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A new deterministic model for the transmission dynamics of Dengue 

and its co-endemicity with Chikungunya virus is designed and 

theoretically used to assess the misdiagnoses due to the co-endemicity 

of the two viruses in the human population. The phenomenon of 

backward bifurcation is characterized by the co-existence of a stable 

disease-free equilibrium (DFE) and a stable endemic equilibrium 

point (EEP). When the associated reproduction number of the model 

is less than unity in a population where there is co-endemicity of 

Dengue and Chikungunya, the classical requirement of having the 

reproduction number less than unity, while necessary is no longer 

sufficient for the effective control. The model shows that backward 

bifurcation does not occur if and only if the disease induced death for 

humans for both Dengue and Chikungunya are absent. 
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1. Introduction 

In the study of the transmission dynamics of diseases with two viruses co-existing is one of the 

important problems in mathematical epidemiology. Consequently, the mathematical modeling of 

diseases with multiple pathogen strains, such as Dengue fever, HIV/AIDS, influenza, malaria and 

West Nile Virus, has been considered as a global concern [1, 5]. These studies have, in general, 

focused in the determination of threshold conditions for the co-existence of the strains, as well as 

the evaluation of the role co-endemicity (a disease persisting in the population or region, generally 

having settled to a relatively constant rate) in the transmission dynamics of disease strains. 

The threshold quantity 0R , called the basic reproduction number, measures the average number of 

new cases generated by a typical infected individual introduced into a completely susceptible 

population [1-3]. Typically, when 0R  less than unity, a small influx of infected individual will not 

generate large outbreaks, and the disease dies out in time (in this case, the disease free equilibrium 

DFE is asymptotically stable). On other hand, the disease will persist if 0R  exceeds unity, where a 

stable endemic equilibrium exists. This phenomenon, where the disease-free equilibrium loses its 

stability and a stable endemic equilibrium appears as 0R  increases through one, is known as not 
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comparable bifurcation [4, 5, 6, 7, 8, 9]. Other model for disease transmission undergo another type 

of bifurcation, known as backward bifurcation where a stable endemic equilibrium co-exists with 

DFE when 10 R . 

The epidemiological implication of backward bifurcation is that the requirement 10 R , while 

necessary, is not sufficient for effective disease control. In a backward bifurcation setting, once 0R  

crosses unity, the diseases can be invaded to a relatively high endemic level [10]. In this case, 

decreasing 0R  to its former level will not necessarily make the disease disappear [6]. The aim of 

this study is to know the effect of previous Dengue infection on the dynamics of Chikungunya, 

taking into consideration the effect of misdiagnosis of Dengue infection due to its co-endemicity 

with the Chikungunya virus in a given human population. The paper contains rigorous analysis on 

the threshold for previously published results on models that shows the reproduction number and 

some new results. 

 

 

Table 1: Description of state variables of the model (1) 

 
State Variables Description 

 

         )(tSH  Population of susceptible individuals 

         )(tED  Population of humans exposed to dengue 

        )(1 tI D  Population of infectious humans with dengue 

        )(2 tI D  Population of infectious humans with dengue correctly   diagnosed 

       )(tI DW  Population of wrongly diagnosed dengue cases    

         )(tRD  Population of humans who recovered from dengue  

         )(tEC  Population of humans exposed to chikungunya  

         )(1 tIC  Population of infectious humans with chikungunya 

          )(2 tIC  Population of infectious humans with chikungunya correctly   diagnosed    

        )(tI CW  Population of wrongly diagnosed chikungunya cases 

        )(tRC  Population of humans who recovered from chikungunya 

        )(tS MD  Population of susceptible dengue vectors                                                

        )(tEMD  Population of exposed dengue vectors 

        )(tI MD  Population of infectious vectors with dengue  

          )(tSMC  Population of susceptible chikungunya vectors 

         )(tEMC  Population of exposed chikungunya vectors 

          )(tI MC  Population of infectious vectors with chikungunya 
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Table 2: Description of parameters of model (1) 
 

Parameter Description 
 

 

)(tH  Recruitment rate for humans. 

)(tH  Natural mortality rate for humans. 

               DV  Probability of transmission of dengue from humans to vectors          

                 DH  Probability of transmission of dengue from vectors to humans 

                                          DVb  Biting rate of vectors that transmit dengue  

                                             1D  Modification parameter for reduced infectiousness of humans exposed to dengue 

                 2D  Modification parameter for reduced infectiousness of humans rightly diagnosed for   dengue 

                   3D  Modification parameter for increased infectiousness of humans wrongly diagnosed for dengue 

                  D   Progression rate of humans exposed to dengue 

                                            D  Human disease induced death for dengue 

                                             D  Rate of diagnoses for dengue 

                                            DP  Fraction of humans wrongly diagnosed for dengue 

                                           D  Modification parameter for reduced mortality of humans     rightly diagnosed for dengue 

                                           D  Recovery rate of humans from dengue 

                                          D  Rate of re-diagnoses for dengue 

                                         V  Recruitment rate of vectors that transmit dengue 

                                          V  Natural mortality rate for vector 

                 MD  Progression rate of vectors exposed to dengue 

                                           CV  Probability of transmission of chikungunya from humans to Vectors 

                  CH  Probability of transmission of chikungunya from vectors to humans  

                   CVb  Biting rate of vectors that transmit chikungunya 

                   1C  Modification parameter for reduced infectiousness of humans exposed to chikungunya 

                   2C  Modification parameter for reduced infectiousness of human rightly diagnosed for chikungunya 

         3C  Modification parameter for increased infectiousness of humans wrongly diagnosed                    

                                          For chikungunya 

         C  Progression rate of humans exposed to chikungunya 

         C  Human disease induced death for chikungunya 

         C  Rate of diagnoses for chikungunya 

         CP  Fraction of humans wrongly diagnosed for chikungunya 

  C  Modification parameter for reduced mortality of humans rightly diagnosed for chikungunya 

  C  Recovery rate of humans from chikungunya 

                 C  Rate of re-diagnoses for chikungunya 

  VC  Recruitment rate of vectors that transmit chikungunya 

  MC  Progression rate of vectors exposed to chikungunya 
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2.0   Model Formulation  

 

Consider the following model for the transmission dynamics of Dengue Chikungunya model (see 

[11]) 
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where the associated variables and parameters are described in Table (1).  
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The model has a disease-free equilibrium (DFE) given by 
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Furthermore, the associated reproduction number [11] of the model (1)   is
],,max[)( 00

1

0 CDST == −   

                                                                                                                                                                        

With   being the spectral radius of ,1−ST is given by  

 

)3(,
)()1()((

,
)()1()((

108765

2

237281697

2

02

94321

2

233241243

2

0

ggggg

gPPggggb

ggggg

gPPggggb

VH

CCCCCCCCCCCCMCHVCCVCVCH

VH

DDDDDDDDDDDDMDHVDDVDVDH

D











++−++
=



++−++
=

 

 

3.0 Backward Bifurcation Analysis 

Theorem 1: The model (1) exhibits backward bifurcation phenomenon at ℜ0𝐷 = 1  whenever a 

bifurcation coefficient, denoted by a  is positive. 

 

Proof: 

 The existence of backward bifurcation is explored using the Center manifold Theory [12] 
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It follows, that the model (1) can be re-written as 
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Consider the case with
*

DHDH  = , is a bifurcation parameter. Solving for 
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From ℜ0𝐷 = 1 yields 

 

)5(
))()1()(( 233241243

2

2

94321*

DDDDDDDDDDDDVDHMDDVDV

VH
DHDH

gppggggb

ggggg






++−++


==  

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

)4(

,

,

,

,

,

,

,

,

,)1(

,

,

,

,

,)1(

,

,

,

171618

17

161516

16

151515

15

141314
14

131213

13

121212
12

11911
11

10810

10

10989

9

878

8

717

7

666

6

535

5

5434
4

323

3

212
2

1111
1





























































−=

+−=

−−=

−=

+−=

−−=

−=

++−=

+++−−=

++−=

+−=

−=

++−=

+++−−=

++−=

+−=

−−−=

xxF
dt

dx

xxF
dt

dx

xxF
dt

dx

xxF
dt

dx

xxF
dt

dx

xxF
dt

dx

xxF
dt

dx

xxpF
dt

dx

xxxpF
dt

dx

xxF
dt

dx

xxF
dt

dx

xxF
dt

dx

xxpF
dt

dx

xxxpF
dt

dx

xxF
dt

dx

xxF
dt

dx

xxxF
dt

dx

VMC

VMCVC

VVCVC

VMD

VMDVD

VVDVD

HC

CHCCC

CCHCCCC

CCHC

HCCH

HD

DHDDD

DDHDDDD

DDHD

HDDH

vCHDHH





































 
Akhaze R.U. and Ako I.I./ NIPES Journal of Science and Technology Research 

4(1) 2022 pp. 1-11 

7 

 

 

 

The Jacobian of the system (4) at the DFE with
*

DHDH  = , is given by: 
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3.1 Computation of bifurcation coefficients a and b 

 

Applying the Center Manifold Theory as stated in [12], we compute the associated non-zero partial 

derivatives of the right hand sides of the transformed system (4), (evaluated at the DFE with 
* =

) the associated bifurcation coefficients, a and b, are given by 
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Substituting (7) and (8) in (9), (having computed the associated non-zero partial derivatives for a 

and b), after several algebraic calculations, we obtain 
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𝑎 = −
2𝑣2𝛽𝐷𝐻𝑏𝐷𝑉𝑤14

𝑁𝐻
∗ (𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10 + 𝑤11)

 −
2𝑣2𝛽𝐶𝐻𝑏𝐶𝑉𝑤17

𝑁𝐻
∗ (𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10 + 𝑤11)

 −
2𝑣13𝛽𝐷𝑉𝑏𝐷𝑉𝑤12

𝑁𝐻
∗ (𝜂𝐷1𝑤2 + 𝑤3 + 𝜂𝐷2𝑤4 + 𝜂𝐷3𝑤5)

 −
2𝑣16𝛽𝐶𝑉𝑏𝐶𝑉𝑤15

𝑁𝐻
∗ (𝜂𝐶1𝑤7 + 𝑤8 + 𝜂𝐶2𝑤9 + 𝜂𝐶3𝑤10)

 +(
2𝑣13𝛽𝐷𝑉𝑏𝐷𝑉𝑥12

∗

𝑁𝐻
∗2 (𝜂𝐷1𝑤2 + 𝑤3 + 𝜂𝐷2𝑤4 + 𝜂𝐷3𝑤5)

 +
2𝑣16𝛽𝐶𝑉𝑏𝐶𝑉𝑥15

∗

𝑁𝐻
∗2 (𝜂𝐶1𝑤7 + 𝑤8 + 𝜂𝐶2𝑤9 + 𝜂𝐶3𝑤10)) ×

 (𝛿𝐷𝛾𝐷(𝜃𝐷𝛼𝐷𝛿𝐷 + 𝜃𝐷𝑃𝐷𝜏𝐷 + 𝜃𝐷𝜇𝐻𝑃𝐷 + 𝜃𝐷𝜙𝐷𝛼𝐷 + 𝑔3𝑔4)

 +𝛿𝐶𝛾𝐶(𝜃𝐶𝛼𝐶𝛿𝐶 + 𝜃𝐶𝑃𝐶𝜏𝐶 + 𝜃𝐶𝜇𝐻𝑃𝐶 + 𝜃𝐶𝜙𝐶𝛼𝐶 + 𝑔7𝑔8))                                                  (10)
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Obviously, b > 0 for all biologically feasible values. However, it is required that  𝑎 < 0 and 𝑏 > 0 

for the backward bifurcation phenomenon to occur. The bifurcation coefficient 𝑎 can only be 

negative when the disease-induced deaths for the human population for both Dengue and 

Chikungunya,  𝛿𝐷 and 𝛿𝐶 , respectively have been eliminated from the model system i.e. after 

substituting 0== CD  , into the expression for 𝑎, 𝑎 can be now be written as  

𝑎 = −
2𝑣2𝛽𝐷𝐻𝑏𝐷𝑉𝑤14

𝑁𝐻
∗ (𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10 + 𝑤11)

 −
2𝑣2𝛽𝐶𝐻𝑏𝐶𝑉𝑤17

𝑁𝐻
∗ (𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10 + 𝑤11)

 −
2𝑣13𝛽𝐷𝑉𝑏𝐷𝑉𝑤12

𝑁𝐻
∗ (𝜂𝐷1𝑤2 + 𝑤3 + 𝜂𝐷2𝑤4 + 𝜂𝐷3𝑤5)

 −
2𝑣16𝛽𝐶𝑉𝑏𝐶𝑉𝑤15

𝑁𝐻
∗ (𝜂𝐶1𝑤7 + 𝑤8 + 𝜂𝐶2𝑤9 + 𝜂𝐶3𝑤10).                                                      (11)

 

Clearly, 𝑎 < 0. 
 

Hence, backward bifurcation phenomenon does not occur if and only if the disease-induced deaths 

for humans for both Dengue and Chikungunya,  𝛿𝐷 and 𝛿𝐶 , respectively, are absent. 

Thus, the analysis in this section has confirmed that the backward bifurcation phenomenon can be 

induced by disease- induced deaths for humans for both Dengue and Chikungunya. Furthermore, the 

DFE of system (4)  can be shown to be globally asymptotically stable (GAS) after the cause of the 

backward bifurcation is removed from the model (1) 

 

4.0 Conclusion 

 

The phenomenon of backward bifurcation Is characterized by the co-existence of a stable DFE and 

a stable EEP when the associated reproduction number of the model is less than unity. 
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In a population where there is co-endemicity of Dengue and Chikungunya, the classical requirement 

of having the reproduction number less than unity, while necessary, is no longer sufficient for 

effective control, in this case. Effective control policies will now be highly dependent on the initial 

sizes of the sub-population of the model. 
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