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1. Introduction 
 

Over the past one hundred years, mathematics has been used to understand and predict the spread 

of diseases and relating important public health questions to the basic transmission parameters. From 

prehistory to the present day, diseases have been a source of fear and superstition. A comprehensive 

picture of diseases dynamics requires varieties of mathematical tools, from model creation to solving 

differential equations to statistical analysis [1]. Although, mathematics has been so far quite well in 

dealing with epidemiology, there is no denying of the fact that there are certain factors which still 

lack proper mathematics. Infection diseases pose a great challenge to both humans and animals 

worldwide according to [2]. Control and prevention are therefore important tasks both from humane 

and economic point of views. Efficient intervention hinges on complete understanding of disease 

transmission and persistence. Measles is an infectious disease highly contagious through person- to 

- person transmission mode, with greater than 90% secondary attack rate among susceptible persons 

as declared by [1]. It is the first and worst eruptive fever, occurring during childhood. Measles, also 

known as Rubeola that is highly infectious illness are caused by the rubeola virus. Measles is an 

endemic disease; meaning it is continually present in a community and many people develop 

resistance. If measles enters an area where the people have never been exposed to it, the result can 

be devastating. Measles symptoms invariably include fever, cough, coryza and conjunctivitis. 

Symptoms usually appear about nine to eleven days the after infection. 
 

Measles disease is caused by infection with the rubeola virus and is transmitted by the respiratory 

route; it is a highly contagious virus that lives in the nose and throat mucus of an infected person 

[3]. It is transmitted by coughing, sneezing or by direct contact with contaminated respiratory 

secretions. After an incubation time of almost two weeks, disease starts with a prodromal phase of 

fever, cough, and coryza. A few days later a generalized maculopopular skin rash appears, often in 
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combination with conjunctivitis. Measles is associated with transient but profound immuno 

suppression, resulting in an increased susceptibility to opportunistic infections. This often leads to 

complications like pneumonia, diarrhea, and otitis media, which are the most important 

determinants of measles morbidity and mortality. The disease is also associated with the induction 

of strong measles virus specific humeral and cellular immune responses, resulting in lifelong 

immunity. Measles virus can live for up to two hours in an airspace where the infected person 

coughed or sneezed. If other people breathe the contaminated air or touch the infected surface and 

then touch their eyes, noses, or mouths, they can become infected too [3]. 
 

Measles is so contagious that if one has it, ninety percent of people close to that person who are not 

immuned will also become infected. The infected person is contagious for four days before the rash 

appears, and continues for about four to five days afterwards. It often confers lifelong immunity 

from further attacks. Measles virus infects the intestinal tracts, respiratory tracts multiple organ 

systems and targets epithelial and white blood cells, including monocytes, macrophages and 

tlymphocytes. Many infected children may subsequently suffer blindness, deafness or impaired 

vision. It may cause pregnant woman to give birth prematurely, or have a low-birth-weight baby. 

Measles is an infectious disease highly contagious through person-to- person transmission mode, 

with more than ninety percent secondary attack rates among susceptible persons. It is the first and 

worst eruptive fever occurring during childhood. However, person who had measles before does not 

become infected again [3]. Worldwide, measles vaccination has been very effective, preventing an 

estimated eighty million cases and more than four million deaths annually. Although global 

incidence has been significantly reduced through vaccination, measles remains an important public 

health problem. Since vaccination coverage is not uniformly high worldwide, measles stands as the 

leading vaccine-preventable killer of children worldwide. Measles is estimated to have caused six 

hundred and fourteen thousand global deaths annually in 2002, with more than half of measles 

deaths occurring in sub-Sahara Africa [4]. Measles occurs every year in some part of Nigeria, but 

the outbreak is more severe in alternate years. The epidemic begins in the middle of the dry season, 

and declines with the onset of the wet season. In this problem of measles transmission, a 

deterministic compartmental mathematical model is used to describe the transmission dynamics. 
 

One of the earliest written description of measles as a disease was provided by an Arab physician in 

the 9th century who described differences between measles and smallpox in his medical notes. A 

Scottish physician Francis Home demonstrated in 1757 that measles was caused by an infectious 

agent present in the blood of patient. In 1954 the virus that causes measles was isolated in Boston, 

Massachusetts by John F. Enders and Thomas C. Peebles. Before measles vaccine discovery, nearly 

all children got measles by the time they were about 15 years of age [3]. Considered mathematical 

modelling on the control of measles by vaccination using S: susceptible E: exposed I: infected T: 

treated and R: recovered (SEIR) model and used it to show the control of measles by vaccination 

according to [2]. The study recommended that introduction of mass vaccination program can be 

used for improvement in early detection of measles cases to minimize transmission [5, 6]. 

Considering the recurrent infection and vaccination for the transmission of measles disease using 

the mathematical model introduced by [7]. They presented the disease free equilibrium with its 

stability. The discussion of the relation to the basic reproduction number and vaccination 

reproduction number was enumerated. The vaccination is able to prevent the disease from spreading 

from numerical examples. Rv>1 implies that the disease will persist. 
 

Infectious diseases have been of great concern to humanity for centuries with the threat of biological 

weapon whose research is lately concerned about microorganism and infectious diseases. We have 

great motivation to understand the spread and control of this disease and their 
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infectious characteristics. Therefore models are used in this research work to prevent and control 

the spread of one of the disease called measles using the five compartments known as M: immunized 

S: susceptible E: exposed I: infected T: treated and R: recovered (MSEIR) model. 
 

2. Materials and Method 
 

2.1. Mathematical Model for the Transmission Dynamics of Measles 
 

2.1.1. Model Formation and Diagram 
 

From Figure 1, the total population is divided into a non-intersecting compartments consisting of 

the M: immunized S: susceptible E: exposed I: infected T: treated and R: recovered, denoted by M, 

S, E, I, R respectively. 
 

The immunized (M) are the people who are being immunized, the susceptible (S) are people that 

have never come into contact with measles, the exposed (E) are people who have come into contact 

with the disease but are not yet fully infectious, that is they can infect but with a lower probability 

when compared with infected, The infected (I) are people who have become fully infectious and are 

able to transmit the disease from any contact with susceptible, and the recovered 

(R) are people who have recovered from the disease. 
 

The corresponding mathematical equation of the formulation of the model schematic diagram below 

can be described by a system of ordinary differential equations given as in Equations system (1-5). 
 

 

M 

 

 

 

 

 

 

 

 

(1) 
 

 

(2) 
 

 

(3) 

 
(4) 

 
(5) 

 

2.1.2. Basic assumptions of the model 
 

The following assumptions were taken into account of the model construction: 

(1) Only susceptible migrants are recruited into the population 

(2) The force of infection for fast and slow progression of measles are given as    and 

 respectively. 

(3) The human population is homogeneous and dependant on time. 

(4) Natural death rate is assumed to be equal for all subpopulation. 
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Figure 1: Formulation of the model 
 

The definitions of parameters used in the model in Figure 1 are presented in Table 1. 
 

Table 1: Definition of parameters used in the model 
Parameters Interpretation 

 

 
Per capita birth rate on new- 
borns 

 

 Rate of immunizing new-borns 

 
 Warning rate of vaccine 

 
 

Rate of recruiting susceptible 

migrants 
 

 Per capita contact rate 

 
 

 

Rate of fast progression by 

new infective 

 
 

Natural death rate 

 
 

 
Progression rate from E to I 

 
 

 

Rate of effective 

chemoprophylaxis 

 

 Progression rate from I to R 

 
 

Measles induced death rate 

 
 

Progression rate from E to R 

 

 Rate of loss immunity 
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Thus, we have; 

 

 

 

 

 

(6) 

 

 

 

 

 
 

Hence (1) to (5) becomes 
 

 

 
(7) 

 

 
(8) 

 

 
(9) 

 

 
(10) 

 

 
(11) 

 
 

2.1.3. Existence and uniqueness solution of the model 
 

To check the validity and instability of any mathematical model, we have to confirm that the system 

of equation has a solution, if it has then is the solution unique? This subsection is concerned with 

finding whether the system of equations has a solution and if the solution to the system is unique. 

Consider the following theorems 
 

• Theorem 1: 

let D denotes the region, then we have that 

,  then  and 

 
And suppose that satisfies the lipschitz condition that is 

(12) 

 

(13) 

Whenever the pair and belong to D, where is a positive constant. Then there is a 

constant such that there exist a unique continuous vector solution  of the system in the 

interval . It is important that the condition (1) - (5) is satisfied by the requirement that 

 

, is continuous and bounded in D. 

Now return to the model (1) - (5), the interest is in the region: 
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0 . Look for abounded solution in this region and whose partial derivatives  satisfies  

where and are positive constants 
 

• Theorem 2: 

Let D denotes the region , then the system (1- 5) has a unique solution is continuous 

and bounded in D. To show that  , are continuous and bounded in D. 

Equation system (1-5) is the proof of the theorems stated above; 

Proof: 

Let, 

M (14) 
 

 (15) 
 

 (16) 
 

 (17) 
 

 (18) 

 

From Equation (14), we have the partial derivatives below: 

 

 

 
(19) 

 

 

 

 

 
These partial derivatives of Equation (14) exist continuously and are bounded. Similarly from 

Equation (15), the partial derivative is as follows: 

 

 

 

 
(20) 

 

 

 

 
Similarly, from Equation (16) the partial derivatives are as follows: 
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Similarly, from Equation (17) the partial derivatives are as follow: 
 

Lastly, from Equation (18), the partial derivatives thus are: 

(21) 

 

 

 

 

 

 

 

 

 
(22) 

 

 

 

 

 

 

 

 

(23) 
 

 

 

 

 

 

As clearly shown above, the partial derivatives of the whole system (14) to (18) exist, they are finite 

and bounded as shown in Equations (19) – (23). Hence, by theorem 1, the model system (1) to (5) 

has a unique solution. 
 

2.1.4. Existence of Equilibrium Point  

The long term behaviour of the solutions of the ODEs (1) – (5) above can be examined at equilibrium 

states since the solution is independent of time. At equilibrium state, the rate of change of each 

variable is equal to zero. 

i.e.   (23) 

At any equilibrium state, let 

 

= (24) 
 

 
 

Thus gives from system of Equations (7) – (11) 

  (25) 
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(26) 

(27) 

(28) 

(29) 
 

From Equation (25) 
 

 
From Equation (29) 

 
 

 

Substituting (32) into (28) gives 

 
(30) 

 

(31) 

 
 

(33) 
 

This means that either 

Or 

 
(34) 

 

 
(35) 

Equation (35) will be greater than zero if 

  (36) 

which resulted into an equilibrium state where each of the sub-population is greater than zero. 

Therefore, the system (1)– (5) has two different equilibrium states, namely: the disease free 

equilibrium in which all the infected compartments are zero and the endemic equilibrium in which 

all the compartments are greater than zero. 
 

2.1.5. Linearization 
 

Linearization of the system (1) gives the Jacobian matrix 

 
J= (37) 

 

 
At the disease free equilibrium point ( the jacobian matrix becomes 

 
J (38) 
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The jacobian matrix (38) shall be used in the local stability analysis of both the disease free and 

endemic equilibria. 
 

2.1.6. Basic reproduction number  

The basic reproduction number,  is a measure of the number of infections produced on average, 

by an infected individual in the early stages of an epidemic, when virtually all contacts are 

susceptible when  <1, then on average, an infected individual produces less than one newly 

infected individual over the course of its infection period, and hence the infection may die out in the 

long run. If  >1, each infected individual produces on average more than one new infection, the 

infection will be able to spread in a population thus becoming endemic. To find the  of the system 

(1)  we use the next generation approach i.e. 
 

= . 

Where  spectral radius, is the matrix of new infection terms and is the matrix of transmission 

terms. 
 

Then, 

(39) 

 
And (40) 

Remark: Both and are obtained from the jacobian matrix (37) of the linearized system of the 

disease free equilibrium. 

In order to determine the matrix  recalls that 

 

(41) 

 

 

(42) 

 

 

(43) 

 
 

 

(44) 

 

 

Now find the eigenvalues by  

(45) 

 

 

(46) 

 

= (47) 

 

(48) 
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3. Results and Discussion 
 

The baseline values are presented in Table 1. 
 

Table 1 Baseline values of the parameter for the model 

Parameter Description Baseline Value 

n1 Per capital birth rate on new born 0.02755/year 
 

 Rate of immunizing new born 0.5(cell/mc) 
 

 Warning rate of vaccine 0.7/year 
 

 Rate of recruiting susceptible migrant 0.167/year 
 

 Per capital contact rate 0.09091/year 
 

 Rate of fast progression by new infective 0.125/year 

n2 Natural death rate 0.00875/year 
 

 Proportion of individuals who received a first vaccination 0.7/year 

q Proportion of individual who are vaccinated twice 0.5/year 

P1 Progression rate from E to I 0.125/year 

P2 Rate of effective chemoprophylaxis 0.096/year 
 

 Measles induced death rate 0.125/year 
 

 Progression rate from E to R 0.14286/year 
 

 Rate of loss immunity 0.25/year 

b Progression rate from I to R 0.14286/year 

 

Simulation of the Mathematical model is presented as follows: 

 

 

Figure 2: Variations in reproduction number with respect to exposure rate 
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Figure 3: Susceptible population in an outbreak versus the proportion of immunized coverage of 

both the new-borns and immigrants (phi=rho= 0.0, 0.5, 1.0) 
 

 

Figure 4: Susceptible population in an outbreak versus immunized population (theta 

=epsilon=0.0, 0.5, 1.0) 
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Figure 5: Immunized population in an outbreak versus the proportion of first dose vaccination 

(epsilon =0.0, 0.5, 1.0) 
 

 
 

 

 

Figure 6: Immunized population in an outbreak versus the proportion of second vaccination (theta 

=0.0, 0.5, 1.0) 
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Figure 7: Infected population in an outbreak versus the proportion of new born and immunized 

immigrants (phi=rho=0.0, 0.5, 1.0) 
 

 
 

 

 

Figure 8: Infected population versus immunized coverage (theta = epsilon =0.0, 0.5, 1.0) 
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Figure 9: Combined Susceptible, Immunized, Exposed, Infectious and Recovered population 

 

Figure 2 indicates that the basic reproduction number R0 is worst case scenario, it occurred when 

there is no immunizing strategy to control the epidemic, in this situation individual recovered 

naturally. The basic reproduction number R0 is at the peak, this implied that there was a high increase 

in reproduction number with respect to exposure rate and such increase results in the outbreak of 

measles in the community. The middle graph Rm, from the same Figure1 shows effect of 

immunizing immigrants and new-borns there by leaving away only the susceptible population. The 

best case scenario occurred at graph RL from the same Figure1, where vaccination was offered to 

new-borns, immigrants and the susceptible adults, it was observed that RL has the least value of 

increase in reproduction number with respect to exposure rate, which implied that measles can be 

eradicated from the community if immunization policies was seriously targeted to a large 

population. Figure 3 shows that the increase in immunized coverage to both the new-borns and 

immigrants leads to reduction in the susceptible population and therefore reducing the risk of an 

outbreak. Figure 4 Indicates that when immunization programmes were effectively implemented to 

the population, it may reach a stage that the disease fail to erupt since there are very few susceptible 

individuals to infect. Figure 5 shows that the number of immunized individuals increases by offering 

first dose of vaccine to susceptible individuals in the population and therefore reducing the number 

of susceptible adults and children in the population. Figure 6 shows that provision of second dose 

of vaccine increases the number of individuals who cannot be infected by the disease. Figure 7 

showed that if more new born and immigrants are been immunized then, the probability of 

individuals to be infected with the disease becomes very small and this could lead to the disease to 

die out in a population. Figure 8 showed that the population of infected individuals decreases with 

an increase in immunized coverage. This is also attributed with the fact that less people will be 

susceptible as they will be immune to the disease. Figure 9 showed 
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that the model provided the illustration for control and elimination of the transmission dynamics of 

measles. It can be observed that recovered individual can be increased by increasing immunization 

and consequently reducing the susceptible and infectious individuals. 
 

A model was constructed for the transmission dynamics of measles, individuals were categories into 

five compartments the immunized, susceptible, exposed, infectious and recovered. It was found that 

they are asymptotically stable since  i.e the epidemiological implication of the system was 

that the disease can be controlled in the population if the initial sizes of the subpopulation of the 

model are in the basin of attraction of the disease free equilibrium. Since the production number is 

defined as the number of secondary cases generated by an infectious individual, Hence the model 

establish that if the rate of contact between the infectious and susceptible as well as some factors 

explained to have been the cause of spread of measles are maintained and carefully looked into, then 

asymptotical stability of the problem shall always be obtained otherwise there would be endemic 

(Persistent of the disease in a population). 
 

Considering the mathematical modelling on the control of measles by vaccination using S: 

susceptible E: exposed I: infected T: treated and R: recovered (SEIR) model by [2]. Their study 

recommended the introduction of mass vaccination programme and improvement in early detection 

of measles cases to minimize transmission.While this study used the five compartments known as 

M: immunized S: susceptible E: exposed I: infected T: treated and R: recovered (MSEIR) model for 

prevention and control of the disease called measles and the disease cannot persist in the population. 

In addition, Figure 9 showed that the model provided the illustration for control and elimination of 

the transmission dynamics of measles. It can be observed that recovered individual can be increased 

by increasing immunization and consequently reducing the susceptible and infectious individuals. 
 

4. Conclusion 
 

It is observed that the model has shown significance of measles vaccination in controlling and 

preventing transmission within a population. The model pinpoint that the spread of a disease greatly 

depend on the contact rate with infected individuals within a population. It is also realized that the 

proportion of the population that is immune exceeded the herd immunity level of measles. Therefore 

the disease cannot persist in the population. 
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