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In this study the values of the β+ disintegration energy is calculated using 

the standard values of masses of mirror nuclei. These values are used to 

plot a graph of β+ transformation energy against A2/3. The nuclear radius 

parameter is determined from the slop of the graph as r0 = 1.23 × 10-15 

m. The study then continues to compute the numerical values of the 

Coulomb energy difference between mirror nuclei using Bethe-

Weizsäcker mass formula. The nuclear radius parameter determined 

from the Coulomb energy difference appears to have a mean value of r0 

= 1.2368 × 10-15 m. These calculated values are in good agreement with 

r0 = 1.2 × 10-15 m, measured from the experimental data by electron 

scattering and μ-mesonic atoms. These results have shown that the 

apparent discrepancy between the values for the nuclear charge 

parameter derived from electron scattering and μ-mesonic atoms and 

those derived from mirror nuclei experiments might not be attributed to 

the use of classical principles. Thus, these developments in the 

theoretical measurement for nuclear radius parameter from Coulomb 

energy difference and β+ disintegration energy provide more accurate 

results which can be used to improve model parameters. 
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1. Introduction 

In the march towards the new era of nuclear physics, the knowledge of nuclear extension in space, 

often characterized by nuclear radius, plays a very important role in understanding complex 

atomic nuclei. It plays a key role in studying the static properties of atomic nuclei [1, 2] in testing 

theoretical models of nuclei as well as in studying astrophysics and atomic physics [3]. The 

developments in the measurement techniques for radii of nuclei provide more accurate 

experimental results which can be used to improve model parameters. Thus, experimental and 

theoretical nuclear radii studies are one of the important topics in nuclear physics. The radius of 

atomic nucleus can be determined from its charge density distribution [4] which is most probably 

spherical and experimental studies demonstrate that the volume or radius of the nucleus is 

naturally proportional to the number of nucleons. Most nuclei have a nearly spherical shape and 

can be characterized by an effective radius R = r0 A
1/3, where A is the nucleon number [5]. The 

experimental data indicate that the order of magnitude of the range of nuclear radius parameter, r0 

is not constant [6]. Its value varies within an interval depending on the nuclide and on the way the 

nuclear radius was measured.  
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Several authors investigated the apparent discrepancy between the values, r0 = 1.2 × 10-15 A1/3 m 

for the nuclear radii derived from electron scattering and μ-mesonic atoms carried out with heavier 

nuclei and those  r0 = 1.45 × 10-15 A1/3 m derived from mirror nuclei experiments which are 

concerned with light nuclei. Wilson, ref.[7] determined the values of charge radius, r0 = 1.4 × 10-15 

A1/3 m from the average nuclear radius, R = 1.36 × 10-15 A1/3 [1 + (3/αr)]-1/3 m deduced from the 

measured Coulomb energy differences between mirror nuclei. Thus this value of nuclear charge is 

in agreement with the nuclear radii obtained for the same nuclei from experimental methods [8]. 

But it is slightly higher than that obtained by high energy electron scattering method. The 

discrepancy between these values suggested being due to the use of classical principles instead of 

quantum mechanical principles in calculating the Coulomb energy. Peaslee [9] provide a more 

rigorous expression for Coulomb energy by adding correction due to non-uniformity of the 

nuclear charge distribution, the requirement of the discrete arrangement of the charges on protons, 

effect of uncertainty in the localization of the protons, non-sphericity of the nucleus, corrections of 

position of the protons and the size of the nucleus and measure the correct value of nuclear charge 

parameter. 

In this work circumvent the difficulty in calculating the charge radii from quantum mechanical 

principles; we determine r0 from the β+ transformation energy using the standard values of masses 

of the mirror nuclei from ref. [10] and from Coulomb energy difference calculated from Bethe-

Weizsäcker formula [11-14]. The energetic in the β+ transformation of the mirror nuclei contain an 

important insight on how Coulomb interaction may affect nuclear wave functions [15,16]. The 

nuclear charge radius can be estimated based on the study of the energetic in the β+ transformation 

of the mirror nuclei. As for other methods, the nuclear charge radii from β+ transformation energy 

leads to the evidence that the nuclear volume is substantially proportional to the number of 

nucleons in a determined nucleus.  

There are a group of nuclei, called mirror nuclei, which their stable decay products each contain 

just one more neutron than the number of protons and their mass number is A = 2Z – 1. Since the 

mass number A doesn’t change, the nuclear radius, R = r0A
1/3 will not change. Experimental 

evidence showed that nuclear forces are perfectly charge-symmetric and charge-independent 

symmetrical in neutrons and protons and that nuclear binding between two neutrons is the same as 

that between two protons. The measured energy differences in the excited analogue states between 

mirror nuclei are close to each other. This indicates that the “nuclear part” of the binding energies 

in pairs of mirror nuclei should be close to each other [17-19]. But one expects differences in the 

excited analogue states between mirror nuclei due to Coulomb interaction as the number of 

protons and neutrons are interchanged [16]. 

2. Methodology  

2.1 The Liquid Drop Model of Nucleus 

Protons inside the nucleus suffer electrostatic repulsion. This acts against the attractive binding of 

the nuclear forces. We know there is an electromagnetic repulsive force between protons due to 

their charge and so this will reduce the binding energy for nucleons with several protons. As we 

believe the nuclear force itself is independent of nucleon type, then the protons will on average be 

spread evenly throughout the nucleus, which means the charge density is uniform. The nucleus is 

electrically charged with total charge +Ze. Assume that the charge distribution is spherical and 

from the liquid drop model we set ρ = constant. 
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Figure 1: A charge drops of Van der Waal like fluid with a relatively thin surface layer dr. 

 

The reduction in binding energy due to the Coulomb interaction can be computed from classical 

electrostatics by taking the definition of the charge density: 

 𝜌 =
charge

volume
=

3𝑍𝑒

4𝜋𝑅3 

where R = r0A
1/3 is the outer radius of nucleus includes self interaction of last proton with itself. 

From Figure 1, the electrostatic potential at the surface of a sphere of radius r < R: 

 𝑈(𝑟) =
𝑘𝑞

𝑟
=

𝑘

𝑟

4𝜋𝑟3𝜌

3
=

𝑘

𝑟

4𝜋𝑟3

3

3𝑍𝑒

4𝜋𝑅3 =
𝑍𝑘𝑒

𝑅
(

𝑟

𝑅
)

2

     (1) 

The next layer of nuclear matter has a charge equal to 

 𝑑𝑞 = 4𝜋𝑟2𝑑𝑟𝜌         (2) 

and its potential energy is 

 𝑈(𝑟)𝑑𝑞 =
𝑍𝑘𝑒

𝑅
(

𝑟

𝑅
)

2

4𝜋𝑟2𝑑𝑟𝜌 = 𝑘(𝑍𝑒)2 3𝑟4

𝑅6 𝑑𝑟 

where the use of (1) and (2) have been made. Hence the total Coulomb energy is 

 𝐸𝐶 = ∫ 𝑈(𝑟)𝑑𝑞
𝑍𝑒

0
=

3𝑘(𝑍𝑒)2

𝑅6 ∫ 𝑟4𝑑𝑟
𝑅

0
 

Changing the integral to dr, we find: 

 𝐸𝐶 =
3𝑘(𝑍𝑒)2

𝑅6

𝑅5

5
=

3

5

𝑘𝑒2

𝑟0

𝑍2

𝐴1/3
        (3) 

Equation (3) represents the electrostatic energy required to assemble a spherical nucleus with Z 

protons. Assuming mirror nuclei to be of the same structure, their mass difference is caused by 

Coulomb energy difference and mass difference between neutron and proton. The Coulomb 

energy of both mirror nuclei is: 
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 𝑋𝑍
𝐴 → 𝐸𝐶 =

3

5

𝑘𝑒2

𝑟0

𝑍2

𝐴1/3 

 𝑌𝑍+1
𝐴 → 𝐸𝐶′ =

3

5

𝑘𝑒2

𝑟0

𝑍(𝑍−1)

𝐴1/3  

For a pair of mirror nuclei AXZ – AXZ – 1 of radius R, charges Z and (Z - 1), the Coulomb energy 

difference is 

 ∆𝐸𝐶 = 𝐸𝐶 − 𝐸𝐶′ =
3

5

𝑘𝑒2

𝑟0𝐴1/3
[𝑍2 − (𝑍 − 1)2] 

  =
3

5

𝑘𝑒2

𝑟0
𝐴2/3         (4) 

 

2.2 The Coulomb Energy Difference from Transformation Energy 

As is well known, experimentally, there exists a difference in the mass of the constituents of an 

atom, Zmp and Nmn, and its atomic mass, mnucleus. That difference is called the Nuclear Binding 

Energy (EB), which is considered the energy necessary to keep the nucleons bound together, or the 

energy required to separate the nucleus into nucleons. For a nucleus with A nucleons, Z protons 

and N neutrons the Binding energy is given as 

𝐸𝐵 =  𝑎𝑉𝐴 − 𝑎𝑆𝐴
2

3 −
𝑎𝐶𝑍(𝑍−1)

𝐴1/3 −
𝑎𝐴(𝐴−2𝑍)2

𝐴
+

𝛿

𝐴1/2     (5) 

  𝛿 = {
+𝑎𝑃 ,              if 𝑁 is even and 𝑍 is even

0,                if 𝐴 is odd                        
−𝑎𝑃,                if 𝑁 is odd and 𝑍 is odd    

  

where aV, aS, aC and aP are fit parameters. Equation (5) includes both empirical and theoretical 

parts; the theoretical part of this formula is obtained from the “liquid drop” model as proposed by 

George Gamow [20] containing some terms which were later developed by Niels Bohr and John 

Archibald Wheeler [12]. The atomic mass of elements as a function of mass number and atomic 

number can be estimated in terms of the binding energy (EB) written in Bethe–Weizsäcker formula 

[11,21], as below:  

 𝑀( 𝑋𝑍
𝐴 ) = 𝑍𝑚𝐻 + 𝑁𝑚𝑛 −

1

𝑐2  𝐸𝐵       (6) 

where ZmH and Nmn  are mass of hydrogen atom, and neutron mass respectively, c is the speed of 

light in a vacuum, c2 is the mass-energy equivalence factor [18]. Equation (6) estimates 

appropriately the atomic masses, binding energy data of stable and near-stable nuclei and other 

properties of the nuclei [21]. Using the Bethe-Weizsäcker mass formula and whiting for odd A 

nuclei; δ = 0 and a3 is semi-empirical parameters. Some values have been found by several 

authors. The Coulomb energy ∆EC can be calculated using SEMF. Therefore the difference in 

binding energy of both mirror nuclei, 𝑀( 𝑋𝑍
𝐴 ) and 𝑀( 𝑌𝑍−1

𝐴 ) is given by 

 ∆𝐸𝐵 = 𝑀( 𝑋𝑍
𝐴 ) − 𝑀( 𝑌𝑍−1

𝐴 )  

   = [𝑍 − (𝑍 − 1)]𝑀𝐻 + (𝑁 − 𝑍)𝑀𝑛 + 𝑎𝐶[𝑍2 − (𝑍 − 1)2]𝐴−
1

3 
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  = 𝑀𝐻 − 𝑀𝑛 + 𝑎𝐶𝐴
2

3 = 𝑀𝐻 − 𝑀𝑛 + ∆𝐸𝐶 

  = 1.007825 − 1.008665 + ∆𝐸𝐶 

  = ∆𝐸𝐶 − 0.782455 𝑀𝑒𝑉       (7) 

2.3 The β+ Disintegration Energy 

The positron β-decay involves the transformation of one proton in the parent nucleus turns into a 

neutron in the product nucleus, via the weak interaction. Simultaneously a neutrino and a positron 

(the β-ray) are expelled from the nucleus the process can be represented as: 

 𝑝1
1 → 𝑛0

1 + 𝑒+1
0 + 𝑣𝑒 + 𝐸(𝛽+) 

For the decay product, the nuclear charge Z of the parent positron β-decaying nucleus decreases to 

Z - 1 and the mass number A doesn’t change [22]. The first member of the pair of the mirror 

nuclear is usually β+ active and undergoes β+ transformation into the second as  

 𝑋𝑍
𝐴 → 𝑌𝑍−1

𝐴 + 𝛽+ + 𝑣𝑒 + 𝐸(𝛽+)       (8) 

The expression of the β+ disintegration energy is therefore: 

 𝐸(𝛽+) = [∆𝑚( 𝑋𝑍
𝐴 ) − ∆𝑚( 𝑌𝑍−1

𝐴 ) − 2𝑚𝑒]𝑐2 − ∆𝐸𝑒𝑛𝑙(𝑒−) 

   = [𝑀( 𝑋𝑍
𝐴 ) − 𝑀( 𝑌𝑍−1

𝐴 ) − 2𝑚𝑒]𝑐2 

  = ∆𝐸𝐵 − 0.10220 𝑀𝑒𝑉       (9) 

Where ∆𝐸𝐵 = 𝑀( 𝑋𝑍
𝐴 ) − 𝑀( 𝑌𝑍−1

𝐴 ). The difference in binding energy can be defined in terms of 

transformation energy as 

∆𝐸𝐵 = 𝐸(𝛽+) + 0.10220 𝑀𝑒𝑉       (10) 

Therefore the Coulomb energy difference in Equation (7) can be calculated by substituting the 

values of binding energy (10) as 

 ∆𝐸𝐶 = ∆𝐸𝐵 + 0.782455 𝑀𝑒𝑉 

  = 𝐸(𝛽+) + 0.884655 𝑀𝑒𝑉       (11) 

The numerical values of Equation (11) are computed in Table 1.  

2.4 The Binding Energy Difference  

Here, the binding energy difference, ∆EB in (1) is calculated by substituting the readily available 

and highly accurate values of masses of the mirror nuclei. 

For the mirror nuclei, 13N7 – 13C6, the disintegration scheme of 13N7 is: 

 𝑁7
13 → 𝐶6

13 + 𝛽+ + 𝑣 

The atomic masses of the nuclei are: 13N7 = 13.005739 u; 13C6 = 13.003355 u. 
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 ∆𝑚( 𝑁7
13 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.10103 𝑢 = 94.10977 𝑀𝑒𝑉 

 ∆𝑚( 𝐶6
13 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.10426 𝑢 = 97.11291 𝑀𝑒𝑉 

 ∆𝐸𝐵 = ∆𝑚( 𝑁7
13 ) − ∆𝑚( 𝐶6

13 ) = 3.00314 𝑀𝑒𝑉     (12a) 

For the mirror nuclei, 15O8 – 15N7, the disintegration scheme of 15O8 is: 

 𝑂8
15 → 𝑁7

15 + 𝛽+ + 𝑣 

The expression of the β+ disintegration energy is: 

 𝐸(𝛽+) = [∆𝑚( 𝑂8
15 ) − ∆𝑚( 𝑁7

15 ) − 2𝑚𝑒]𝑐2 

The atomic masses of the nuclei are: 15O8 = 15.003065 u; 15N7 = 15.000109 u. 

 ∆𝑚( 𝑂8
15 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.12020 𝑢 = 111.96090 𝑀𝑒𝑉 

 ∆𝑚( 𝑁7
15 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.12399 𝑢 = 115.49690 𝑀𝑒𝑉 

 ∆𝐸𝐵 = ∆𝑚( 𝑂8
15 ) − ∆𝑚( 𝑁7

15 ) = 3.53600 𝑀𝑒𝑉     (12b) 

For the mirror nuclei, 23Mg12 – 23Na11, the disintegration scheme of 23Mg12 is: 

 𝑀𝑔12
23 → 𝑁𝑎11

23 + 𝛽+ + 𝑣 

The expression of the β+ disintegration energy is: 

 𝐸(𝛽+) = [∆𝑚( 𝑀12
23 ) − ∆𝑚( 𝑁𝑎11

23 ) − 2𝑚𝑒]𝑐2 

The atomic masses of the nuclei are: 23Mg12 = 22.994125 u; 23Na11 = 22.989770 u. 

 ∆𝑚( 𝑀𝑔12
23 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.19510 𝑢 = 181.72980 𝑀𝑒𝑉 

 ∆𝑚( 𝑁𝑎11
23 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.20029 𝑢 = 186.56890 𝑀𝑒𝑉 

 ∆𝐸𝐵 = ∆𝑚( 𝑀g12
23 ) − ∆𝑚( 𝑁𝑎11

23 ) = 4.83910 𝑀𝑒𝑉     (12c) 

For the mirror nuclei, 31S16 – 31P15, the disintegration scheme of 31S16 is: 
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 𝑆16
31 → 𝑃15

31 + 𝛽+ + 𝑣 

The expression of the β+ disintegration energy is: 

 𝐸(𝛽+) = [∆𝑚( 𝑆16
31 ) − ∆𝑚( 𝑃15

31 ) − 2𝑚𝑒]𝑐2 

The atomic masses of the nuclei are: 31S16 = 30.972071 u; 31P15 = 30.973726 u. 

 ∆𝑚( 𝑆16
31 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.27563 𝑢 = 186.56890 𝑀𝑒𝑉 

 ∆𝑚( 𝑃15
31 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.28226 𝑢 = 262.92350 𝑀𝑒𝑉 

 ∆𝐸𝐵 = ∆𝑚( 𝑆16
31 ) − ∆𝑚( 𝑃15

31 ) = 6.17580 𝑀𝑒𝑉     (12d) 

For the mirror nuclei, 39Ca20 – 39K19, the disintegration scheme of 39Ca20 is: 

 𝐶𝑎20
39 → 𝐾19

39 + 𝛽+ + 𝑣 

The expression of the β+ disintegration energy is: 

 𝐸(𝛽+) = [∆𝑚( 𝐶𝑎20
39 ) − ∆𝑚( 𝐾19

39 ) − 2𝑚𝑒]𝑐2 

The atomic masses of the nuclei are: 39Ca20 = 38.970718 u; 39K19 = 38.963707 u. 

 ∆𝑚( 𝐶𝑎20
39 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.35042 𝑢 = 326.41600 𝑀𝑒𝑉 

 ∆𝑚( 𝐾19
39 ) = 𝑍𝑚𝑝 + (𝐴 − 𝑍)𝑚𝑛 − 𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

   = 0.35827 𝑢 = 333.72910 𝑀𝑒𝑉 

 ∆𝐸𝐵 = ∆𝑚( 𝐶𝑎20
39 ) − ∆𝑚( 𝐾19

39 ) = 7.31310 𝑀𝑒𝑉       (12e) 

where the use of MH = 1.007825 u, Mn = 1.008655 u and 1u = 931.494 MeV, have been made.  

The size of a nucleus is characterized by the root mean square Rrms or by the radius R of the 

uniform sphere [23]. It is well known that the mean squared radii of neutron, proton, charge and 

mass distribution can be defined as follows: 

 〈𝑟𝑐
2〉 =

∫ 𝑟24𝜋𝑟2𝜌(𝑟)𝑑𝑟
∞

0

∫ 4𝜋𝑟2𝜌(𝑟)𝑑𝑟
∞

0

         (13) 

where ρ(r) is the nuclear charge density [24]. For a uniformly charged sphere [ρ(r) = constant] of 

radius R, (13) takes the form: 
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 〈𝑟2〉 =
∫ 𝑟4𝑑𝑟

𝑅
0

∫ 𝑟2𝑑𝑟
𝑅

0

=
3

5
𝑅2 

Thus, the two quantities, Rrms and R are related through the following equation:  

 𝑅𝑟𝑚𝑠 = 〈𝑟𝑐
2〉1/2 = √

3

5
𝑅        (14) 

The Coulomb energy difference for mirror nuclei and β+ transformation energy measured the root 

mean square radius Rrms of the electrical charge distribution [8;25-28]. 

3. Results and Discussion 

The computed values of the binding energy difference (12a – 12e) are presented in Table 1. It can 

be seen from Table 1 that the calculated values of β+ transformation energy (which is through 

weak interaction) of mirror nuclei is closed to the difference in the binding energy of the nuclei. 

 
 

Table 1: The calculated values of the β+ transition energy between the mirror nuclei 
AXZ

  – AXZ – 1 A2/3 ∆EB MeV E(β+) MeV 
13N7 – 13C6 5.52878 3.00314 2.90094 
15O8 – 15N7 6.08220 3.53600 3.43380 

23Mg12 – 23Na11 8.08758 4.83910 4.73690 
31S16 – 31P15 9.86827 6.17580 6.07360 

39Ca20 – 39K19 11.50032 7.31310 7.21090 
51Fe26 – 51Mn25 13.75245 8.80634 8.70414 

 

 

Table 2 shows the computed values of Coulomb energy difference from which nuclear radius 

parameter, r0 is evaluated from the equation:  

 𝑟0 =
3

5

𝑘𝑒2

∆𝐸𝐶
𝐴

2

3 = 0.8640 × 10−11 𝐴
2
3

∆𝐸𝐶
 

   = 0.8640 𝑀𝑒𝑉
𝐴2/3

∆𝐸𝐶
× 10−17 

The mean value of r0 from Table 2 is 1.2368 × 10-15 m. this value is in good agreement with those 

calculated by electron scattering and μ-mesonic atoms, r0 = 1.2 × 10-15 m. 

 

Table 2: will be used to evaluate the r0 parameter of the nuclear radii 
AXZ

  – AXZ – 1 A2/3 ∆EB MeV ∆EC (MeV) r0 (fm) 
13N7 – 13C6 5.52878 3.00314 3.78559 1.26185 
15O8 – 15N7 6.08220 3.53600 4.31845 1.21687 

23Mg12 – 23Na11 8.08758 4.83910 5.62155 1.24301 
31S16 – 31P15 9.86827 6.17580 6.95825 1.22533 

39Ca20 – 39K19 11.50032 7.31310 8.09555 1.22737 
51Fe26 – 51Mn25 13.75245 8.80634 9.48660 1.24672 

 

 



 
A. Adamu etal./ Journal of Science and Technology Research 

1(1) 2019 pp. 137-148 

145 

 

The information represented in Table 1 is extended further by plotting a graph of β+ disintegration 

energy against A2/3 (Figure 2). 

 

 

 

 
 

 

Figure 2: The plot of β+ transition energy against A2/3 with the intersect on 0.908 MeV on E(β+) – 

axis 

 

 

Figure 1 shows the plot of the β+ disintegration energy against A2/3. This is a straight line graph 

with equation:  

 𝑦 = 0.702𝑥 − 0.908 

where the slop of the graph is aC = 0.702 MeV.  

 𝑎𝐶 =
3

5

𝑘𝑒2

𝑟0
= 0.702 𝑀𝑒𝑉 

With the value of aC the nuclear radius parameter r0 can be determined as:.  

 𝑟0 =
3

5

𝑘𝑒2

𝑎𝐶
=

0.8640

𝑎𝐶
× 10−11𝑒𝑉 =

0.8640

0.7020
 × 10−17 𝑚 

  = 1.23 × 10−15 𝑚 

In Figure 1 the fact that the experimental values tend to lie on a straight line indicates that these 

nuclei have Coulomb-energy radii which correspond to a constant-density model R = r0A
1/3, with 

the slope of the data giving the particular value r0 = 1.23 × 10-15 m for the nuclear unit radius. 

Thus, the mean value of r0 for the remaining mirror nuclei will be about 1.23 × 10-15 m. this value 

is in good agreement with those calculated by electron scattering and μ-mesonic atoms, r0 = 1.2 × 

10-15 m.  

y = 0.702x - 0.908

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

E
(β
+

)
M

e
V

A2/3



 
A. Adamu etal./ Journal of Science and Technology Research 

1(1) 2019 pp. 137-148 

146 

 

The root-mean-square nuclear matter radii (Rrms) contain an important insight on nuclear potentials 

and nuclear wave functions. Therefore, these nuclear radius parameters can be applied to 

determine Rrms for various atomic nuclei. The effective radii for various nuclei are calculated by 

substituting the nuclear radius parameter obtained from the Coulomb energy difference as:  

 𝑅 = √
5

3
〈𝑟𝑐

2〉1/2 = 1.23 × 10−15𝐴1/5 𝑚      (15a) 

and from β+ transformation energy as 

 𝑅′ = √
5

3
〈𝑟𝑐

2〉1/2 = 1.2368 × 10−15𝐴1/5 𝑚      (15b) 

Now, the root mean square radii Rrms of nuclei which is related with R by Equation (14), is given 

by: 

 𝑅𝑟𝑚𝑠 = √
3

5
𝑅          (16a) 

and for β+ transformation energy it can take the form: 

 𝑅′𝑟𝑚𝑠 = √
3

5
𝑅′          (16b) 

Table 3 showed the numerical values of root mean square radii R’rms and Rrms for β+ 

transformation energy and Coulomb energy difference respectively are calculated using Equations 

(15a), (15b), (16a) and (16b). 
 

 

Table 3: The numerical values of effective radii and root mean square radii obtained from 

Equations (15a), (15b), (16a) and (16b) all values are in fm (1 fm = 10-15 m). 
AX R = 1.2368 A1/3 R’= 1.23 A1/3 Rrms = 1.2368 A1/3 R’rms = 1.23 A1/3  
12C 2.83157 2.81600 2.19333 2.18127 
14N 2.98086 2.96447 2.30897 2.29627 
16O 3.11654 3.09941 2.41406 2.40079 
19F 3.30028 3.28213 2.55639 2.54233 

20Ne 3.35719 3.33873 2.60047 2.58617 
23Na 3.51729 3.49796 2.72448 2.70951 
24Mg 3.56755 3.54793 2.76341 2.74822 

31P 3.88526 3.86390 3.00951 2.99297 
32S 3.92660 3.90501 3.04153 3.02481 

35Cl 4.04565 4.02341 3.13375 3.11652 
39K 4.19425 4.17119 3.24885 3.23099 

40Ar 4.22980 4.20654 3.27639 3.25837 
55Mn 4.70349 4.67763 3.64331 3.62328 
56Fe 4.73183 4.70581 3.66526 3.64511 

 

 

 

These results (Table 3) are compared with the data obtained from three theoretical approaches: 

optical approximation; rigid target approximation and the exact Glauber Theory, performed using 

a Monte Carlo simulation technique (Table 4). It can be seen from Table 4 that the values obtained 
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from optical approximation and the rigid target approximation result in smaller values of root 

mean square radius when compared with the values extracted from the electron scattering data, 

ref. [29]. The values of root mean square radius obtained in the framework of the Glauber Theory 

and those from Table 3, are in better agreement with the electron scattering data. 
 

 

Table 4: The values of nuclear charge radius extracted from the three theoretical approaches: 

optical approximation [30]; rigid target approximation [31] and Glauber Theory [32]. 
Nuclide: 

AX 

Without NN range With NN range Glauber 

Theory HO, optical WS, optical WS, optical WS, rigid target 
12C 2.31 ± 0.02 2.25 ± 0.01 2.09 ± 0.01 2.18 ± 0.01 2.49 ± 0.01 
14N 2.47 ± 0.03 2.42 ± 0.03 2.23 ± 0.03 2.35 ± 0.04 2.64 ± 0.03 
16O 2.54 ± 0.02 2.48 ± 0.02 2.29 ± 0.02 2.41 ± 0.03 2.69 ± 0.02 
19F 2.61 ± 0.07 2.55 ± 0.08 2.34 ± 0.08 2.44 ± 0.09 2.75 ± 0.07 

20Ne 2.87 ± 0.03 2.84 ± 0.04 2.63 ± 0.03 2.75 ± 0.04 2.99 ± 0.03 
23Na 2.83 ± 0.03 2.73 ± 0.04 2.52 ± 0.04 2.62 ± 0.04 2.91 ± 0.03 
24Mg 2.79 ± 0.15 2.65 ± 0.23 2.44 ± 0.22 2.53 ± 0.24 2.85 ± 0.20 
35Cl 3.045 ± 0.037 2.92 ± 0.04 2.68 ± 0.04 2.76 ± 0.04 3.08 ± 0.04 
40Ar 3.282 ± 0.036 3.16 ± 0.04 2.90 ± 0.03 2.98 ± 0.04 3.30 ± 0.03 

 

 

Thus, the values of root mean square radius obtained in the framework of the Glauber Theory and 

from the Coulomb energy difference and from β+ transformation energy, are in better agreement 

with the electron scattering data than the data obtained from optical approximation and rigid target 

approximation. 

4. Conclusion 

As a conclusion, we may say that the apparent discrepancy between the values, r0 = 1.2 × 10-15 

A1/3 m for the nuclear charge parameter derived from electron scattering and μ-mesonic atoms and 

those r0 = 1.45 × 10-15 A1/3 m derived from mirror nuclei experiments might not be attributed to 

the use of classical principles instead of quantum mechanical principles in calculating the 

Coulomb energy, as our calculated values of nuclear radius parameter using classical principle are 

in good agreement with those measured from the experimental data by electron scattering and μ-

mesonic atoms, r0 = 1.2 × 10-15 m.  

The values of root mean square radius obtained in the framework of the Glauber Theory and from 

the Coulomb energy difference and from β+ transformation energy, are in better agreement with 

the electron scattering data than the data obtained from optical approximation and rigid target 

approximation. These new developments in the theoretical measurement for nuclear radius 

parameter from Coulomb energy difference and β+ disintegration energy provide more accurate 

results which can be used to improve model parameters. 
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