21 =
1

2𝛾2
𝑟𝑥𝑦;  𝑘13 = −6(1 − 2)𝛽2𝑟𝑧 

(44) 

𝑘22 =
(1 − 𝜇)

𝛾4
𝑟𝑦 +

1

2𝛾2
(1 − 2)𝑟𝑥𝑦 +

6

𝛾2
(1 − 2)𝛽2𝑟2𝑧  

(45) 

𝑘23 = 𝑘32 = −
6

𝛾2
(1 − 2)𝛽2𝑟2𝑧 

(46) 

Minimizing Equation 32 with respect to ∩ gives: 
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Et3𝛾

24(1 + μ)(1 − 2μ)
[6(1 − 2)𝛽2 ([2 ∩ +2ℎ]. 𝑟𝑧 +

1

𝛾2
. [2 ∩ +2𝑔]. 𝑟2𝑧)]

−
24𝑤𝑎4𝑟𝑐(1 + 𝜇)(1 − 2𝜇)

Et3
= 0 

(47) 

(1 − 2)𝛽2Et3𝛾

4(1 + μ)(1 − 2μ)
{[∩ + ∩

(𝑘12𝑘23 − 𝑘13𝑘22)

(𝑘12𝑘12 − 𝑘11𝑘22)
] . 𝑟𝑧

+
1

𝛽2
. [∩ + ∩

(𝑘12𝑘13 − 𝑘11𝑘23)

(𝑘12𝑘12 − 𝑘11𝑘22)
] . 𝑟2𝑧}

=
𝑤𝑎4𝑟𝑐(1 + 𝜇)(1 − 2𝜇)𝛽3

E
 

(48) 

Factorizing Equations (48) and simplifying gives: 

∩ =
2𝑞(1 + 𝜇)(1 − 2𝜇)𝛽3

𝐸
{

𝑎𝑟𝑐

(1 − 2) (
𝑎

𝑡
)
2
([1 +

(𝑘12𝑘23−𝑘13𝑘22)

(𝑘12𝑘12−𝑘11𝑘22)
] . 𝑟𝑧 +

1

𝛽2 . [1 +
(𝑘12𝑘13−𝑘11𝑘23)

(𝑘12𝑘12−𝑘11𝑘22)
] . 𝑟2𝑧)

} 
(49) 

2.6. Exact Displacement and Stress Expression 

By substituting the value of ∩ in Equation 49 into Equation 28, the deflection equation after 

satisfying the boundary condition of CSFS plate is given as: 

∪ = ∩ (𝑆𝑖𝑛 𝜋𝑢). (𝐶𝑜𝑠
𝜋𝑣

2
− 1) (50) 

Similarly, the in-plane displacement along x-axis becomes: 

𝑝

=
(𝑘12𝑘23 − 𝑘13𝑘22)

(𝑘12𝑘12 − 𝑘11𝑘22)
{

12𝑞(1 + 𝜇)(1 − 2𝜇)𝛽2𝑘𝑟𝑐

(1 − 2) (
𝑎

𝑡
)
2

([1 +
(𝑘12𝑘23−𝑘13𝑘22)

(𝑘12𝑘12−𝑘11𝑘22)
] . 𝑟𝑧 +

1

𝛽2 . [1 +
(𝑘12𝑘13−𝑘11𝑘23)

(𝑘12𝑘12−𝑘11𝑘22)
] . 𝑟2𝑧)

}
1

𝐸

𝜕∁

𝜕𝑢
 

(51) 

𝑝 =
12𝑞(1 + 𝜇)(1 − 2𝜇)𝛽2

𝐸
( 

𝑘𝑀𝑟𝑐
𝐿

)
𝜕∁

𝜕𝑢
 

(52) 

Where; 

𝐿 = 6(1 − 2)𝛽2 ([1 + ℎ]. 𝑟𝑧 +
1

𝛾2
. [1 + 𝑔]. 𝑟2𝑧) 

(53) 

𝑁 =
(𝑟12𝑟23 − 𝑟13𝑟22)

(𝑟12𝑟12 − 𝑟11𝑟22)
 

(54) 

𝑀 =
(𝑟12𝑟13 − 𝑟11𝑟23)

(𝑟12𝑟12 − 𝑟11𝑟22)
 

(55) 

Similarly, the in-plane displacement along y-axis becomes; 

𝑞 =
12𝑞(1 + 𝜇)(1 − 2𝜇)𝛽

𝐸
( 

𝑘𝑁𝑟𝑐
𝐿

)
𝜕∁

𝜕𝑣
 

(56) 
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The six stress elements after satisfying the boundary condition are presented in Equations (57) – 

(62) as: 

𝑥 =
E

(1 + μ)(1 − 2μ)
[ 
k

β
.
∂2∁

∂𝑢2
 (1 − μ) + 𝛽4 ∗

12𝑞(1 + 𝜇)(1 − 2𝜇)

𝐸
( 

𝑟𝑐
𝐿
)
∂∁

∂k

+
k

𝛾𝛽
.
∂2∁

∂𝑣2
] 

(57) 

𝑦 =
E

(1 + μ)(1 − 2μ)
[ 
k

β
.
∂2∁

∂𝑢2
+ 𝛽4 ∗

12𝑞(1 + 𝜇)(1 − 2𝜇)

𝐸
( 

𝑟𝑐
𝐿
)
∂∁

∂k

+
(1 − 𝜇)k

𝛾𝛽
.
∂2∁

∂𝑣2
] 

(58) 

𝑧 =
E

(1 + μ)(1 − 2μ)
[
k

β
.
∂2∁

∂𝑢2
+ (1 − 𝜇)𝛽4 ∗

12𝑞(1 + 𝜇)(1 − 2𝜇)

𝛽
( 

𝑟𝑐
𝐿
)
∂∁

∂k

+
k

𝛾𝛽
.
∂2∁

∂𝑣2
] 

(59) 

𝑥𝑦 =
𝐸(1 − 2)

(1 + 𝜇)(1 − 2𝜇)
. [

k

2𝛽
.
∂2𝜕∁

∂𝑢 ∂𝑣
+

𝛽2k

2𝑎𝛾
.
12𝑞(1 + 𝜇)(1 − 2𝜇)

𝐸
( 

𝑟𝑐
𝐿
)

∂2𝜕∁

∂𝑢 ∂𝑣
] 

(60) 

𝑥𝑧 =
(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
. [

1

2

∂∁

∂u
+

𝛽3

2
∗
12𝑞(1 + 𝜇)(1 − 2𝜇)

𝐸
( 

𝑟𝑐
𝐿
)
𝜕∁

𝜕𝑢
] 

(61) 

𝑦𝑧 =
(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
. [

1

2

∂∁

∂𝑣
+

𝛽3

2𝛾
∗
12𝑞(1 + 𝜇)(1 − 2𝜇)

𝐸
( 

𝑟𝑐
𝐿
)
𝜕∁

𝜕𝑣
] 

(62) 

3. Results and Discussion 

This work presents the result of displacements and stresses at span-thickness ratio of 4, 5, 10, 15, 

20, 50, 100 and CPT and aspect ratio of length-breadth aspect ratio of 1.0 and 2.0.  

The plot in Figures 3 to 4 showed that as the span-depth ratio increased, the out-of-plane 

displacements (∪) decreased positively while the in-plane displacements (p and q) increased 

negatively. Table 1 showed that the value of deflection varies more as the span-depth ratio decreases 

under the same loading capacity/condition.  Plates at a span - depth ratio between 4 and 20 can be 

regarded as thick plates while span-thickness ratio of 50 and beyond can be considered as 

moderately-thick or thin plates as they are almost equivalent to the value of the CPT. The plate 

structure tends to fail when the reductions continues to the point where the deflection exceeds the 

elastic yield stress.  

The non-dimensional parameters for the shear stresses in the in the x-y plane (τxy) increased in the 

negative order with each rise in the span - depth ratio and the shear stresses in the x-z, and y-z plane 

(τxz and τyz) reduced positively as presented in Figure 9.  In Figure 10, there was a negative increase 

for the shear stresses in the x-y plane (τxy) for a span - depth ratio of 4 to 5 and 50 to CPT, with a 

reduction in the positive sense of span-depth ratio of 10 till 20. The same chart revealed the reduction 

of shear stresses in the x-z plane (τxz) positively. It also showed a positive reduction for span-depth 

ratio of 4 to 5, a negative rise in the span - depth ratio of 10 to 20 and a positive decrease for span-

thickness ratio of 50 till CPT for shear stresses in the y-z plane (τyz).  
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The stresses perpendicular to the x and z axis (σx, and σz) decreased positively while the ones in the 

y-axis (σy) increased negatively with an increase in span-thickness ratio, as shown in Figure 6.  In 

Figure 3 to 4, the stresses perpendicular to the x-axis (σx) reduced positively while stresses 

perpendicular to the y-axis (σy) increased negatively as the span-depth ratio kept rising. Between 

span-depth ratios of 4 and 5, the normal stress in the z-plane (σz) increased negatively, dropped in 

the negative order at a span - depth ratio of 10 with a gradual negative increment till span-depth 

ratio of 20 and a constant value at span-depth ratio of 50 and beyond. The normal stresses in the x-

axis (σx), as shown in Figure 8 decreased in the positive coordinate as the span-thickness ratio 

increased, perpendicular stresses in the y-axis (σy) increased negatively from span-depth ratio of 4 

to 15 with a positive increase from span-depth of 20 to CPT. Figure 8 equally showed that stresses 

perpendicular to the z-axis (σz) dropped positively  span-depth ratio of 4 and 5, with an increase in 

the negative sense between span-depth ratio of 10 till 20, maintaining a positive value for span-

depth ratio of 50, 100 and CPT.  

It can be seen that plates whose deflection and transverse shear stress vary greatly from zero are 

considered as thick plates while thin plates can be categorized as plates whose vertical shear stress 

and deflection do not differ largely from zero; their values being almost the same as CPT values. 

Plates that lie in between the thick and thin plates are considered as moderately-thick plates. Taking 

a/t to represent the span-thickness ratio for the plate categories; 𝑎/𝑡≥40 are thin plates, 10 ≤ 𝑎/𝑡 ≤ 

40 are moderately thick plate, while 𝑎/𝑡≤ 15 are thick plates. This attestation can be applied to depict 

the boundary between thin and thick plate. From this study, it can be inferred that thick plate is one 

whose span-depth ratio value is 4 up to 10. 

 

 
 

Figure 3: Graph of displacements versus span-depth ratio of the plate at length-breadth 

ratio of 1.0 
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Figure 5: Graph of displacements versus span-depth ratio of the plate at length-breadth 

ratio of 2.0 

The result of the comparative evaluation tabulated in Table 1 and Figure 5 clearly showed the 

contrariety of this model and those of previous scholars. To validate the derived relationships in the 

deflection analysis, an assessment of the percentage difference was adopted and recorded in the 

table. As the span-depth ratio increased, it was observed that the non-dimensional values of 

deflection for both present and previous studies decreased. The table and the diagram in Figure 12 

revealed that the study of [63] varied a little from the present work while that of [64] varied much. 

The reason for these variations is that [63] employed RPT with an assumed polynomial shape 

function, while [64] applied a third-order polynomial shear deformation theory with a derived shape 

function. Significantly, both previous studies did not apply the amalgam of 3-D elasticity plate 

theory and fourth-order polynomial shear-deformation theory; a feat documented in this work.  

Table 1 and Figure 12 revealed the over-estimation and underestimation of the RPT-solutions 

obtained by previous researchers. This confirms the reliability of this model and the approach 

considered herein as it gives accurate and exact solutions. This model is worth adopting for safe, 

cost-effective and accurate analysis of thick plates of any boundary condition. The average 

percentage difference obtained in this work and [64] is 8.75%, while that of [63] is 5.67%. The 

overall percentage variation is 8.05%. This implies that the present study can be used in confidence 

as it is equivalent to those of [64] and [63] at 91.3% and 94.3% confidence level.  

Table 1: Comparative deflection analysis of square plate between present studies and past studies 

at different span-depth ratio 

𝛽 = a/t Present 

Work 

[P.W] 

Onyeka 

and Okeke 

(2020) [64] 

Gwarah 

(2019) [63] 

Percentage 

difference 

between 

[P.W] & [64] 

Percentage 

difference 

between 

[P.W] & [63] 

4 0.00407 0.004465 0.003713 9.70516 8.7715 

5 0.00340 0.003726 0.003147 9.58824 7.44118 

10 0.00253 0.002786 0.002381 10.1186 5.88933 

15 0.00238 0.002570 0.002238 7.98319 5.68966 

20 0.00232 0.002559 0.002188 10.3017 5.99119 

50 0.00227 0.002496 0.002134 9.95595 5.9292 

w
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100 0.00226 0.002487 0.002126 10.0442 5.64444 

CPT 0.00225 0.002482 0.002123 10.3111 8.7715 

Average Percentage difference 8.75 5.67 

Total Percentage difference 7.21% 

 

 

 

 
Figure 12: Comparative variation of deflection and span-depth ratios of present study and 

previous studies 

 

 

4. Conclusion 

 

A trigonometric 3-d shape function of 3-d was applied for displacements and stresses analysis of 

shear deformable plate under distributed lateral loading, from which the following conclusions were 

drawn: 

• The exact polynomial displacement functions offered close-form solution 

• The application of a 3-D plate equivalence predicts a more reliable solution considering 

various numerical comparable results and thereby recommended for accurate plate analysis. 

• The established formulas in this work can be adopted in the analysis of various categories of 

plates. 
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Nomenclature 
𝑘 non-dimensional parameters of z-axis 

𝑢 non-dimensional parameters of x-axis 

𝑣 non-dimensional parameters of y-axis 

𝑡 thickness of the plate, 

𝑝 in-plane displacement along x-axis 

𝑞 in-plane displacement along y-axis 

ℎ coefficient of shear deformation along x-axis of the plate 

𝑔 coefficient of shear deformation along y-axis of the plate 

𝜀𝑥 normal strain along x-axis 

𝜀𝑦 normal strain along y-axis 

𝜀𝑧 normal strain along z-axis 

𝛾𝑥𝑦 shear strain in the plane parallel to the x-y plane 

 𝛾𝑥𝑧 shear strain in the plane parallel to the x-z plane 

𝛾𝑦𝑧 shear strain in the plane parallel to the y-z plane 

𝜏𝑥𝑦 shear stress in the plane parallel to the x-y plane 

𝜏𝑥𝑧 shear stress in the plane parallel to the x-z plane 

𝜏𝑦𝑧 shear stress in the plane parallel to the y-z plane 

             E modulus of elasticity 

             µ Poisson’s ratio 

∄ Potential energy of the plate 

∈ Strain energy of the plate 

∋ External work done on the plate 

∁ Plate’s shape function 

𝑤 Uniformly distributed load 

∪ Deflection function of the plate 

∩ Coefficient of deflection 

∅𝑥 Coefficient of shear deformation along x-axis 

∅𝑦 Coefficient of shear deformation along y-axis 

𝑝 In-plane displacement along x-axis 

𝑞 In-plane displacement along y-axis 

𝛽 Span-thickness ratio 

𝛼 Aspect ratio 
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