
 
NIPES Journal of Science and Technology Research 4(3) 2022 pp.133 - 140 pISSN-2682-5821, eISSN-2682-5821 

133 

 

 

A Method for Real-time Adaptive Propagation Loss Modeling and Estimation 

Over LOS and NLOS Microcellular Radio Communication Links 

 
Emmanuel Nwelih 
Department of Computer Science, University of Benin, Benin City, Edo State, Nigeria 

Email: emmanuel.nwelih@uniben.edu 

 

Article Info  Abstract 

 

Keywords: 

Adaptive, Tuning, Modelling, 
Estimation parameters, Propagation 
loss, NLOS, LOS 

 
 

Wireless cellular communication technology has developed into a 

very resourceful commodity worldwide. Today, people of all races 

can hardly live without means of voice and data cellular 

communication technology. Imprecise propagation loss estimation 

leads to high power waste, high co-channel interference and poor 

service quality in cellular communication system networks. This 

paper proposes a realistic adaptive fine-tuning method for distinctive 

propagation loss estimation over microcellular communication radio 

links based on signal power measurements from Long Term 

Evolution radio broadband networks, taking non-line of sight 

(NLOS) and line of sight (LOS) environments into consideration. The 

methodology is verified by measurements taken in non-line of sight 

and line of sight signal propagation scenarios. The results showed 

that the estimated propagation losses using the proposed realistic 

adaptive tuning models were more accurate than the existing Cost -

231 modelling estimation approach. 
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1. Introduction 

The evolution and application of different wireless cellular communication technologies are on the 

rise daily at an exciting pace worldwide. Today, people of all races can hardly live without means 

of voice and data cellular communication technology. It all started when the second generation (2G) 

of wireless cellular communication standard which provides easy means of voice communication 

anytime and anywhere, was introduced in the mid 80’s. A key example of such communication 

technology is the GSM. Since then, other cellular radio standards such as 3G and 4G, which provide 

better multimedia communications have evolved. Examples of 3G and 4G-based technologies 

include UMTS, WCDMA, CDMA2000, HSPA, Wimax and LTE.   The latest of the above itemized 

different technologies, is the 4G LTE (Long Term Evolution). In terms of bandwidth, data speed, 

quality of service differentiation, latency, spectrum efficiency, enhancement to security, backward 

compatibility, etc., LTE provides considerable performance improvements over previous mobile 

technologies such as GSM, UMTS and HSPA.  Imprecise propagation loss estimation during the 

cellular network design phase or optimisation phase, has been identified as the leading reason for 

high power waste, high co-channel interference and poor service quality in LTE cellular networks. 

The evolution of 4G cellular communication technology such as LTE some few years ago provided 

a great opportunity to enhance data speed, quality of service differentiation and spectrum efficiency. 
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However, some channel propagation challenges such as power outage, fading and signal path loss 

are also affecting the aforementioned great opportunities. One key way to solve some propagation 

challenges is by modelling, estimating and examining the behavior identified challenges. Prediction 

and estimation of channel parameters and behaviour, including propagation loss and signal 

attenuation, is the primary focus of radio channel modeling [1-3]. 

 

Over the years, some efforts have been made and reported in several studies on to examine, model 

and estimate the behavior of path loss over propagation channels. In [4], the authors compared ray 

tracing models with empirical models. From the results, the authors observed a difference of 12.6dB 

between the two compared models. An approach to adapt Standard Macrocell model and Bertoni-

Walfisch model for GSM radio networks design is presented in [5], using city of Nablus, Palestine 

as a case study. From the results, Bertoni-Walfisch model outperforms the Standard Macrocell 

model by about 60%. Similar works on measurements based propagation channel modeling are also 

contained in [6-13], but none of them specifically looked into none line of sight (NLOS) and line of 

sight (NOS) propagation scenarios as considered in this work. By NLOS, we mean radio frequency 

(RF) propagation path between transmitter and receiver that is obscured (completely or partially) 

by a varied degree of obstacles like physical landscape, tall buildings, trees, etc, thus creating 

difficulties for efficient radio signal transmission. For LOS, there exist direct visual communication 

sight or links from the transmitter to the receiver. Under this condition, the rate of propagated signal 

fading is expected to quite lower than the NLOS case. 

 

This paper proposes a realistic adaptive fine-tuning method for distinctive propagation loss 

estimation over a microcellular communication radio links based on signal power measurements 

from Long Term Evolution radio broadband networks. The methodology is verified by 

measurements taken in non-line of sight and line of sight signal propagation scenarios. The results 

showed that the estimated propagation losses using the proposed realistic adaptive tuning model 

was more accurate than the existing estimation approach. 

 

1.1. Existing Propagation Loss Models 

There exist a lot of propagation models for predictive path loss modelling and estimation, among 

which are Hata model, Free space model, Walficsh-Betroni model, Walficsh-Ikegami model, Lee 

Model, Egli model and Cost-231 Hata model. One of the most frequently explored one in literature 

is the COST-231 Hata model.  The COST 231[ref] is a derivative of the Hata model. This model 

hinge on upon four core influencing parameters for propagation loss estimation and modelling. The 

parameters are frequency, receiver antenna height, transmitter height and Tx-Rx communication 

distance. Cost-231 Hata model has different correction parameters for suburban urban and rural 

(flat) environments. In this work, we concentrate on COST-234 Hata model for urban environment. 

It is given by: 

 

PLCOST-234 dB = 43.6 + 33.9*log10 (fca) + (44.9 - 6.55*log10 (bh))*log10 (d) – T      (1)                  

                           

T=13.82*log10 (bh) - amh- 2*(log10 (fca/28)). ^2 - 5.4)                                             (2)         

                                                                                           

where 

PLCOST-234= COST-234 Hata Model 

bh= eNode Height  in meter 

mb=mobile antenna height in meter 

fca=Carrier Frequency in MHz 

d=Tx-Rx communication distance in meter 
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Although the Cost-231 Hata model has been widely employed for propagation predictive analysis 

and modelling, but its efficacy is limited when employed in residential areas and built-up terrains 

environments other than which model was originally designed [1, 8, 9, 13]. 

 

 

2.0. Materials and Method 

2.1. Measurements Campaign 

 

(a) Measurement environment 

Field measurements were piloted using commercial LTE cellular networks air interface, propagating 

on the 2600MHz band in Benin City, Edo State, Nigeria. The building clusters in the area are a 

mixture of residential/commercial bungalows, two or three story buildings encompassed with 

medium density user and vehicular traffics. Precisely, the measurement routes were selected along 

the main streets and sideways of the roads of the area, where the LTE eNodeB transceivers are 

deployed. Four accessible LTE eNodeB cell sites at close range were engaged in the measurements 

and the cell sites are designated as ‘Cell_1, Cell_2, Cell_3, and Cell_4, in this work. 

 

(b) Measurement tools 

The tools employed for measurements consisted of two commercial user equipment (UE) Sony 

Ericson handsets, one HP Laptop, RF scanner, Dongle and other relevant field test supporting 

devices such as GPS, inverter and connecting cables. A real-time professional monitoring software 

called TEMS, which possesses the capacity to display and record different radio frequency data 

made in log files along each measurement routes. For the post processing measured log data files, 

Map info, MS Excel, MATLAB 2018a were used. 

 

(c) RF network data measured 

One of the main LTE radio network data collected during measurement is RSRP (i.e. Reference 

Signal received Power). Technically, the RSRP is an indicator of signal power level at the UE 

terminal in LTE networks. Generally, the stronger RSRP level received at UE, better signal coverage 

quality can be achieved in the radio network. There exist sundry factors that can impact the RSRP 

levels at the UE terminals, among which are transmitter-receiver (Tx-Rx) communication distance, 

RF channel conditions, signal propagation loss, UE location, total radiated eNodeB power, etc. In 

terms of propagation loss and total radiated eNodeB power, RSCP can be defined as:  

 

RSRP (dBm) = Path Loss dB - Ptot (dB)                                                                              (3) 

 

Ptot=Gt +Pt-Gr-Cl- Fl-(10*log (Nrb)-10*log (12))                                                               (4) 

 

where: 

Ptot= total radiated eNodeB power in decibel 

Gt = eNodeB antenna gain in decibel 

Cl= connector losses 

Fl=feeder losses 

Nrb=No of resource blocks 

Gr= Receiver antenna gain in decibel 

Thus, in terms of propagation loss, the expression in (1) can be written as: 

Path Loss dB = Ptot - RSRP                                                                                                  (5) 

 

Path Loss dB = Gt+Pt-Gr-Cl-Fl-(10*log (Nrb)-10*log (12))-RSRP                                    (6) 
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2.2. Adaptive fine-tuning method for Cost-231 Hata model Parameters 

In order to tune the Cost-231 model parameters, its expressions in (1) and (2) can be written as: 

 

PLCOST-234 = z1+z2*log10 (d) + z3*log10 (fca);                                                                         (7)  

 

Where z1, z2 and z3 designate the adaptive coefficients. The z1, z2 and z3 can be obtained by solving 

the following parametric equations: 

 

 =++  PL)(log)(log 234-COST102101 cao fzdznz                                                               (8)                                                                                            

  =++ )(log PL)(log)(log)(log)(log 10234-COST10102

2

10110 dfdzdzdz cao                  (9)                                                     

  =++ )(log PL)(log)(log)(log)(log 10234-COST

2

1021010110 cacacacao ffzfdzfz         (10)     

                                                 

where n specifies the number of observations 

 

3.0. Results and Discussion 

By exploring the non-linear regression function fitting tools in Matlab R2018a on measured 

propagation loss data and the standard Hata model: PLCOST-234, Table 1 displays the estimated 

adaptive coefficients and their descriptive statistical values. Provided in Table 2 is the measured 

loss data estimation errors with COST-231 Hata model before and after adaptation. The estimation 

errors are computed in terms root mean square error (RMSE), mean absolute error (MAE), 

percentage error (PE), standard deviation error (STD), maximum absolute error (Max.error), 

Coefficient of correlation (R2) and signal error ratio (SRER). The lower the prediction errors, the 

better the accuracy, except for R2 and SRER wherein higher values are preferred. 

 

Table 1: Estimated Coefficients and Statistics for Cell_1 to Cell_4 

  Estimate SE tStat pValue 

 

Cell_1 
oz  18.66 0.61 30.13 1.18e-43 

1z  35.75 2.94 12.12 2.33e-19 

2z  6.17 2.11 2.918 4.64e-3 

Cell_2 
oz  21.07 0.90 23.38 6.36e-30 

1z  31.34 4.03 7.77 2.28e-10 

2z  6.87 3.07 2.23 2.95 e-3 

Cell_3 
oz  16.841 0.62105 27.117 1.30e-43 

oz  37.945 2.9505 12.861 1.21e-21 

oz  5.6388 2.1209 2.6587 9.37e-3 

Cell_4 
oz  39.76 0.22 178.69 2.70e-133 

1z  19.222 0.99 19.26 2.08e-36 

2z  12.35 0.75 16.25 1.50e-30 

  

Based on the estimated adaptive coefficients, the PLCOST-234 for Cell_1 can be written as 

PLCOST-234 (Cell_1) = 18.66+33.75*log10 (d) + 6.17*log10 (fca)                    

PLCOST-234 (Cell_1) = 21.07+31.34*log10 (d) + 6.87*log10 (fca)                    

PLCOST-234 (Cell_3) = 16.84+37.95*log10 (d) + 5.63*log10 (fca)    

PLCOST-234 (Cell_4) = 39.76+19.22*log10 (d) + 12.35*log10 (fca)                    
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The expressions above show that the rate of propagated signal attenuation (i.e. propagation 

exponent, n) for Cell_1 to Cell_3 are 3.3, 3.1 and 3.7, all which depicts the NLOS propagation 

environment. For Cell-4, which is a LOS environment,   rate of propagated signal attenuation stands 

at 1.9.  The mean n value   (i. e. , 𝑛 =
3.3+3.1+3.7

3
), for Cell_1, Cell_2 and Cell_3 is 3.37. This value 

shows that the rate of signal attenuation obtained for the NLOS is about 78% higher than the LOS 

environment value, which is 1.92. This can be attributed to the varied building and other obstructions 

in the LOS terrains. Similarly, taking the mean value of other estimated parameters for Cell_1, 

Cell_2 and Cell_3 leads to us to obtain the proposed real-time adaptive tuned model for NLOS 

environment: PLCOST-234 (NLOS) = 18.86+33.7*log10 (d) + 6.22*log10 (fca) .    For the LOS 

environment, it is PLCOST-234 (LOS) = 39.76+19.22*log10 (d) + 12.35*log10 (fca)                   

 

Shown in Figs 1-4 are the resultant measured propagation loss estimation using the original PLCOST-

234 and the proposed adapted PLCOST-234.  

 

 
Fig 1: Measured propagation loss estimation using the original  

PLCOST-234 and the proposed adapted PLCOST-234 for Cell_1 
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Fig 2: Measured propagation loss estimation using the original  

PLCOST-234 and the proposed adapted PLCOST-234 for Cell_2 

 

 
Fig 3: Measured propagation loss estimation using the original  

PLCOST-234 and the proposed adapted PLCOST-234 for Cell_3 

 

 
Fig 4: Measured propagation loss estimation using the original  

PLCOST-234 and the proposed adapted PLCOST-234 for Cell_4 
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Table 2: Computed First Order Statistics for Cell_1 to Cell_4 
  Cell_1 Cell_2 Cell_3 Cell_4 

 

Proposed 

Adaptive 

Model 

Estimation 

Statistics 

MAE 4.80 5.52 2.47 3.83 

RMSE 7.06 7.12 3.19 4.84 

STD 4.02 4.50 1.94 2.96 

R2 0.9973 0.9971 0.9995 0.9988 

Max.Error 17.60 19.61 9.66 10.47 

SRER 44.48 42.92 42.92 48.43 

PA 99.92 99.75 99.94 99.87 

 

 

Cost-231 Hata 

Model 

Estimation 

Statistics 

     

MAE 99.63 87.15 83.74 77.43 

RMSE 79.95 87.44 83.44 77.58 

STD 7.06 7.19 5.82 4.87 

R2 0.8660 0.8424 0.8543 0.8692 

Max.Error 80.15 88.34 89.38 78.40 

SRER 27.42 25.51 28.62 28.23 

PE 86.06 84.23 85.42 86.92 

 

 

4.0. Conclusion 

Enhancing the estimation accuracy of standard propagation loss models will continue to remain a 

vital component for effective radio cellular network management or planning process. In this work, 

a realistic adaptive fine-tuning method has been proposed and explored for adaptive propagation 

loss estimation over microcellular communication radio links based on signal power measurements 

from Long Term Evolution radio broadband networks, taking non-line of sight (NLOS) and line of 

sight (LOS) environments into consideration. It is shown that an adapted propagation model 

provides a superior loss estimation than the existing standard empirical COST-234 Hata model. 
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