

NIPES Journal of Science and Technology Research 4(4) 2022 pp.40 – 56 pISSN-2682-5821, eISSN-2682-5821

40

Oil Palm Plantation Detection in Satellite Image Using Deep Learning

1Fidelis Odinma Chete and 1Vincent Akinwande

1Department of Computer Science, University of Benin, Benin City

Article Info Abstract

Keywords:

Computerized Mapping,

Convolutional Neural Network,

Deep Learning, Oil Palm, Satellite

Imagery

The traditional approach, such as manual surveys, used by farmers and

governments to detect where oil palms are planted has proven to be

ineffective, tedious and time consuming. This problem can be

addressed if images obtained from satellites can be used to scan

through the forest to detect oil palm plantations. In this paper, we

developed a web based deep learning system that is capable of

processing a satellite image of land to detect the presence of oil palm

plantations in Nigeria using high-resolution satellite imagery. This

research designed a detection system which uses a convolutional

neural network to extricate important features, and a classifier trained

using satellite images. Results showed exceptional effectiveness with

a training loss of 0.11 and an accuracy of 99.0%. Utilizing different

images for validation taken from diverse elevations, the model

reached a training loss of 0.245 and an accuracy of 82.9999% on

validation data, while on test data we got 1.59 in loss and an accuracy

of 87.5%. Thus, the proposed approach is seemingly effective within

the field of precision agriculture.

Received 4 July 2022

Revised 5 October 2022

Accepted 8 October 2022

Available online 3 Dec. 2022

https://doi.org/10.5281/zenodo.7393401

ISSN-2682-5821/© 2022 NIPES Pub.

All rights reserved.

1. Introduction

Oil palms are valuable and play an important role in the economies of some countries [1]. It is one

of the most rapidly expanding crops in tropical regions due to its high economic value [2]. The oil

palm industry is a dynamic sector due to the breadth of uses of palm oil produced from palm trees.

The uses range from cooking to cleaning products, special greases and lubricants, personal hygiene

and cosmetics, production of biodiesel and electrical energy [1]. Additional uses as submitted by

[3] include the production of cooking oil, food additives, cosmetics, industrial lubricants, and

biofuels. Historically, agriculture was the backbone of the Nigerian economy amid the pre-colonial

and the colonial period and Nigeria was a driving exporter of palm kernel, and biggest producer and

exporter of palm oil [4]. Given that the cultivation and harvesting of palm oil has its major

advantages in Nigeria, it also comes with excessive problem of deforestation when demand is in

very large quantities. According to a study by [4], expansion of oil palm as the major driver of forest

loss in Cross River State is having strong negative impacts on biodiversity and the livelihoods of

local communities. Since plantations require the clearing of timberlands, which occurs within the

adjustment and debasement of the environment, residents in the communities are then impoverished

due to the loss of a forest as a source of income, land, social and cultural values [4]. To reduce the

negative effects of numerous oil palm plantations, the rights and welfare of individuals must be

prioritized in the quest for economic improvement. To achieve this, we leverage on the increasing

use of Artificial Intelligence (AI) models for image analysis such as deep learning, which has

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

41

attracted the attention of analysts and researchers. A deep learning application is one in which an

algorithm is trained to automatically recognize an object (in this case the presence of oil palm in a

satellite image), the result of this system can then be used for further analysis and planning like

determining the appropriate location to cultivate oil palm. This study develops a web based deep

learning system that is capable of processing a satellite image of land and running computation on

it to detect the presence of oil palm plantations. The main objectives of this study include:(i) to

gather data related to lands containing oil palm and those that don’t have (ii) to create a neural

networks model that is capable of predicting the presence of oil palm in an image with great accuracy

and without over-fitting and convert results such as predictions and accuracy score into a form of

Rest API that would be fed to a web application (iii) to connect the Rest API to a postman front end

that can collect satellite data from users, send the data to the backend, and display the results in a

presentable form.

The developed system can be used to detect the areas of land that contain oil palm and the ones that

don’t. The implementation of the system can help in solving the problem of deforestation and the

negative impact it has on the environment and the people. The system may, however, contain some

limitations and defects as it is a prototype. There are 195 countries in the world and each country

has different states which also have different conditions that can in turn have effects on the satellite

imagery. Consequently, regions, states and countries can have different variations of images with

oil palm oil present or absent. All these variations can simply not be covered in this study; thus the

scope of this study is limited to satellite imagery obtained from Kaggle, an online platform that

allows users to find and publish data sets, explore and build models in a web-based data-science

environment.

1.1 Related Work

Using high-resolution remote sensing images for Malaysia [5] proposed the first deep learning-

based framework for oil palm tree detection and counting. The researchers used a number of

manually interpreted samples to train and optimize the convolutional neural network (CNN), and

predict labels for all the samples in an image dataset collected through the sliding window technique.

The method achieved a detection accuracy of 96% in a pure oil palm plantation area in Malaysia.

[6] proposed a two-stage convolutional neural network (TS-CNN)-based oil palm detection method

using high-resolution satellite images (i.e. Quickbird) in a large-scale study area located in the south

of Malaysia. The TS-CNN consists of one CNN for land cover classification and one CNN for object

classification. The two CNNs were trained and optimized independently based on 20,000 samples,

in four classes, collected through human interpretation. The approach achieved a much higher

average F1-score of 94.99% in the study

area compared with existing oil palm detection methods (87.95%, 81.80%, 80.61%, and 78.35%

for single-stage CNN, Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural

Network (ANN), respectively.

In a study by [7], an automatic end-to-end method based on deep learning (DL), for the detection

and counting of oil palm trees from images obtained from unmanned aerial vehicle (UAV) drone

was proposed. In the study, the acquired images were first cropped and sampled into small size of

sub-images, which were then divided into a training set, a validation set, and a testing set. The study

employed a DL algorithm based on Faster-RCNN to build the model, extracted features from the

images and identified the oil palm trees, and gave information on the respective locations.

Thereafter, the model was trained and used to detect individual oil palm tree based on data from

the testing set. The research then measured the overall accuracy of oil palm tree detection from

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

42

three different sites. The results revealed 97.06%, 96.58%, and 97.79% correct oil palm detection.

Based on these results, the study concluded that the proposed method is more effective, accurate in

detection, and correctly counts the number of oil palm trees from the UAV images.

[8], in a study to detect young and mature oil palm, utilized two different convolution neural

networks (CNNs) and also GIS during data processing and result storage process. The researchers

exported prediction results to GIS software and created oil palm prediction map for mature and

young oil palm. The results gave the accuracies for young and mature oil palm as 95.11% and

92.96%, respectively. The study concluded that the classifier performed well on previously unseen

datasets, and was able to accurately detect oil palm from background.

In this research, we developed a web based deep learning system that is capable of processing a

satellite image of land and running a computation on it to detect the presence of oil palm plantations.

 2. Methodology

 The image data would be gotten from the user through the desktop application platform provided

using postman, which then transfers the data to the backend/ML model that computes for the

presence of oil palm in the image and the accuracy level of such prediction. This research intends

to utilize three tools in the development process. First, Pytorch, a deep learning framework for

python will be used to train the model. The second is Flask, a python library that can be used for

both back-end/frontend tasks. In this study, this library will be used to convert the results of the

model to a Rest API format. Lastly, Postman, a collaboration platform for API development, will

be utilized to provide a form-like platform for the user of the system to get data, send the data to the

back end service and display the results.

2.1. Systems Analysis and Design

One of the easiest ways to locate oil palm is to manually mark the oil palm in the picture or use GPS

to conduct a field survey to determine the location of the oil palm and display their location in the

picture. However, where there are many oil palm plantations, which may be very large, and contain

more than 1,000 oil palm trees, manual inspections and on-site inspections may be, tedious, time-

consuming and costly. This is where remote sensing methods come into play. This work focuses on

using high-resolution satellite images to identify and recognize oil palm images.

 2.2. Proposed System

The proposed system performs high level land cover classification on images obtained from

satellites. In general, the classification of land cover is carried out by classifying pixels of similar

attribute/value depending on the used classifier. Thereafter, each pixel is assigned with a specific

class across the image. This process is referred to as a pixel-based classification approach.

Additionally, merging pixels with similar value results in regions of multiple scales to be clustered

and classified based on its texture, context, and geometry [9]. Once the model training phase of the

system is completed, the model can then be tested easily using series of images, sequential or in

random order to determine if oil palm trees are present or not. Since each image fed to the model

will be treated as independent images, the order would not matter and this is also an extra advantage

given that training on initial size of the satellite of the image data would be computationally

expensive; consequently we divided the images into parts, labeled them and trained independently,

so even if a section of the divided image is missing it will still be able to detect the presence of oil

palm. To aid the easy accessibility of this system, an Application Programmable Interface (API)

was utilized; thus anyone can easily use the program in their existing software or in software they

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

43

are currently building, and accessing it is as easy as just calling a line of code and passing the

appropriate image parameter to it.

 2.3. Data Collection

The dataset used for this study was obtained from Kaggle, an online platform for machine learning

engineers, deep learning engineers, data scientists, data engineers and the likes. Kaggle's online

platform created a competition that was intended to create a model that predicts the presence of oil

palm plantations in satellite imagery, making available about 20,000 labeled satellite images from

various locations. The dataset images are 3-meter spatial resolution and each is labeled with whether

an oil palm plantation appears in the image or not (0 for no plantation, 1 for any presence of a

plantation). Figure 1 depicts an image that contains oil palm plantation. Figure 2 shows an image

that does not contain oil palm plantations.

Figure 1: Sample of dataset with oil palm plantation.

(Source: https://www.kaggle.com/c/widsdatathon2019/data)

Figure2: Sample of dataset without oil palm plantation (Source:

https://www.kaggle.com/c/widsdatathon2019/data)

 2.4. Data Annotation

In deep learning, data annotation can be referred to as all the processes involved in assigning a class

to an object or a data instance. This process is very important because it is the steps that determine

the exact features the model is expected to learn. A well labeled dataset can bring about a very

accurate model. In this work, the datasets was gotten from Kaggle and the classes for each image

instance were already assigned. There are two major classes viz: the first is the class of images that

has oil palm present in them, while the second class has no oil palm present in them. To distinguish

between the two classes, we have a ‘csv’ format file that contains references to both classes. This

https://www.kaggle.com/c/widsdatathon2019/data
https://www.kaggle.com/c/widsdatathon2019/data

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

44

file has both the reference to the images and label of the images. Each row in the ‘csv’ file is what

would be used as a form of reference to the real images during the training and validation process.

Table 1 depicts a dataset where a class (0 or 1) and score (0 - 1) is assigned to each image data.

Table1: Sample of dataset annotation in `csv` format

(Source:https://www.kaggle.com/c/widsdatathon2019/data)

IMAGE_ID HAS_OIL

PALM

SCORE

img_000002017.jpg 0 0.7895

img_002012017.jpg 1 1

img_000022017.jpg 0 1

img_000072017.jpg 0 1

img_002232017.jpg 1 1

img_000092017.jpg 0 1

 2.5. Data Splitting

The process in ML in which models are trained on all the available datasets, resulting in an accurate

model that works great only on those datasets but not on other data is called over fitting. This is a

very common problem in ML which is better avoided; one way to solve it is through data splitting.

The concept behind data spitting is: we hold some part of the dataset by splitting it into different

ratios, one part that would be used during training (training dataset), another part for testing as we

train (testing dataset) and a final part for testing when training is done (validation dataset). In this

study, we split the datasets into three parts as follows: 80% for the training dataset, 10% for testing

dataset while the last 10% goes to the validation dataset.

 2.6. Data Augmentation

In deep learning, when solving for a computer vision task, amongst lots of preprocessing that could

be done to a data before training or testing, data augmentation is a very handy tool or preprocessing

step to have as it helps create a stronger model [10]. It is worth noting that while data augmentation

can be performed both in the training phase, testing phase and validation phase of a model, it is

mostly used mainly in the training phase as the testing phase experiences the use of totally different

and new datasets. Data Augmentation can range from just a few pixels shifting to rotating the image

to changing the color space to flipping the image horizontally or vertically or randomly cropping

some parts of the image. For this study, the process of the data augmentation is as follows: We used

popular operations for Data Augmentation in frameworks (like pytorch or tensorflow) such as

random image crop, random vertical flip, random horizontal flip, color jitter, random rotation, etc.

Randomly cropping and image helps hide some aspects in the data while expecting the model to

adapt and learn the important feature from the newly augmented image. Vertical Flip is the process

of reversing the active layers of the image in the vertical direction; that is, from top to bottom but

leaves the dimensions of the layer and the pixel information of the layer unchanged. Horizontal flip

is the process of reversing the active layers of the image in the horizontal direction that is, from left

to right but leaves the dimensions of the layer and the pixel information of the layer unchanged.

When applying Data augmentation to an image, it needs to retain its image format but for other

https://www.kaggle.com/c/widsdatathon2019/data

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

45

transformation steps like normalization, we first need to convert the image or augmented image into

tensor. Tensor can generally be thought of as a vector or matrix and can easily be understood as a

multidimensional array. Thus, converting an image to tensor simply means representing the image

pixel with numerical values that can be manipulated using algebraic operations and can also have

matrix operations executed on them. Since this is a required step before some operators like

normalization can occur, this step comes first both in the training phase as well as the testing phase.

When images are converted into tensors, they assume a range of values between 0 and 255, these

values are then scaled to have a range of 0 - 1, this method is done using the equation given as

follows:

𝒙′ =
(𝒙−𝒙_𝒎𝒊𝒏)

(𝒙_𝒎𝒂𝒙−𝒙_𝒎𝒊𝒏)
 ………………... (1) (https://stackoverflow.com/)

where x′ is the new value and x is the input value. Ideally you would normalize values between [0,

1] then standardize by calculating the mean and std of your whole training set and applying it to all

datasets (training, validation and test set) (https://stackoverflow.com/) .

After the Normalization is done, after the scaling process, we then normalize (standardize), for

instance with the z-score, which makes mean(x') =0 and std (x') =1:

mean, std = x.mean(), x.std() which then gives

𝒛 =
(𝒙−𝒎𝒆𝒂𝒏)

𝒔𝒕𝒅
 ………………… (2) (https://stackoverflow.com/)

In this research, the mean value and standard deviation value were made constant at 0.5

(https://stackoverflow.com/), this helps convert the range from [(0) - (1)] to [(-1) - (1)] .

The reason for normalization in a deep learning research is because normalization helps the network

converge faster.

 2.7. Algorithm

The algorithm chosen for this system is the Deep Convolutional Neural Network (DCNN)

algorithm. It is a deep learning algorithm and though difficult to interpret, has an edge over other

similar algorithms on accuracy [11], for the type of data we wish to model

2.8. Feed Forward

After completing the setup of the model (either a simple neural network or a DCNN) and after

completing the preprocessing of the dataset, the next step involved is the training step. To aid this,

a concept called feed forward is used. Feed forward is the process by which processed data is fed

into the network to mathematically compute the output from the network using weights and bias.

This can be done using various forms of matrix operations like matrix multiplication, matrix

addition, transpose etc. In this study, while training the proposed DCNN, 80% of the complete

dataset went through an iterative process of the feed forward step where we continually aimed to

get the output for each data and comparing it with the target to obtain the loss or error made by the

current weights and bias in the network.

https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

46

2.9. Loss Function

The Loss Function is a very important component in building a model using Neural Networks. Loss

is an error in prediction made by the model and the method to calculate the loss is called Loss

Function. In simple words, the Loss is used to calculate the gradients and in turn, we use the

gradients to update the weights and biases of the model. There are various methods used when it

comes to calculating the loss of a network or model. We have mean square error, binary cross

entropy, categorical cross entropy, sparse categorical cross entropy etc. In this study, binary cross

entropy was used because the output from the model is a binary result; it is either a zero (0) or a one

(1).

 2.10. Backpropagation

The real ability for a neural network to learn comes from a correctly implemented backpropagation

algorithm. It can be considered to be the method of fine-tuning the weights of a neural network

based on the error rate or gradients obtained in the previous epoch or iteration in the training step.

The aim is to properly tune the weights and biases so as to reduce error rates and make the model

reliable by increasing its generalization.

 2.11. Deep Learning Architecture

ResNet (Residual Network) is an innovative neural network deep learning model that was first

introduced by [12]. The Deep learning architecture used to train the model is the pre-trained Resnet-

50 from the pytorch model zoo which is an implementation of the ResNet-50 model from the

research by [12]. ResNet50 is a state of the art network that combines convolutional and recurrent

components to capitalize on the spatial regularity of natural images and effectively learn the optimal

depth of the network ([12] as cited in [13]). Figure 3 shows the Resnet Architecture as given by

[14].

Figure 3: Resnet Architecture [14]

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

47

2.12. General System Architecture

Figure 4 shows the general system architecture of the proposed system.

Figure 4: General System Architecture of Proposed System

The system architecture is connected in such a way that data comes into the system from the database

into the data processing section where the output is divided into Train, Test and Validation dataset.

These datasets then flow into the Deep learning architecture where training and testing takes place.

If the results obtained from the deep learning model are satisfactory, the resultant model then flows

into the rest API section which other devices can test from.

3. Implementation and Testing

3.1. Model Training

 Considering the nature of this study, a proper modularization approach was taken in writing the

code; at each level we made proper use of the class based approach of programming, creating mini

backbones to be fed into the bigger system. The important modules and program files in this

research are as follows: (i) Main.py python file (ii) Model.py python file (iii) Process.py python

file (iv) Model.ckpt checkpoint

 3.1.1 Main.Py (Training)

This is a high level file abstraction, where only the needed functions are made available to the user

of the system. It basically contains how to train the model using major classes and backbone

classes from program modules or files like `model.py` and `process.py`. To use this file a terminal

based interaction is made available in vscode (one of the required softwares), where we can run

the program to train the model using the command `python3 main.py` (this uses all the default set

hyperparameters) or we can use the command `python3 main.py -h` to read the documentation on

how to change default parameters. Figure 5 shows the libraries imported in the main.py program

file.

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

48

Figure 5: Importing required libraries in the main.py program. (Source: screenshot from main.py

program file)

Figure 6 shows how input parameters sent to the main.py program file are handled.

Figure 6: Parameters sent for processing in the main.py program. (Source: screenshot from

main.py program file)

Figure 7 shows abstraction of the `PalmOilLightningClassifier` class used for model training in

main.py program.

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

49

Figure 7: Abstraction of the `PalmOilLightningClassifier`class used for model training in main.py

program (Source: screenshot from main.py program file).

Figure 8 shows abstraction of the `PalmOilDataSetModule` class used for getting dataset during

training in main.py program.

Figure 8: Abstraction of the `PalmOilDataSetModule` class used for getting dataset during

training in main.py program (Source: screenshot from main.py program file)

Figure 9 shows model training using the main.py program.

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

50

Figure 9: Model training using main.py program (Source: screenshot from main.py program file)

3.1.2 Model.Py

The architecture used to train the model was built on top of the famous Resnet architecture and

every other preprocessing done to fine-tune the structure of the Resnet architecture sits in this

program file. In this program file, all the rules and steps involved in the model training were defined

and includes: splitting functionalities by abstracting out the model’s structure into a backbone class

called `ResnetBackbone` that contains the main pytorch based model architecture, a model system

architecture called `PalmOilLightningClassifier` that takes the model backbone as a parameter in

the training process, what the model should do while training, testing or validating the

backbone.Figure 10 shows model backbone in model.py program.

Figure 10: model backbone in model.py program (Source: screenshot from model.py program

file)

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

51

Figure 11 shows the model system architecture in model.py program.

Figure 11: model system architecture in model.py program (Source: screenshot from model.py

program file)

3.1.3 Process.Py

This study used a great deal of programming modularization by having the data section entirely

detached from the main program. The data section was designed in such a way that data can be

loaded as a group or individually and also to account for training data, testing data and validation

data that are used by the model. It was also implemented in such a way that data can be displayed

individually and randomly taking into account that preprocessing results should be visualized. All

this functionalities packed so that we have two separate python classes to manage the whole process

viz: the `Oil PalmDataSetBackbone` that defines the basic structure of the dataset such as how to

get the data, how to display data with preprocessing, checking for missing data, saving data and

handling missing data. To complement this class, we also have one other python class

`OilPalmDataSetModule` class which takes care of every other function that deals with

downloading the dataset, splitting into, train, test, validate and load up for the model system to use.

Figure 12 shows the OilPalm Dataset backbone in the process.py program.

Figure 12: Oil Palm Dataset backbone in process.py program (Source: screenshot from process.py

program file)

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

52

Figure 13 shows the OilPalm Dataset system structure in the process.py program.

Figure 13: OilPalm Dataset system structure in process.py program (Source: screenshot from

process.py program file)

 3.1.4 Model.Ckpt

For Inference, the weight and parameters of a trained model are saved for later use. In this study,

the weight and parameters of the model was saved if the results from the current training step is

better than the result from the previous steps. Figure 14 shows the saved models after training.

Figure 14: Saved models (Source: screenshot from models folder in the program)

3.2 Model Testing

Model testing is a process that involves checking if the model is not over-fitting. This process tests

for the general model performance in three (3) phases viz: (i) testing done during the training phase:

data used here is a separate dataset from the training data. (ii) testing done during the testing phase,

also called the validation phase: data used here is also different from the data used to train and data

used to test during the training phase. (iii) the last phase is the API stage where we convert the model

into an API and other users can have access to it.

 3.2.1 Test.Py

This is the program file used to test the model’s performance after which training is completed. To

test this file a terminal based interaction is made available in vscode (one of the required softwares)

where we can run the program to train the model using the command `python3 test.py` (This uses

all the default set hyperparameters), or we can use the command `python3 test.py -h` to read the

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

53

documentation on how to change default parameters. Figure 15 shows the model during testing via

terminal.

Figure 15: Model during testing via terminal. (Source: screenshot from test.py program file)

Figure 16 shows the model result after testing via terminal.

Figure 16: Model result after testing via terminal. (Source: screenshot from test.py program file)

The results of the test is depicted in Table 2.

Table 2. Test results

Dataset Loss Accuracy (%) Prediction

Threshold (%)

Train data 0.11 99.0 15

Test data 0.245 82.9999 15

Validation data 1.59 72.5000 15

Validation data 1.59 87.5 10

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

54

3.2.2 App.Py (Api)

To create the API that will enable other users connect to the model with, a flask framework was

utilized. To develop this API application, we have the `OiPalmlDetector` class that handles the

post request from the user to predict the presence of oil palm plantation in an image. We also have

the ml_model folder where the model that has gone through the validation phase is placed for the

API use. To run the API we only needed to run `python app.py` in the API folder. Figure 17

shows the App.py program file.

Figure 17 App.py program file. (Source: screenshot from app.py program file in the API section)

Figure 18 shows the folder containing Tested models.

Figure 18: Folder containing Tested models (Source: screenshot from ml_model folder in the

API section).

Figure 19 shows the process of deploying the API on a local machine.

Figure 19: Deploying API on a local machine. (Source: screenshot from app.py program file in

the API section)

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

55

 3.2.3 Postman Form

To test the model, postman was used. Testing was done by running a post request in the postman

application while sending the required image parameter along with the request. Figure 20 shows

the one of the Images sent to API via postman.

Figure 20: Image sent to API via postman. (Source: screenshot from dataset folder)

Figure 21 shows the prediction result of 1 and prediction confidence of 28.38% obtained from the

model during testing via postman.

Figure 21: Prediction result of 1 and prediction confidence of 28.38% obtained from the model

(Source: screenshot from postman running on the local machine)

4. Conclusion

This research used a deep learning model to develop a system that can accurately predict the

presence of oil palm plantations using satellite images. In the different data gathering process of the

study, despite the large collection of data gotten, there was still a huge difference between the

prediction score from the model and the prediction score from the data label. We found that the

model could predict the correct label, but most times with low prediction score. To address that

Fidelis Odinma Chete and Vincent Akinwande/ NIPES Journal of Science and Technology Research

4(4) 2022 pp. 40-56

56

problem, the prediction threshold used in assigning classes in the system was reduced to 15%. This

enabled us to correctly predict the class we are interested in without any major loss in accuracy; in

fact a major increase in accuracy was experienced when threshold was dropped to 10%. It is

important to remark that almost all deep learning development is a multiple iteration process that is

aimed at fine tuning the model with variation in dataset, having each iteration experience new data

from time to time, and thus resulting in the accomplishment of a more accurate and robust system.

The study is a prototype of what could be a working system if adopted in Nigeria. However, since

datasets for research in the oil palm area in Nigeria were not readily available at the time of carrying

out this study, this research used dataset obtained from Kaggle, an online platform that allows users

to find and publish data sets, explore and build models in a web-based data-science environment. It

is hoped that further studies can be localized to solve the specific problems faced in Nigeria.

References
[1] I. Bonet, F. Caraffini, A. Pena, A. Puert, and M. Gongora (2020). “Oil palm detection via deep transfer

learning.” IEEE Congress on Evolutionary Computation (CEC), pp. 1-8

[2] Y. Cheng, L. Yu, Y. Xu, H. Lu, A.P. Cracknell, K. Kanniah and P. Gong (2018). ”Mapping oil palm extent

in Malaysia using ALOS-2 PALSAR-2 data”. Int. J. Remote Sens. 39, 432–452.

[3] P. K. Lian and D. S. Wilcove (2007).” Cashing in palm oil for conservation”. Nature 448, 993–4.

[4] G. U. Ojo, R. A. Offiong, S. Odion-Akhaine, A. Baiyewu-Teru, and F. Allen (2017) .” Oil palm plantations

in forest landscapes: impacts, aspirations and ways forward in Nigeria”. Wageningen, the Netherlands:

Tropenbos International. 2017.

[5] W. Li, H. Fu, L.Yu and A. Cracknell (2016). “A deep learning based oil palm tree detection and counting for

high resolution remote sensing images”. Remote Sens. 9, 22.

[6] W. Li, R. Dong, H. Fu and L.Yu (2019). “Large-scale oil palm tree detection from high-resolution satellite

images using two-stage convolutional neural networks”. Remote Sensing, 2019, 11(1): 11.

[7] L. Xinni, H. G. Kamarul, H. Fengrong and I. M. Izzeldin (2021). “Automatic Detection of Oil Palm Tree

from UAV Images Based on the Deep Learning Method”. Applied Artificial Intelligence, 35(1), 13-24.

[8] N. A. Mubin, E. Nadarajoo, H. Z. M Shafri and A. Hamedianfar (2019). “Young and mature oil palm tree

detection and counting using convolutional neural network deep learning method”. International journal of

remote sensing, 40(19),7500-7515

[9] T. Blaschke(2010) “Object based image analysis for remote sensing”. ISPRS journal of photogrammetry and

remote sensing, 65(1), 2-16.

[10] S. Chen, E. Dobriban and J. H. Lee (2020). “A group-theoretic framework for data augmentation”. Journal of

Machine Learning Research, 21(245), 1-71

[11] X. Yang, Z. Zeng, S. G. Teo L. Wang, V. Chandrasekhar and S. Hoi (2018). “Deep learning for

practical image recognition: Case study on kaggle competitions”. Proceedings of the 24th ACM SIGKDD

international conference on knowledge discovery & data mining, pp 923-931

[12] K. He, X. Zhang, S. Ren and J. Sun (2016). ” Deep Residual Learning for Image Recognition”. In Proceedings

of the 2016 IEEE conference on computer vision and pattern recognition, pp 770-778,

doi:10.1109/CVPR.2016.90

[13] M. Hamilton, S. Raghunathan, A. Annavajhala, D. Kirsanov, E. De Leon, E. Barzilay, I. Matiach,

J. Davison, M. Busch, M. Oprescu, R. Sur, R. Astala, T. Wen and C. Park (2017). “Flexible and Scalable

Deep Learning with MMLSpark” . Journal of Machine Learning Research, 1-48. Retrieved September 12,

2022 from: https://www.researchgate.net/figure/Schematic-overview-of-basic-transfer-learning-algorithm-

We-use-ResNet50-and-truncate-the_fig3_324472161

[14] V. Feng (2017). “An Overview of ResNet and its Variants. Towards Data Science”. Retrieved September 12,

2022 from https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

