
 
NIPES Journal of Science and Technology Research 4(3) 2022 pp.30 - 42 pISSN-2682-5821, eISSN-2682-5821 

30 

 

 

Comparison of Data Structure Techniques used for the Implementation of 

Digital Currency Payment Models 

 

Aigbe Princewilla, Nwelih Emmanuelb   

a Department of Mathematics & Computer Science Western Delta University Oghara, Nigeria 
bDepartment of Computer Science University of Benin, Benin City, Nigeria 

Email: agbonx@yahoo.com, emmanuel.nwelih@uniben.edu 

 

Article Info  Abstract 

 

Keywords: 

Data structure, digital currency, 

payment, electronic currency 

 
 

The emergence of electronic business has generated new payment 

necessities that in many circumstances cannot be feasibly fulfilled by 

the fiat payment systems. The success of electronic commerce business 

depends on the credibility of the available electronic payment systems. 

Digital currency payment models were designed to settle payment 

transactions online, but experiences the issue of double-spending 

fraud. Double-spending refers to the inability of digital currency 

payment systems permitting the potentiality to spend the same units of 

digital currency identification more than once. A number of models to 

combat double-spending fraud have been designed and developed. 

Some of the existing schemes prevent double-spending fraud after 

digital currency payment transactions have been completed. 

Therefore, this paper focuses on the determination of the digital 

currency payment model that has the best computational time to 

prevent double-spending fraud in payment transactions. This is done 

by the procedural study of the data structure techniques used by the 

digital currency payment models that prevent double-spending fraud 

before it occurs in terms of data representation, implementation and 

method used to prevent double-spending fraud and the required 

search time. The appraisal culminated in the derivation of the time 

complexity of each of the data structure techniques used for the 

implementation of the digital currency payment models.  

 

 

Received 01July 2022 

Revised   12 July 2022 

Accepted 13 July 2022 

Available online 2 Sept 2022 

 

 
https://doi.org/10.37933/nipes/4.3.2022.4 

 

https://nipesjournals.org.ng 

© 2022 NIPES Pub. All rights 

reserved 
 

 

 

 

1. Introduction 

The exchange of goods and services conducted face-to-face between two parties’ dates back 

to before the beginning of recorded history. Eventually, as trade became more complicated and 

inconvenient, humans invented abstract representations of value. As time passed, representations of 

value became more and more abstract, progressing from barter through bank notes, payment orders, 

cheques, credit cards, and now electronic payment systems. Traditional means of payment suffer 

from various well-known defects or problems; Money can be counterfeited, signatures forged, and 

cheques bounced [1]. On the other hand, properly designed electronic payment systems can actually 

provide better security than traditional means of payments, in addition to flexibility of use [2]. 

E-commerce provides the capability of buying and selling goods, services and information 

on the internet by using electronic payment systems. In electronic payment systems, the exchange 

of value is represented by the exchange of data and it is easy, cheap and fast to transfer data [3]. 

Securely transfer monetary value can establish electronic business participant confidence and 

facilitate the electronic transaction process [4]. Electronic payment systems mechanisms are the 

mailto:agbonx@yahoo.com
mailto:Emmanuel.nwelih@uniben.edu


 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

31 

 

means of payment for online purchases. An e-commerce payment system facilitates the acceptance 

of electronic payment for online transactions. Also known as a sample of Electronic Data 

Interchange (EDI), e-commerce payment systems have become increasingly popular due to the 

widespread use of the internet-based shopping and banking [5].  As the use of the different electronic 

payment methods has become more widespread, so is the amount of fraud related to these payment 

mechanisms [6]. Fraudsters are becoming more organized and are using increasingly sophisticated 

methods (such as phishing, account takeover, counterfeiting, stolen payment instrument, transaction 

repudiation, etc) to obtain and misuse consumer personal and financial information. Electronic 

payment fraud is causing billions of dollars in losses for the electronic commerce industry [7]. 

Besides direct losses, the brand name can be affected by loss of consumer confidence due to the 

fraud [8]. As a result of these growing losses, financial institutions and other electronic payment 

industry stakeholders are continually seeking new techniques and innovations in fighting electronic 

payment fraud [9]. 

 

2.0 Overview of Digital Currency Payment System 

Over the years, different electronic payment methods have emerged for settlement of 

payments for e-commerce transactions. These payment mechanisms include electronic cash 

payment (eCash), electronic cheque (eCheque), online credit card, and smart card. The online 

merchants have to comply with stringent rules stipulated by the available electronic payments they 

support. This means that merchants must have security protocol and procedures in place to ensure 

transactions are more secure [10]. This can also include having a certificate from an authorized 

certification authority (CA) who provides Public-Key infrastructure (PKI) for securing online 

payment transactions [11].  

There are intermediaries that enable financial transactions to take place over the internet. 

Many of the intermediaries permit consumers to establish an account quickly, and to transfer funds 

into their on-line accounts from a traditional bank account and vice versa, after verification of the 

consumer's identity and authority to access such bank accounts. Also, the larger intermediaries 

further allow transactions to and from credit card accounts, although such credit card transactions 

are usually assessed a fee (either to the recipient or the sender) to recoup the transaction fees charged 

to the intermediary. The speed and simplicity with which cyber-intermediary accounts can be 

established and used have contributed to their widespread use [12]. 

The first untraceable digital currency (eCash) payment system based on blind signature was 

proposed by [13], which allows the requester to obtain a message signature from a signer without 

revealing the message content and makes the signer unable to link any signed message to its 

signature. This initial proposal required an online broker to clear eCash before merchants could 

provide their services. To protect against double-spending. This means that eCash or digital 

currency customers or users presented for payment to settle a given transaction must be verified by 

online electronic cash brokers. The implication here is that there will be many online electronic cash 

brokers as users or customers will likely choose their online brokers, making the eCash payment 

system complicated and very expensive. 

Furthermore, the digital currency payment system introduced to settle transactions 

electronically was associated with a payment fraud known as double-spending. Double-spending is 

the failure of a digital currency payment system allowing the possibility to spend the same or single 

digital currency (eCash) more than once. Different digital currency payment schemes or algorithms 

have been proposed with various security features to prevent or fight against double-spending. The 

different techniques that have been used by digital currency payment to fight against double-

spending resulted in double-spending fraud occurring before its detection. A trace of the payment 

transaction is carried out to determine the double-spender [14]. However, the application of some 



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

32 

 

specific data structure techniques with salient features such as block chain, binary tree, and hash 

table in digital currency payment systems have successfully prevented double-spending fraud in 

digital payment system transactions before occurring. These data structure techniques can be used 

to store and search for a given unit of digital currency identification in payment transactions with 

effective time complexities [15]. 

 

3.0 Digital Currency Payment Transaction using Blockchain Data Structure0 

Structurally, a blockchain can be defined as a linked list (blocks) of a group of transactions 

which is connected with each other using hash pointers rather than pointers as in the case of the 

linked list. The blockchain in itself is a data structure that stores transactions. It is similar to a linked 

list in that the data is split into containers known as blocks. Each block is connected with its 

predecessor with a cryptographically secured reference [16]. The secured references establish order 

throughout the blocks and effectively make the blockchain an apend-only data structure where new 

data can only be added with new blocks. The hash pointer is not only used to look up the previous 

block of a transaction but also used to verify that the transactions stored in the previous block is not 

tampered. The hash pointer is the hash value of the header data of the previous block also known as 

block header. The hash value of the previous block header is included in the following block as a 

reference because the block hash depends on the data of a block, even changing a single character 

in one of the transactions would invalidate the reference. A detailed components of blockchain and 

a set of transactions is shown in a block diagram in Figure 1. 

 

 

Figure 1: Components of a blockchain 



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

33 

 

Blockchains are often used in cryptocurrencies because they can function as public ledgers. 

Each block stores a batch of financial transactions, and blocks are added to the blockchain through 

a consensus algorithm. This combination of a blockchain and a consensus algorithm for adding 

blocks to the chain allows for decentralized digital currencies. Cryptocurrency holders cannot 

double spend their digital money since transactions are recorded in a tamper-resistant public ledger 

[17].  Each block consists of a header section and a body section. The header section of the block 

may consist of the following information:  

i. Merkel root 

The Merkel root represents a summary of all transactions included in the block.  

ii. Nonce 

The number used once (Nonce) is the variable that miners change to modify the block 

headers hash for its value to meet the specific difficulty. 

iii. Timestamp 

The Time is the time when the miner started hashing the header for the mining process. 

iv. Hash of the previous block header 

The previous block hash header serves two purposes. First, it establishes an order throughout 

the chain of blocks, and second, it ensures no preceding block can be changed without 

affecting the current and all subsequent blocks. 

v. Version number 

The Version number indicates which software version the miner of the block used and which 

set of block validation rules were followed. 

vi. Difficulty target 

The bits (or nBits) are an encoded version of the current difficulty of finding a new block. 

The body section of the block may consist of the list of transaction data. When the blockchain data 

structure is used to represent digital currency, a block which is a unit of information is about 80 

bytes of storage distributed as follows: 

i. Merkel root (32 bytes) 

ii. Hash of previous block header (32 bytes) 

iii. Timestamp (4 bytes) 

iv. Version number (4 bytes) 

v. Nonce (4 bytes) 

vi. Difficulty target (4 bytes) 

A thorough search operation with confirmation mechanism through the entire blockchain is 

required to prevent double-spending fraud in payment transactions when a unit of digital currency 

value with a specific identification (DCid) is represented by a customer to settle transaction with a 

merchant [18].  

Suppose a customer has 1 unit of digital currency identification (DCid1) and try to spend it twice. 

The customer made 1 unit of digital currency (DCid1) transaction (T1) to merchant1. Again, the 

customer signs and sends the same 1 unit of digital currency (DCid1) transaction (T2) to merchant2. 

Both transactions go into the pool of unconfirmed transactions where many unconfirmed 

transactions are stored already. The unconfirmed transactions are transactions which do not pick by 

anyone. Now, whichever transaction first got confirmations and was verified by miners, will be 

valid. Another transaction which could not get enough confirmations will be pulled out from the 

network. A block diagram of the illustration of both transactions is shown in Figure 2. Transaction 

T1 is valid, and merchant1 will receive the 1 unit of digital currency (DCid1). 



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

34 

 

  

Figure 2: Prevention of double-spending fraud in a blockchain implemented digital currency 

payment model 

The confirmation is achieved after an elaborate search for the presented unit of digital currency 

(id1) for payment transaction in all the blocks of the chain to ensure that it has not be spent. This is 

possible as the summary of the transactions in the blocks are stored by Merkle trees [19]. A search 

for the unit of digital currency in the Merkle tree yields a time complexity of order log2 n ), where n 

is the number of units of digital currency in the blockchain. If there are k blocks in the chain, all the 

k blocks need to be searched. The search time t(n) for a given unit of digital currency (id1) in a 

blockchain data structure during a payment transaction is:  

t(n) = k * (log2 n)                                                                                                            (2) 

Since there are k blocks in the blockchain therefore, the complete search time t(n) is derived as:  

t(n) = O(k * (log2 n))         (2) 

Thus, on an average searching has O(k * (log2 n)) in a blockchain. This means that given an input 

size n (that is, digital currency identification keys), the number of key comparisons (search time) 

required to prevent double-spending fraud before it occurs is O(k * (log2 n)) when a blockchain data 

structure is used. 

 

4.0 Digital Currency Payment Transaction using Binary Tree Data Structure 

 
A digital currency payment model that prevents double-spending fraud before it occurs was 

designed [20]. This model was implemented using the binary tree data structure in which the nodes 

of the tree represent units of digital currency identifications (DCids). In the binary tree, each 

divisible unit of digital currency identification (DCid) of a given monetary value 2L, is assigned to 

a binary tree of L +1 levels. The values of the leaves are the least, namely 1. Each of the leaves node 

is assigned a key denoted by DCidL + 1, j, where 0 ≤ j ≤ 2L -1. Any other internal node corresponds 

to an amount of money which is exactly twice the amount of their corresponding child node values 

and also is assigned a key defined by DCidi,j. The root node lies in the 0th level and has a maximum 

value, namely, 2L.  The corresponding key of the root node is DCid0,0.  

The binary tree is constructed from the leaves node. Each internal node is obtained by the 

multiplication of its’ corresponding leaves node. When the user wants to spend a node, he supplies 

the keys of the spent node and the corresponding leaves node to the merchant. The user generates 

the internal node only by the multiplication of its corresponding nodes. The binary tree is given in 

Figure 3.    



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

35 

 

   
Figure 3: Construction of a binary tree (L = 3) of digital currency identifications    

  

The [20] digital currency payment model determines double-spending and identity of 

double-spender in a payment process as follows: 

The merchant deposits a coin coM = {21,S,DCid,T,R, r1,πs} to bank, where id = sj2
1||sj2

1+1||...||s(j+1)2
1

-

1. At first, the bank checks the proof πs . If it’s not correct, the bank rejects the deposit. Otherwise, 

bank checks if these elements sj2
1,sj2

1+1,s(j+1)2
1

-1 are already in the database. If one of these random 

elements is already in the database, bank executes the procedure of double-spender identification. 

Otherwise, bank adds 21 leaves node into the database. Then bank checks whether R is fresh. If R 

is fresh, bank accepts the coin {21,S,DCid,T,R, r1,πs}, credits  merchant’s account. Otherwise, 

merchant deposits the coin twice. Bank refuses the deposit and warns merchant.  

Bank obtains two coins co1= {21
1,S1,DCid1,T1,R1,r11,πs1} and co2 = {21

2,S2,DCid2,T2,R2, 

r12,πs2}. If the user spends the same node, then 

 co1= {21
1,S1,DCid1,T1,R1,r11,πs1} and co1’ = {21

2,S2,DCid2,T2,R2, r12,πs2}. Thus, bank computes  

pku = (T1
R

2 / T2
R

1)
1/R2 – R1; if user spends the different nodes, then co1= {21

1,S1,K1,T1,R1,r11,πs1} and 

co1’ = {21
2,S2,DCid2,T2,R2, r12,πs2}.  

This digital currency payment scheme allows the user to withdraw a single divisible unit of 

digital currency identification and spends the sub-eCash by dividing the value of the electronic cash. 

The scheme protects against double-spending by conducting a look up of the unit of digital currency 

DCid number in a table of previously spent digital curency. This process requires key comparisons. 

The number or amount of comparisons determine the search time to locate a given digital currency 

id. Shown in Figure 4 is a binary search tree in which the nodes represent digital currency 

identifications or (eCashid): 

   

     
Figure 4: Key comparison in Binary tree 

 



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

36 

 

The number of comparisons required to search for given node in a binary tree depend on the 

depth of that node [21]. The number of elements (or nodes) in Figure 4 is 5. Therefore, average 

number of comparisons for a successful search in this binary tree in 12/5. Therefore, average number 

of comparisons increase if elements (nodes) are far away from root. For calculating the average 

number of comparisons required in the case of an unsuccessful search, we use the concept of 

extended Binary tree. An extended binary tree is a binary tree in which special nodes are added 

whenever a null sub-tree was present in the original tree so that each node in the original tree (except 

the root node) has degree three. A binary tree with dummy nodes is shown in Figure 5. 

 

 
 

Figure 5: Binary tree with dummy nodes 

The number of dummy nodes in a tree with n nodes is n + 1. By induction, let us assume a 

tree with n – 1 node. By our assumption, it has n dummy nodes. If we add 1 more node, I dummy 

node is deleted and 2 are added. Thus, the new number of dummy nodes in a tree n – 1 + 1 nodes = 

n – 1 + 2 = n + 1. Thus our assumption is valid. 

Internal Path length: In = sum of the path lengths of the tree internal nodes from the root in 

a tree with n nodes. 

External Path Length: En = Sum of the path lengths of the dummy nodes from the root in a 

tree with n nodes. 

Hence the average number of comparisons for successful search is 

                                         𝑆𝑛 =
𝐼𝑛 +  𝑛

𝑛
                                                                                  (3) 

and the average number of comparisons for an unsuccessful search is  

          𝑈𝑛 =
𝐸𝑛

𝑛+1
                                                                                            (4) 

The relation between In and En is given as: En = In + 2n 
By induction, consider a tree with n – 1 node. To construct Tn from Tn-1, we must replace a 

dummy node (whose path length from the dummy node is, say 1) with a leaf node plus two dummy 

nodes: 

             In = In – 1 + l 

             En = En-1 – l + 2 ( l + 1) 

         = En-1 + l + 2 

         = In – 1 + 2n – 2 + In – In – 1 + 2 

         = In + 2n 

Thus,         Un =  
I + 2n

n + 1
                                                                                                                       (5) 

Eliminating I from (3) and (5), we have 

nSn = n + (n + 1) Un – 2n 

𝑆𝑛 = (1 +  
1 

𝑛
)  Un – 1                                                                                              (6)    



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

37 

 

Let’s now think about the order in which the elements are inserted in a binary tree as shown in 

Figure 6. 

                                          
Figure 6: Order of elements insertion in a binary tree 

Average number of comparisons for unsuccessful search at insertion number 2 = U1. Thus 

if the key is there, for successful search at insertion number 2, number of comparisons required 

equals U1 + 1 as shown in Figure 7. 

                                  
              

Figure 7: Searching in binary tree 

The average number of comparisons corresponding to the “ith” inserted node for successful search 

= Ui -1 + 1. 

                     𝑆𝑛 =
𝑈𝑂 +  1 + 𝑈1 +  1 + ⋯ +  𝑈𝑛−1 +  1  

𝑛
                                                                  (7) 

Equating (6) and (7) 

                      
(𝑛 +  1) 𝑈𝑛 −  𝑛

𝑛
=  𝑈𝑂 +  1 + 𝑈1 + ⋯ 𝑈𝑛−1 +  𝑛 

                  (n + 1) Un = 𝑈𝑂 + 𝑈1+ . … +  𝑈𝑛−1 +  2𝑛                                                                    (8) 
Substituting n by n – 1 we have, 

                   𝑛𝑈𝑛−1𝑈𝑂 + 𝑈1 +  … +  𝑈𝑛−2 +  2 ( 𝑛 − 1)                                                                          (9) 

Subtracting (8) from (7) we have, 

                  (n + 1) Un – nUn – 1 = Un–1 + 2 

                   Un = Un – 1 + 
2

𝑛+1
  

Now, 

                Uo = 0, U1 = 1, U2 = 1 + 
2

3
 , U3 = 1 + 

2

3
 + 

2

4
  

    Un = 1 + 
2

3
 + 

2

4
 + … + 

2

𝑛+1
 = 2(1 + 

1

2
 + 

1

3
 + … + 

2

𝑛+1
) - 2 

               ≈ 2ln (n) – 2 = log2 n – 2 

     = O(log2 n).                                                     (10) 
Thus, on an average searching has O(log2 n) in a binary tree. This means that given an input 

size n (that is, digital currency identification keys), the number of key comparisons (search time) 



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

38 

 

required to prevent double-spending fraud before it occurs is O(log2 n) when a binary search tree 

data structure is used. 

5.0 Digital Currency Payment Transaction using Hash Table Data Structure 

 
Hash Table is a data structure which stores data in an associative manner. In a hash table, 

data is stored in an array format, where each data value has its own unique index value. Access of 

data becomes very fast if we know the index of the desired data [21]. A hash function (or hash code) 

is used by hash table to compute an index into buckets or slots from which the desired value can be 

found. 

 The digital currency identifications (DCidks’) generated by hash-cash algorithm are stored 

in hash table as shown in Figure 7. Where DCidks are the generated identification keys for the 

digital currency values. 

 

  
Figure 7: Hash table digital currency values and identifications mapping 

 

In using the hash table data structure technique to prevent double spending before it occurs, 

every digital currency identification generated (DCidk) has a control number known as the secret 

code [22]. This secret code is used to track or determine if a given digital currency unit identification 

(DCidk) has been spent or not. Figures 8a and 8b show illustrate the necessary steps to prevent 

double-spending fraud. 

  
Figure 8a: Prevention of double-spending fraud in a payment transaction 



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

39 

 

 
Figure 8b: Prevention of double-spending fraud in a payment transaction 

  

In hash table mapping operation, the load factor α which is the average key per slot is given as α = 

n/m                                                                                                (11) 

Where m is the number of slots,  

n is the number of elements (that is, number of eCash identification keys) stored in the hash table. 

Let eCash identification key be element xi, and xi be the ith element inserted into the table, and let ki 

= key[xi]                                                         (12) 

In a payment transaction involving eCash identification element xi, define indicator random variable 

    Xij = I{h(ki) = h(kj)}, for all i, j                                                (13) 

In simple uniform hashing, any key is equally likely to hash into any of the m slots independent of 

where any other hashes to. Then the probability P is given as   

                          P{h(ki) = h(kj)} = 1/m and E[Xij] = 1/m.                                                          (14) 

 Expected number of elements examined in a successful search is: 

                                            = 𝐸 [
1

𝑛
∑ (1 + ∑ 𝑋 𝑖𝑗

𝑛
𝑗=𝑖+1 )𝑛

𝑖=1 ]                                               (15) 

Opening up brackets and taking expectation, we have 

                                            =
1

𝑛
∑ (1 +  ∑ 𝐸[𝑋 𝑖𝑗]𝑛

𝑗=𝑖+1 )𝑛
𝑖=1                                               (16) 

From Equation 14, E[Xij] = 1/m and  substituting this in Equation (16), we have,                                               

                                            =
1

𝑛
∑ (1 + ∑

1

𝑚

𝑛
𝑗=𝑖+1 )𝑛

𝑖=1                                                        (17) 

Since ∑ 1 = 𝑛𝑛
𝑖=1   and  ∑ ∑ = ∑ (1 + (𝑛𝑛

𝑖=1 − 𝑖))𝑛
𝑗=𝑖+1

𝑛
𝑖=1   we have,  

                                               = 1 +  
1

𝑛𝑚
∑ 1 +  (𝑛 − 𝑖)𝑛

𝑖=1                                                  (18) 

                                               =  1 +  
1

𝑛𝑚
(∑ 𝑛 −  ∑ 𝑖𝑛

𝑖=1
𝑛
𝑖+1 )                                              (19) 

Also ∑ = 𝑛𝑛
𝑖=1   and  ∑ 𝑖 =

𝑛(𝑛+1)

2

𝑛
𝑖=1    and substituting these values into Equation 19, we have  

                                               =  1 +  
1

𝑛𝑚
(𝑛2 −  

𝑛(𝑛+1)

2
)                                                     (20) 

Simplifying we have, 

                                                        = 1 + (
𝑛2

𝑛𝑚
−

1

𝑛𝑚
(

𝑛(𝑛+1)

2
)) 



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

40 

 

                                                                 = 1 + (
𝑛

𝑚
−

(𝑛+1)

2
) 

                                                                  = 1 + 
2𝑛 – 𝑛 + 1

2𝑚
 

                                                =  1 +  
𝑛−1

2𝑚
                                                                          (21)   

From Equation (21), α = 𝑛 𝑚⁄   which implies m = 𝑛 α  ⁄ and substituting into equation 20, we have 

                                                =  1 +  
∝

2
−

∝

2𝑛
     

The expected total time for a successful search is 

                                    = Time to compute hash function + Time to search  

                                     = O(1 + 
∝

2
−

∝

2𝑛
) = O(1+∝) 

    If n = O(m), then ∝ = n/m 

                 = O(m)/m 

                 = O(1).            (22) 

Thus, on an average searching has O(1). This means that given an input size n (that is, digital 

currency idks) in hash table data structure, the number of key comparisons (search time) required to 

prevent double-spending is O(1). 
 

6.0 Search Time Performance Comparison of the Three Data Structures: Blockchain, 

Binary Tree, and Hash Table 

 
The average case analyses of the three data structure techniques used for the implementation 

of digital currency payment transactions show that: 

Blockchain data structure used by [14] digital currency payment model requires O(k * (log2 n)) 

number of key comparisons to prevent double-spending fraud before it occurs in a digital payment 

transaction. Binary tree data structure used by [19] digital currency payment model requires  

O(log2 n) number of key comparisons to prevent double-spending fraud before it occurs in a digital 

currency payment transaction. Hash table data structure used by [23] digital currency payment 

model requires O(1) number of key comparisons to prevent double-spending fraud before it occurs 

in a digital currency payment transaction. 

 The search time of O(1) (that is, constant time) means that the hash table data structure used 

by [23] digital currency payment model requires the same amount of time to prevent double-

spending fraud before it occurs in a payment transaction regardless of the input size when compared 

to the other two considered data structure techniques used by [14]and [19], where the search time 

to prevent double-spending fraud before it occurs increases as the input size increases.    

The comparison of the three data structure techniques used for the implementation of 

different digital currency payment models in terms of input size n and search time is further 

illustrated in Table 1, where n is the number of units of digital currency identifications presented 

for a payment transaction, and the accompanying graph in Figure 9 that shows pictorially the 

computational time performance of the three data structure techniques. 

 

Table 1: Comparison of the selected data structure techniques 

S/n N Blockchain 

T1 = (k*log2n) 

Binary search tree 

T2 = O(log2n) 

Hash table 

T3 = O(1) 

1 0 0.0000 0.0000 1 

2 5 23.2193 2.3219 1.0000 

3 10 33.2193 3.3219 1.0000 

4 15 39.0689 3.9069 1.0000 



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

41 

 

5 20 43.2193 4.3219 1.0000 

6 25 46.4326 4.6439 1.0000 

7 30 49.0689 4.9068 1.0000 

8 35 51.2928 5.1293 1.0000 

 

 

 
Figure 9: Computational time performance of three data structure techniques 

 

7.0 Conclusion 

Every data structure technique has its’ own characteristic features that can be exploited for 

a specific implementation. An appraisal of the three data structure techniques used to prevent 

double-spending fraud in digital currency payment models in payment transactions show that the 

hash table data structure has the best search time to prevent double-spending fraud before it occurs. 

Though hash table data structure has excellent search time to prevent double-spending fraud, most 

applications developers still prefer blockchain implementation as a result of its’ immutability and 

decentralized nature.    

 
References 
[1] Turban, E., King, D., Mckey, J., Marshall. P., Lee, J., & Vielhand , D. (2008). Electronic commerce: A managerial 

perspective. Pearson Education Ltd, London, 545 – 554. 

[2] Raja, J., and Senthil, M. V. (2008). E-payments: Problems and prospects. Journal of Internet Banking and 

Commerce, 13(11), 200 – 216. 

[3] Dejan, S. (2005). Reducing Fraud in Electronic Payment Systems, Proceeding of the 7th Balkan Conference on 

Operational Research, BACOR 05, Constanta, May, Romania 

[3] Sumanjeet, S. (2009). Emergence of payment systems in the age of electronic commerce: The state of the art. Asian 

Pacific Journal of finance and Banking Research, 3(3), 188 – 197. 



 
Aigbe Princewill and Nwelih Emmanuel/NIPES Journal of Science and Technology Research 

4(3) 2022 pp. 30-42 

42 

 

[4] Mckay, J., Lee, J., and Vielhand, D. (2008). Electronic Commerce: A managerial Perspective. Pearson Educational 

Ltd, London, 554 – 556. 

[5] Lowry, P. B., Taylor, W., Gregory, D. M., Sean, H., & Degan, K. (2006). Online payment gateways used to facilitate 

e-commerce transactions and improve risk management. Communications of the Association for information 

Systems, 17(6), 21 – 38. 
[6] Sullivan R., J. (2010). The Changing Nature of Card Payment Fraud: Industry and Public Policy Options, Payment 

System Research Brief. 

[7] Anderson, M. (2010). Fraud: The Facts”, Association for Payment Clearing Services (APACS). 

[8] Morgan, C. (2013). World payment reports. Capgemini analysis, 23 -29. 

[9] Nashidi, T., Miyazaki, S., kouichi, S. (2011). Security analysis of E-Cash systems with malicious insider. Journal of 

Wireless Mobile Networks, Ubiquitous Computing, and depending applications. 

[10] Chokhani, E., Carlisle, A., and Lloyd, S. (2010). Internet X.509 Public Key Infrastructure: Certificate Policy and 

Certification Practices Framework. Orion Security Solutions, Inc. 

[11] Sean, H., Taylor, W., Gregory, D., and Degan, K. (2006). Online Payment Gateways used to facilitate e-commerce 

transactions and require risk management. Communication of the Association of information Systems, 17(6), 

41 – 48. 

[12] Chaum, D., (1983). Blind signature for untraceable payments. Proceeding of the Annual International Cryptology 

conference on Advances in Cryptology (CRYTO‘82), Santa Barbara, California.  

[13] Nashidi, T., Miyazaki, S., kouichi, S. (2011). Security analysis of E-Cash systems with malicious insider. Journal 

of Wireless Mobile Networks, Ubiquitous Computing, and depending applications. 

[14] Satoshi, N., (2008). The genesis of Crypto Revolution: The Bitcoin White Paper.  Journal of Cryptology, 3(2), 99 

– 111. 

[15] Koblitz, N., and Menezes, A., (2016). Cryptocash, Cryptoccurrencies and Cryptocontracts: Design, Codes and 

Cryptography. Journal of Cryptology, 78(1), 87 – 102. 

[16] Merkle, R., C., (2015). Protocols for Public key Cryptosystems. Journal of IEEE Computer Society, 6(2), 122 – 

133. 

[17] Osipkor, E., Hopper, N., and Kin, Y. (2007). Combating double-spending using co-operative P2P systems. 27th 

International conference on distributed computing systems (ICDCS ’07), IEEE computer society. 

[18] Becker, G., (2008). Merkle Signature Schemes, Merkle Trees and their Cryptanalysis. Journal of IEEE Computer 

Society, 8(3), 89 – 97. 

[19] Yanling, H., Haibin, W., Xuguanf,  C., and Xia, L. (2014). Efficient divisible E-cash based on the P-Signature. 

International Journal of Multimedia and Ubiquitous Engineering, 9(10), 153 – 168. 

[20] Heger, D. (2004). A disquisition on the performance behaviour of binary search tree data structures. European 

Journal for the Informatics Professionals, 5(5), 67 – 75. 

[21] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C. (2009). Introduction to Algorithms (3rd ed.). 

Massachusetts Institute of Technology. pp. 253–280. ISBN 978-0-262-03384-8. 

[22] Zhang, J., Jia, Y., (2019). Redis rehash optimization based on machine learning. Journal of    Physics, Conference 

Series. 1453: 3. 

[23] Aigbe, P. and Onibere, A., (2015). An Immediate Real Time Detection and Prevention of Double-spending fraud 

in Digital Currency Payment Model. International Journal of Computer Applications, 122(18), pp. 32 – 39. 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ronald_L._Rivest
https://en.wikipedia.org/wiki/Clifford_Stein
https://en.wikipedia.org/wiki/Introduction_to_Algorithms
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-262-03384-8
https://iopscience.iop.org/article/10.1088/1742-6596/1453/1/012048/meta
https://en.wikipedia.org/wiki/Journal_of_Physics:_Conference_Series
https://en.wikipedia.org/wiki/Journal_of_Physics:_Conference_Series

