

Journal of Science and Technology Research

Journal homepage: www.nipesjournals.org.ng

Investigation of the Effect of Some Salts on the Rheological Properties of Xanthan Gum and Gum Arabic Present in a Drilling Fluid

Paul Okaome, Sarah Akintola

University of Ibadan, Ibadan, 200284, Nigeria

Article Info	Abstract
Received 25 Oct. 2021 Revised 08 Nov. 2021 Accepted 10 Nov. 2021 Available online 10 June 2022	The rheological properties of a drilling fluid are important because they allow for extensive examination of the viscosity, fluid flow profile, pressure loss, equivalent circulation density, and hole cleaning capability making it the foundation for all wellbore hydraulics. The viscosity, gel strength, and yield point of Gum
Keywords:	Arabic and Xanthan Gum contained in a fresh water-based drilling
Drilling Fluid, Rheological Properties,	fluid were investigated in the presence of three distinct salts:
Xanthan Gum, Gum Arabic, Potassium	calcium chloride (CaCl ₂), potassium chloride (KCl), and sodium
Chloride, Sodium Chloride, Calcium	chloride (NaCl). The salts were introduced separately to three
Chloride.	distinct fresh water-based drilling fluid samples in increasing weights. The Fann V-G viscometer was used for the required rheology properties measuring the RPM and gel strength. The plastic viscosity, apparent viscosity, and yield point were calculated from the experimental data. With increasing the sal
https://doi.org/10.37933/nipes.e/4.2.2022.18	concentration, the plastic viscosity, apparent viscosity, yield point and gel strength all decreased, which was observed for all three
https://nipesjournals.org.ng	salts used. This research aimed to investigate the effect of three
© 2022 NIPES Pub. All rights reserved.	different salts; Calcium chloride (CaCl ₂), Potassium Chloride (KCl), and Sodium Chloride (NaCl) on the rheological properties of Gum Arabic and Xanthan Gum viscosified water-based drilling fluid.

1. Introduction

The term drilling fluid refers to a liquid, gas, or gasified liquid circulating continuous substance used in the rotary drilling process to perform any or all of the various functions required to drill a viable wellbore at the least overall well cost [1].

The key functions that a drilling fluid must accomplish differ depending on the fluid type. These functions include [1]; Drilled-cuttings removal—below the drill bit and from the annular area around the drill string, containment of subsurface formation fluid pressures, and hole stabilization—chemical and/or mechanical—before casing/cementing. Drilling fluids perform a wide range of minor functions, including: Cooling and lubrication of the drill string and drill bit, suspension of desired solids and ease of removal of undesirable solids, weight reduction of the casing string and drill string while suspended in the wellbore, and aids in formation evaluation and drill bit cleaning.

There are significant advantages to be achieved in addition to the functions listed. It is feasible to achieve minimal formation damage, minimal corrosion impacts on drilling equipment, increased rate of penetration (ROP), reduced environmental impact, improved safety, and reduced friction

pressure losses if these fluids are properly selected [1]. Failure of a drilling fluid to accomplish any or all of its tasks might result in very expensive drilling issues [1].

Most drilling issues are caused by the drilling fluid utilized, either directly or indirectly [1]. As a result, the effectiveness of a drilling program, as well as the potential to lower overall drilling costs, are dependent on the right selection and maintenance of a drilling fluid, as well as an understanding of and application of its functions [1].

The petroleum industry uses many types of polymers and chemicals to design drilling fluids that meet certain functional requirements, such as suitable drilling fluid rheology, density, fluid loss control properties, and so on [2]. Because of its relatively stable viscosity properties as a function of salt content, pH, temperature, and shear degradation, xanthan gum, an extracellular polysaccharide produced by Xanthomonas Campestris [3], has spurred interest in both of these areas. Because of its distinctive rheological qualities, xanthan gum has been widely employed as a viscosifier in the oil industry [4].

Gum Arabic is mainly obtained from Acacia Senegal [5]. Because gum Arabic dissolves easily in water and produces low viscosity solutions, it is rarely used as a thickening agent [6]. In the presence of electrolytes and at high and low pH values, the viscosity of Gum Arabic solutions reduces. Due to denaturation at pH and precipitation of the high molecular, mass protein, and rich components, the viscosity of Gum Arabic solutions decreases irreversibly after heating. Long before bottling, it is utilized as an emulsifier in the encapsulation of oils. At the oil-water contact, Gum Arabic can also create thick visco-elastic films [6].

Different kinds of salt have been added to water-based polymer drilling fluids in some well trajectories to impact the necessary weight needed to control the prevailing formation pressure, where the polymer is required to meet the viscosity needed to improve the fluids' solid transporting capability [7]. Salts have been added to drilling fluids used in deepwater wells in particular to suppress hydrate and clay formation, however this has resulted in fluid properties that are sometimes unstable and not desirable [8].

This research investigates the effect of three different salts; Calcium Chloride (CaCl₂), Potassium Chloride (KCl) and Sodium Chloride (NaCl) on the rheological properties of Gum Arabic and Xanthan Gum viscosified water-based drilling fluid. Rheological properties include; viscosity which is the internal resistance to the flow of fluid, which is a measurement of the attractive forces of the drilling fluid while at rest or under static conditions [1]. It is measured in lbs/100 ft² (10 sec/10min) and the yield point which is a measure of the electro-chemical attractive forces within the drilling fluid under flowing conditions [1]. It is the initial resistance to flow caused by electrochemical forces between the particles [1].

A non-Newtonian fluid is one whose viscous property cannot be described by a single term. Rather, the viscous property is approximated to behave in accordance with one of the following assumed models [1]:

 Bingham plastic: 	$ au= au_{ m y}+\mu_{ m p}\gamma$	(1)

- Power law: $\tau = K\gamma^n$ (2)
- Power law yield: $\tau = \tau_y + K\gamma^n$ (3)

Paul Okaome, Sarah Akintola / NIPES Journal of Science and Technology Research 4(2) 2022 pp. 182 - 191

• viscosity,
$$\mu = \frac{\text{shear stress}, \tau}{\text{shear rate}, \gamma} \frac{\text{Dyne.sec}}{\text{cm}^2}$$
 (defined as poise) (4)

In the oil field, the Bingham Plastic Model is the most extensively used mathematical rheological model [1]. The 600 and 300 readings on the Fann VG Meter were used to obtain all of the data. The model assumes that the fluid under consideration behaves linearly on the shear rate-shear stress curve, but has a positive yield stress. Although most drilling fluids do not exactly follow the Bingham plastic model or any universal model, their behavior may typically be predicted with reasonable accuracy [1].

The Bingham Plastic model's equation is:

$$\tau = \mu_p \left(\frac{\gamma}{300}\right) + y_b \tag{5}$$

Plastic Viscosity, $\mu_p(PV) = \Phi_{600} - \Phi_{300}(cP)$ (6)

Apparent Viscosity, $(AV) = \Phi_{600} / 2$ (cP) (7)

Yield Point, y_b (YP) = $\Phi_{300} - \mu_p$ (Ib/100ft²) (8)

 $\tau = \text{shear stress (Ib/100ft}^2)$

 τ_y = yield value or yield stress

 μ_p = Bingham Plastic Viscosity (PV)

K = consistency index

n = the power law index

 γ = shear rate (sec⁻¹)

 $\Phi 600 = \text{Dial Reading at } 600 \text{rpm speed}$

 $\Phi 300 =$ Dial Reading at 300rpm speed

2. Methodology

Bentonite clay, freshwater, Gum Arabic, Xanthan Gum, Potassium Chloride (KCl) salt, Calcium Chloride (CaCl₂) salt, and Sodium Chloride (NaCl) salt were the materials utilized for this study. The Fann V-G Viscometer, Glass Beaker, Spatula, measuring cylinder, Hamilton Beach Mud mixer, Digital Weighing Machine, and pH Meter were among the tools used.

2.1. Preparation of Water-Based Mud

With the digital weighing meter, 21.5 grams of Bentonite were weighed, and 350ml of fresh distilled water was poured into the multi-mixer cup, followed by the slow introduction of the bentonite to achieve adequate mixing and homogeneity of the bentonite and freshwater prepared based on American Petroleum Institute (API) standard [9]. The viscosifier (Gum Arabic or Xanthan Gum) was then added and mixed until it the mixture was homogeneous.

2.2. Procedure for Measuring Rheological Properties

Salt in the amounts of 2, 4, 6, 8, and 10 grams was added to the already prepared drilling fluid samples in a volume per volume measurement and carefully mixed until homogeneity was obtained. The Fann V-G viscometer was used for all rheology measurements. The cup RPM and gel strength were the key output variables. The plastic viscosity, apparent viscosity, and yield point were calculated using Equations 6, 7, and 8, utilizing the 600rpm and 300rpm dial reading determined based on the API Specification 13B recommended practice for field testing water-based drilling fluids [10]. The gel strength was determined by setting the Fann V-G viscometer to "GEL" and measuring it in 10 minutes and 10 seconds.

3. Results and Discussion

Tables 1 to 8 shows the test results, which are displayed in Figures 1 to 6, with relevant discussions noted in the discussion section.

			Xanthan Gum	l			
Wt. of Xanthan Gum in WBM (g)	Fan Speed (RPM)	Dial Reading	Apparent Viscosity (cP)	Plastic Viscosity (cP)	Yield Point (lb/100 sq ft)	Gel Streng (lb/100 sq	
1	600	226	112	40	142	10 SECS	77
1	300	184	113	42	142	10 MINS	98

Table 1.	Fresh water	r drilling m	nud + Xanthan	Gum
1 4010 1.	1 rebit water	arming n	iuu i i iuninnun	Oum

Table 2. Fresh water drilling mud + Xanthan Gum + CaCl₂ salt

	Xanthan Gum + CaCl ₂							
Wt. of Viscosifier in WBM (g)	Weight of Salt (g)	Fan Speed (RPM)	Dial Reading	Apparent Viscosity (cP)	Plastic Viscosity (cP)	Yield Point (lb/100 sq ft)	Gel Stren (lb/100 sc	
1	2	600	198	00	20	100	10 SECS	107
1	2	300	160	99	38	122	10 MINS	139
	4	600	156		25	10.6	10 SECS	78
1	4	300	800 131 78	25	106	10 MINS	99	
1		600	125	(2,5		70	10 SECS	53
1	6	300	102	62.5	23	79	10 MINS	68
1	0	600	88.5	44.05	1.5.5		10 SECS	40
1	8	300	73	44.25	15.5	57.5	10 MINS	45
1	10	600	52	26	0	26	10 SECS	29
1	10	300	44	26	8	8 36		38

	Xanthan Gum + KCl							
Wt. of Viscosifier in WBM (g)	Weight of Salt (g)	Fan Speed (RPM)	Dial Reading	Apparent Viscosity (cP)	Plastic Viscosity (cP)	Yield Point (lb/100 sq ft)	Gel Stren (lb/100 sc	
1	2	600	298	140	22	222	10 SECS	195
1	2	300	265	149	33	232	10 MINS	232
1	4	600	253	126.5	30	193	10 SECS	161

Paul Okaome, Sarah Akintola / NIPES Journal of Science and Technology Research 4(2) 2022 pp. 182 - 191

		300	223				10 MINS	193
1	6	600	226	112	24	179	10 SECS	142
1	6	300	202	113	3 24	178	10 MINS	164
1	0	600	210	105	25	160	10 SECS	115
1	8	300	185	105	25	160	10 MINS	125
1	10	600	190	05	22	146	10 SECS	75
1	10	300	168	95	22	146	10 MINS	86

Table 4. Fresh water drilling mud + Xanthan Gum + NaCl salt

			Xantha	an Gum + Na	Cl			
Wt. of Viscosifier in WBM (g)	Weight of Salt (g)	Fan Speed (RPM)	Dial Reading	Apparent Viscosity (cP)	Plastic Viscosity (cP)	Yield Point (lb/100 sq ft)	Gel Stren (lb/100 so	
1		600	274	127	24	200	10 SECS	170
1	2	300	240	137	34	206	10 MINS	205
1	4	600	261	120.5	27	107	10 SECS	161
1	4	4 300 224 130.5	37	187	10 MINS	191		
1	C	600	252	100	40	170	10 SECS	151
1	0	6 300 212 126	40	172	10 MINS	170		
1	0	600	232	110	20	1.69	10 SECS	140
1	8	300	200	116	32	168	10 MINS	155
1	10	600	212	107	24	164	10 SECS	132
1	10	300	188	3 106	24	164	10 MINS	145

Table 5. Fresh water drilling mud + Gum Arabic

			Gum Arabic				
Wt. of Xanthan Gum in WBM (g)	Viscocity Dial (RPM)	Viscocity Dial Reading	Apparent Viscosity (cP)	Plastic Viscosity (cP)	Yield Point (lb/100 sq ft)	Gel Streng (lb/100 sq	-
1	600	328	164	45	229	10 SECS	196
1	300	283	164	45	238	10 MINS	243

Table 6. Fresh water drilling mud + Gum Arabic + CaCl₂ salt

Gum Arabic + $CaCl_2$									
Wt. of Viscosifier in WBM (g)	Weight of Salt (g)	Fan Speed (RPM)	Dial Reading	Apparent Viscosity (cP)	Plastic Viscosity (cP)	Yield Point (lb/100 sq ft)	Gel Stren (lb/100 so	0	
1		600	215	107.5	7	201	10 SECS	103	
1	2	300	208	107.5	/	201	10 MINS	157	
1	4	600	190	05 0	0	9	170	10 SECS	80
1	4	300	181	95	9	172	10 MINS	103	
1	(600	175	07.5	10	151	10 SECS	63	
1	6	300	163	87.5	12	151	10 MINS	79	
1	0	600	160		17	126	10 SECS	46	
1	8	300	143	80	17	126	10 MINS	67	
1	10	600	130	65	10	110	10 SECS	30	

Paul Okaome, Sarah Akintola / NIPES Journal of Science and Technology Research
4(2) 2022 pp. 182 - 191

		300	120				10 MINS	50					
Fable 7. Fresh water drilling mud + Gum Arabic + KCl salt													
Gum Arabic + KCl													
Wt. of Viscosifier in WBM (g)	Weight of Salt (g)	Fan Speed (RPM)	Dial Reading	Apparent Viscosity (cP)	Plastic Viscosity (cP)	Yield Point (lb/100 sq ft)	Gel Strength (lb/100 sq ft)						
1	2	600	237	118.95	19	199	10 SECS	103					
		300	218				10 MINS	121					
1	4	600	192	96	12	168	10 SECS	95					
		300	180				10 MINS	112					
1	6	600	179	89.5	12	155	10 SECS	103					
		300	167				10 MINS	118					
1	8	600	159	79.5	39	81	10 SECS	90					
		300	120				10 MINS	105					
1	10	600	129	64.5	32	65	10 SECS	80					
		300	97				10 MINS	95					

Table 8. Fresh water drilling mud + Gum Arabic + NaCl salt

Gum Arabic + NaCl												
Wt. of Viscosifier in WBM (g)	Weight of Salt (g)	Fan Speed (RPM)	Dial Reading	Apparent Viscosity (cP)	Plastic Viscosity (cP)	Yield Point (lb/100 sq ft)	Gel Strength (lb/100 sq ft)					
1	2	600	180	90	11	158	10 SECS	110				
		300	169				10 MINS	133				
1	4	600	171	85.5	12	147	10 SECS	102				
		300	159				10 MINS	119				
1	6	600	155	77.5	12	131	10 SECS	85				
		300	143				10 MINS	107				
1	8	600	136	68	7	122	10 SECS	65				
		300	129				10 MINS	95				
1	10	600	110	55	20	70	10 SECS	50				
		300	90				10 MINS	80				

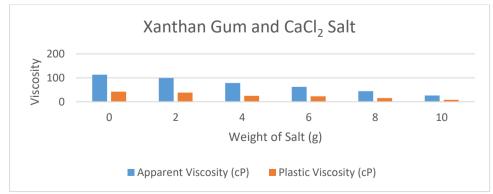


Figure 1. Effect of Xanthan Gum and CaCl₂ salt on the Viscosity of the Drilling Fluid

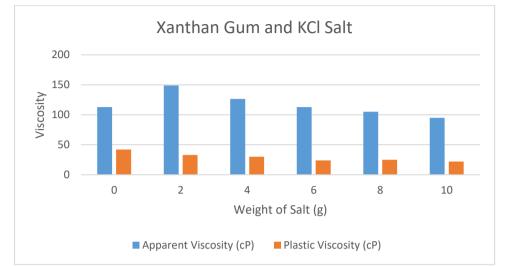


Figure 2 Effect of Xanthan Gum and KCl salt on the Viscosity of the Drilling fluid

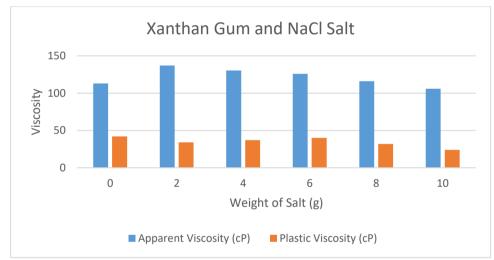


Figure 3 Effect of Xanthan Gum and NaCl salt on the Viscosity of the Drilling fluid

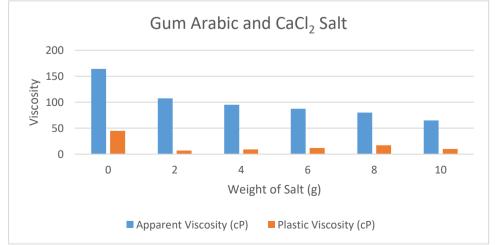


Figure 4 Effect of Gum Arabic and CaCl₂ salt on the Viscosity of the Drilling fluid 188

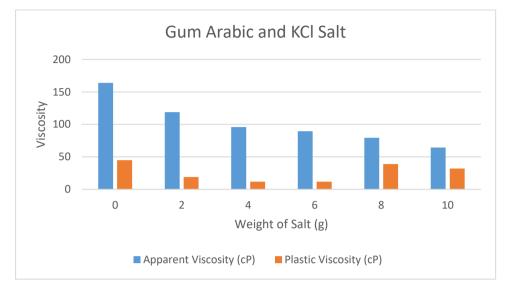


Figure 5 Effect of Gum Arabic and KCl salt on the Viscosity of the Drilling fluid

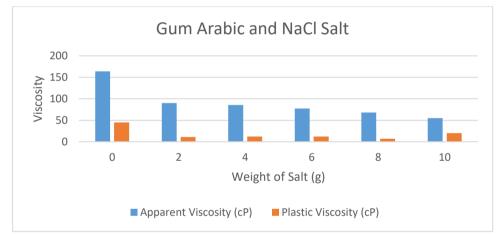


Figure 6 Effect of Gum Arabic and NaCl salt on the Viscosity of the Drilling fluid

The effects of CaCl₂, NaCl, and KCl salts on the rheological properties of fresh water-based drilling fluid with additives (viscosifiers in this case, Xanthan Gum or Gum Arabic) were investigated using five different salt sample weights for each of the three distinct salts used, with the viscosifier weight remaining constant (1 gram) for all samples analyzed.

CaCl2 in Xanthan Gum Viscosified Water-based Drilling Mud

From the results in Figure 1, a downward trend of plastic viscosity and apparent viscosity is seen with a corresponding increase of $CaCl_2$ weight. This salt weight in solution is perceived in this instance as the concentration of salt and an increase in weight infers a corresponding increase in the concentration of salt. Also, from the tables of results, the ability of the drilling fluid to hold cutting and transport them to the surface (Gel Strength) was badly depleted upon the increase in the concentration of salts. This effectively means that $CaCl_2$ has a depleting effect on the rheological properties of Gum Arabic.

KCl in Xanthan Gum Viscosified Water-based Drilling Mud

From the results in Figure 2, a downward trend plastic viscosity and apparent viscosity is seen with corresponding increase of KCl weight. This salt weight in solution is perceived in this instance as concentration of salt and an increase in weight infers a corresponding increase in concentration of salt. Also, from the tables of results, the ability of the drilling fluid to hold cutting and transport them to the surface (Gel Strength) was badly depleted upon increase in concentration of salts. This effectively means that KCl has a depleting effect on the rheological properties of Xanthan Gum.

NaCl in Xanthan Gum Viscosified Water-based Drilling Mud

From the results in Figure 3, a downward trend of plastic viscosity and apparent viscosity is seen with a corresponding increase of NaCl weight. This salt weight in solution is perceived in this instance as the concentration of salt and an increase in weight infers a corresponding increase in the concentration of salt. Also, from the tables of results, the ability of the drilling fluid to hold cutting and transport them to the surface (Gel Strength) was badly depleted upon an increase in the concentration of salts. This effectively means that NaCl has a depleting effect on the rheological properties of Xanthan Gum.

CaCl₂ in Gum Arabic Viscosified Water-based Drilling Mud

From the results in Figure 4, a downward trend of plastic viscosity and apparent viscosity is seen with a corresponding increase of $CaCl_2$ weight. This salt weight in solution is perceived in this instance as the concentration of salt and an increase in weight infers a corresponding increase in the concentration of salt. Also, from the tables of results, the ability of the drilling fluid to hold cutting and transport them to the surface (Gel Strength) was badly depleted upon an increase in the concentration of salts. This effectively means that $CaCl_2$ has a depleting effect on the rheological properties of Gum Arabic.

KCl in Gum Arabic Viscosified Water-based Drilling Mud

From the results in Figure 5, a downward trend of plastic viscosity and apparent viscosity is seen with a corresponding increase of KCl weight. This salt weight in solution is perceived in this instance as the concentration of salt and an increase in weight infers a corresponding increase in the concentration of salt. Also, from the tables of results, the ability of the drilling fluid to hold cutting and transport them to the surface (Gel Strength) was badly depleted upon an increase in the concentration of salts. This effectively means that KCl has a depleting effect on the rheological properties of Gum Arabic.

4. Conclusion

Calcium Chloride (CaCl₂), Potassium Chloride (KCl), and Sodium Chloride (NaCl) Salts each had detrimental impacts on the desirable rheological properties of the Gum Arabic and Xanthan Gum viscosified water-based drilling fluid, according to this research.

A decreasing trend in plastic viscosity and apparent viscosity was seen across all samples, while the salt weight was increased as can be seen in the visualizations and tables of data. This salt weight in solution is interpreted as salt concentration in this case, and an increase in weight implies an increase in salt concentration.

Salts had a detrimental impact on the desirable rheological properties of the Gum Arabic and Xanthan Gum viscosified water-based drilling fluid, according to this research.

A decreasing trend in plastic viscosity and apparent viscosity was seen across all samples, while the salt weight was increased as can be seen in the visualizations and tables of data. This salt weight in solution is interpreted as salt concentration in this case, and an increase in weight implies an increase in salt concentration.

References

- Azar J. J. and Robello Samuel G., 2007. "Drilling Engineering". PennWell Publishing, Tulsa, Oklahoma, p. 37 – 83.
- [2] Amanuallh M. D., Marsden J. R. and Shaw H. F., 1997. "An Experimental Study of the Swelling Behaviour of Mudrocks In the Presence of Drilling Mud System". Canadian Journal of Petroleum Tech. 36(3): p. 45-50.
- [3] Salamone J. C., Clough S. B., 1982. "Xanthan Gum A Lyotropic, Liquid Crystalline Polymer and Its Properties as A Suspending Agent". Baroid Industries, Inc., Houston, Texas, p. 1 4.
- [4] Navarrete R. C., Himes R. E. and Seheult J. M.: 2000. "Applications of Xanthan Gum in Fluid-Loss Control and Related Formation Damage". Paper presented at the 2000 SPE Permian Basin Oil and Gas Recovery Conference, Midland, Texas, 21–23 March 2000.
- [5] Parija, S., Misra, M. and Mohanti, A.K., 2001. "Studies of Natural Gum Adhesives: An Overview". J. Macromol. Sci., Polymer Rev. C41 3, p. 175–197.
- [6] Lummus, J.C., and Azar, J.J., 1986. "Drilling Fluids Optimization—A Practical Field Approach" vol. 112, PennWell Publishing, Tulsa, Oklahoma, p. 160.
- [7] Enilari M.G., Osisanya S.O., Ayeni K.: "Development and Evaluation of Various Drilling Fluids for Slim-Hole Wells" presented at the Petroleum Society's 7th Canadian International Petroleum Conference (57th Annual Technical Meeting), Calgary, Alberta, Canada, June 13 – 15, 2006.
- [8] Elward-Berry J., Thomas E. W., 1994. "Rheologically Stable Deepwater Drilling Fluid Development and Application" presented at the 1994 IAOC/SPE Drilling Conference held in Dallas, Texas, 15-18 February 1994.
- [9] API Recommended Practice 13B-1. "Recommended Practice for Field Testing Water-Based Drilling Fluid", 3rd Edition. API Publishing Services, Washington D.C., USA; 2003.