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This study focused on the response surface modelling of an 

automobile brake pad made from a new-fangled composite material. 

The developed brake pad was made from the mixture of cow bone, 

binder (Epoxy and hardener) Abrasive (iron fillings) and filler 

(Calcium carbonate) which were mixed till a homogenous mixture 

was obtained. The properties of the brake evaluated in this study 

were, hardness, compressive strength, water absorption, tensile 

strength, coefficient of friction, wear rate, and density respectively. 

The mixture design and the response surface methodology (RSM) 

were used to optimize the effects of the interaction of cow bone, 

epoxy, hardener, iron fillings, and calcium carbonate on the 

developed brake pad. Models were formulated to predict hardness, 

compressive strength, coefficient of friction, wear rate, and density 

using response surface modelling. A desirability of 0.91 was obtained 

which shows the adequacy of the model terms. The models were then 

validated using coefficient of determination R2. The coefficient of 

determination (R2) obtained ranged from 0.9213, (92.13%) to 0.98.1, 

(98.1%) which indicates that a substantial good fit was achieved by 

the models developed. The values obtained from the validation of 

these models were therefore found to be satisfactory, and shows good 

predictability of the model. 
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1.0 Introduction 

Inadequate models for predicting the physical and mechanical properties of automobile braking 

components have led to failure in automobile components especially brake pad. This have led to 

modelling and development of brake pad using cow bone as a base material. Ji-Hoon, Choi and Lee 

[1] presented a paper on finite element analysis of transient thermo elastic behaviors in disk brakes. 

In this paper a transient analysis for thermo elastic contact problem of disk brakes with frictional 

heat generation was performed using the finite element method. To analyze the thermo elastic 

phenomenon occurring in disk brakes, the coupled heat conduction and elastic equations 

(Cylindrical coordinates) are solved with contact problem. Material used was carbon, carbon 

composite and wear was assumed negligible. The numerical simulation for the thermo elastic 

behavior of disk brake is obtained in the repeated brake condition. The computational results are 

presented for the distributions of pressure and temperature on each friction surface between the 

contacting bodies. It is observed that the orthotropic disc brakes can provide better brake 

performance than the isotropic one because of uniform and mild pressure distribution.  Sterle and 

Klob [2] focuses on surface changes induced by repeated brake applications and tries to provide 

explanations on how such material modifications might affect friction and wear properties of 
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automotive disc brakes. Surface films were investigated locally by transmission electron 

microscopy (TEM) after having prepared thin cross-sections with a focused ion beam instrument 

(FIB). Since the observed friction layers revealed a nano-crystalline structure, modeling with the 

method of movable cellular automata (MCA) was performed by assuming an array of linked 

nanometer-sized particles. Chikalthankar and Nandedkar [3] investigated the frictional and wear 

characteristics of non-asbestos brake pad were studied using link chase machine. The chase machine 

is used to perform the test as per SAE J661.The coefficient of friction and wear is an important 

performance measure in this process. Since long, researchers have explored a number of ways to 

improve and stable the coefficient of friction and wear rate which is similar to the asbestos material. 

A large range of different non-asbestos materials are studied by different researchers; all the research 

work in this area shares the same objectives of achieving the same performance from non-asbestos 

material as that of asbestos material. Sowjanya et al [4] in their research on Structural analysis of 

disk brake rotor. The disc brake is usually made of cast iron was selected for investigation of the 

effect of strength variations on the predicted stress distributions. Aluminum metal matrix composite 

materials were selected and analyzed. The domain was considered as axis-symmetric; inertia and 

body force effects are negligible during the analysis. The model of disc brake is developed by using 

Solid modeling software Pro/E (Cero-Parametric 1.0). Bouchetara et al [5] researched on thermo 

elastic analysis of disk brakes rotor. The main purpose of this study was to analyze the thermo-

mechanical behavior of the dry contact between the brake disk and pads during the braking phase. 

The simulation strategy is based on computer code ANSYS11. The modeling of transient 

temperature in the disk is actually used to identify the factor of geometric design of the disk to install 

the ventilation system in vehicles The thermal-structural analysis is then used with coupling to 

determine the deformation and the Von-Mises stress established in the disk, the contact pressure 

distribution in pads. The results are satisfactory when compared to those of the specialized literature. 

Oder [6] investigated the thermal and stress analysis of brake discs in railway vehicles. This paper 

present work on thermal and stress analysis of brake discs in railway vehicles. Performed analysis 

deals with two cases of braking; the first case considers braking to a standstill; the second case 

considers braking on a hill and maintaining a constant speed. In both cases the main boundary 

condition is the heat flux on the braking surfaces and the holding force of the brake calipers. In 

addition the centrifugal load is considered. Finite element method (FEM) approach is been used, 3D 

model has been modeled for analysis. The results need to be compared with experimental results. 

Zaid [7] presented a paper on an investigation of disc brake rotor by Finite element analysis. In his 

paper, the author has conducted a study on ventilated disc brake rotor of normal passenger vehicle 

with full load of capacity. The study is more likely concern of heat and temperature distribution on 

disc brake rotor. In this study, finite element analysis approached has been conducted in order to 

identify the temperature distributions and behaviors of disc brake rotor in transient response. 

Modeling is done in CATIA & ABAQUS/CAE has been used as finite elements software to perform 

the thermal analysis on transient response.  

This research therefore focused on the response surface modelling of an automobile brake pad made 

from a new-fangled composite material. 

2 Methodology 

2.1 Experimental Procedures  

2.1.1. Experimental Design 

In this study, a four variable mixture design was used to plan and conduct the experiments for the 

production of the brake pads. The mixture design is the best experimental design used in optimising 

formulation processes such as the production of brake pads [8]. It was noted that due to the range 

of selected factors, a D-Optimal design was used rather than a simplex design. The D-Optimal 
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design is very suitable for highly constrained designs. For the D-optimal design selected for the 

mixture design used in this work, the design points were selected to minimize the variance 

associated with the estimates of the coefficients in the model by maximizing the value of 

determinant of the information matrix [9]. Another benefit of the D-Optimal design is that it requires 

a smaller number of experimental runs compared with other types of design [10]. The design space 

was characterised by the low-and high-level constraints for all four factors with their associated 

constraints. For the ranges of the input factors chosen, the upper bounded pseudo values (U_Pseudo) 

was chosen because it gives a larger design space compared to lower bounded pseudo values 

(L_Pseudo). The Design Expert® software version 7.0.0, (Stat-ease, Inc. Minneapolis, USA) was 

used to develop the mixture design as well as developing a statistical model to relate the input factors 

to the chosen responses. Table 1 shows the range of the factors considered in this study and they 

were selected after a thorough review of previous studies [11, 12]. For a mixture design of 

experiment, the input factors are the components or ingredients of a formulation or mixture, and as 

such, their levels are not independent [13]. Consequently, for a four-component mixture: 

0 100iX         (1) 

Where 𝑖 = 1, 2,3, 4 

1 2 3 4 100X X X X+ + + =        (2) 

Four independent factors were studied: Cow bone, Binder (Epoxy and hardener), Abrasive (Iron 

fillings), and Filler (Calcium carbonate). In this study, the responses chosen for consideration were 

hardness, compressive strength, water absorption, tensile strength, coefficient of friction, wear rate 

and density. The four input factors generated 20 experimental runs as shown in Table 2. Of these 

20 experimental runs, 10 represented actual model points while 5 points were used to estimate lack 

of fit and the remaining 5 were replicates. 

 

Table 1: Coded and actual levels of the factors for brake pad formulation 

Factors Unit Symbols 
Variable levels 

Low level High level 

Cow bone % X1  30 40 

Binder % 
X2 40 50 

Abrasive % 
X3 5 10 

Filler % X4 10 15 

 

Table 2: Experimental design matrix for the formulation of brake pads 

Run 

Actual values of factors 

Cow bone 

(%) 

Binder 

(%) 

Abrasive 

(%) 

Filler 

(%) 

1 38 40 8 14 

2 30 50 5 15 

3 30 50 5 15 

4 35 47 5 13 

5 36 42 10 12 

6 40 40 10 10 

7 31 47 9 13 

8 32 43 10 15 

9 34 45 8 13 
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10 40 44 6 10 

11 35 50 5 10 

12 30 50 10 10 

13 40 44 6 10 

 14 40 40 5 15 

15 30 50 10 10 

16 35 50 5 10 

17 32 43 10 15 

18 36 43 6 15 

19 32 50 7 11 

20 36 45 9 10 

Different models were selected from the Design Expert software library and evaluated for their 

suitability in modelling the formulation of the brake pad. These models include linear, quadratic, 

special cubic and cubic. These models can be recognized and easily distinguished from response 

surface models by their lack of an intercept term. The linear model is shown in Equation 3 and it is 

usually the first model to be investigated in situations where the relationship between the factors 

and the responses is thought to be linear. For the linear model, the candidate points should include 

the vertices of the region, the edge centers, the overall centroid, and the axial points that are located 

halfway between the overall centroid and the vertices. 

=

=
1

N

i i
i

Y b X        (3) 

Where Yi is the dependent variable or predicted response, Xi is the independent variables, bo is offset 

term, bi is the regression coefficient and ei is the error term. 

For the quadratic model, the candidate points should include the vertices, the edge centers, the 

constraint plane centroids, the overall centroid, and the axial points as shown in Equation 4. 

= =

= + 
1 , 1

N N

i i ij i j
i i j

Y b X b X X         (4) 

Xj is the independent variables or factors while bij is the coefficient of the interaction terms. 

For the special cubic and cubic model, the candidate points should include the vertices, the thirds of 

edges, the constraint plane centroids, the overall centroid, and the axial points as shown in Equations 

5 and 6. 

= = =

= + +  
1 , 1 1

N N N

i i ij i j ijk i j k
i i j i

Y b X b X X b X X X        (5) 

= = = =

= + + + −   
1 , 1 1 1

( )
N N N N

i i ij i j ijk i j k ij i j i j
i i j i i

Y b X b X X b X X X b X X X X      (6) 

By default, the built-in algorithm of the Design-Expert utilises each model to select the design 

points. For instance, higher order models will usually require more points. In any case, if a model 

with the highest degree is chosen for the experiment, the Design-Expert software will ensure that 

there are enough design points to evaluate that model. The optimisation of the responses and input 

factors was done numerically [14]. The steepest ascent optimisation method was used for 

maximisation of responses while second order models were optimised using the method of ridge 

analysis [14]. 

2.2. Statistical Analysis of Model Results 

Statistical analysis of the results obtained from the experiments was carried out using the Design 

Expert software. Analysis of variance (ANOVA) was used to assess the significance of the statistical 

significance fit of the models representing the responses (hardness, compressive strength, water 

absorption, tensile strength, coefficient of friction, wear rate and density) to the experimental data. 

The ANOVA results was evaluated in terms of statistical parameters such as p value, F value, sum 
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of squares, mean square, lack of fit, standard deviation, coefficient of variation, coefficient of 

determination (R2), adjusted R2, adequate precision, predicted residual sum of squares (PRESS). 

2.3 F value 

The value for a term is the test for comparing the variance associated with that term with the residual 

variance. It is the Mean Square for the term divided by the Mean Square for the Residual. The F-

value is used to test the significance of adding new model terms to those terms already in the model. 

For instance, the significance of the linear terms is tested after removing the effect of the average 

and the blocks. Then, the significance of the quadratic terms is tested after removing the average, 

block and linear effects and so on. 

2.4 P value (Prob>F) 

This is the probability value that is associated with the F Value for a particular term model. It is the 

probability of getting an F Value of this size if the term did not have an effect on the response. In 

general, a term that has a probability value less than 0.05 would be considered a significant effect; 

otherwise, it is generally regarded as not significant. The lack of fit p value is the probability 

associated with the Lack of Fit calculation for a model. Generally, a good model should have an 

insignificant probability value, or P>0.10. 

2.5 Coefficient of determination (R2) 

This is a measure of the amount of variation around the mean explained by the model. The Adjusted 

R-Squared is a measure of the amount of variation around the mean explained by the model, adjusted 

for the number of terms in the model. The adjusted R-squared decreases as the number of terms in 

the model increases if those additional terms don’t add value to the model.  Both the R-Squared and 

related Adjusted R-Squared values should be close to one. A value of 1.0 represents the ideal case 

at which 100 percent of the variation in the observed values can be explained by the chosen model. 

The Predicted R-Squared estimates the amount of variation in new data explained by the model. It 

can be negative, but this is very bad and suggests that the model consisting of only the intercept is 

a better predictor of the response than this model! The closer to 1.0, the better the predicted R-

squared.  

2.6 Standard deviation 

This was used to express the deviation of the individual response values from the mean. A small 

value of standard deviation is generally desired. 

2.7 Coefficient of variation 

The coefficient of variation for this model. It is the error expressed as a percentage of the mean. It 

is computed by dividing the standard deviation by the mean and multiplying by 100. 

2.8 Lack of fit 

This is the variation of the data around the fitted model. If the model does not fit the data well, this 

will be significant. 

2.9 Adequate Precision 

This is a signal to noise ratio. It compares the range of the predicted values at the design points to 

the average prediction error. Ratios greater than 4 indicate adequate model discrimination. 

    

(7) 

p = number of model parameters (including intercept (b0) and any block coefficients) 
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σ2 = residual MS from ANOVA table 

n = number of experiments 

2.10 Predicted Residual Sum of Squares (PRESS) 

The PRESS statistic indicates how well the model fits the data. The PRESS for the chosen model 

should be small relative to the other models under consideration. 

2.11 Optimization of Responses 

The optimum values of the responses were obtained by numerical optimisation based on the criterion 

of desirability. The optimization process searches for a combination of factor levels that 

simultaneously satisfy the criteria placed on each of the responses and factors. To include a response 

in the optimization criteria, it must have a model fit through analysis. For this work, the optimisation 

was done by choosing the desired goal for each factor and response. For this study, the goal was to 

maximize the chosen responses. The independent variables were kept at their natural levels while a 

minimum and a maximum level was set for the responses. A weight was assigned to each goal to 

adjust the shape of its particular desirability function. The default setting was used for the goal and 

this was that all goals be equally important at a setting of 3 pluses (+++). The goals were combined 

into an overall desirability function which was maximised by the software. Contour, 3D surface, 

and perturbation plots of the desirability function at each optimum were then used to explore the 

function in the factor space.  

2.12. Model Validation 

The capacity of RSM to predict the responses was evaluated by comparing the results predicted by 

the RSM models with those of the actual experiments. The level of fit between the two was assessed 

by using the coefficient of determination (R2 value), adjusted coefficient of determination (adjusted 

R2 value), predicted coefficient of determination (predicted R2 value), standard deviation, and 

coefficient of variation [14]. It is desirable that the R2 value be as close to unity as possible while 

the standard deviation should be as small as possible [13]. 

3. Results And Discussion 

3.1. Response Surface Modelling 

3.1.1. Determination of Most Suitable Model 

The different statistical models selected were evaluated to determine their suitability for modeling 

the responses (hardness, compressive strength, water absorption, tensile strength, coefficient of 

friction, wear rate and density). The models evaluated include linear, quadratic, special cubic and 

cubic models and their suitability was assessed on the basis of their respective coefficient of 

determination (R2 value), p value, F value etc. The results of the analysis are shown in Table 3 to 

16. The results show the summary of model fit and lack of fit test for all seven responses. The 

statistical results obtained for (model summary and lack of fit test) for hardness, compressive 

strength, water absorption, tensile strength, coefficient of friction, wear rate and density are 

presented respectively in Tables 3 and 4, Tables 5 and 6, Tables 7 and 8, Tables 9 and 10, Tables 

11 and 12, Tables 13 and 14, Tables 15 and 16. It was found that the quadratic model was suitable 

to represent all the responses apart from tensile strength, density and coefficient of friction which 

were represented by the special cubic model. The selection of the models was done on the basis of 

the highest R2 value, lowest standard deviation, and lowest PRESS. The linear model was discarded 

because it exhibited poor statistical characteristics. Although the cubic model displayed some 

desirable statistical properties, it was however not chosen because it was flagged as “aliased”. This 

model was not chosen because it contains aliased model terms meaning that the experimental runs 

might be not enough to independently estimate all the terms for the model. The PRESS statistics for 
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the special cubic and cubic models were not defined because they had a leverage value of one. These 

observations were also supported by the results obtained from the lack of fit test carried out as shown 

in Tables 4, 6, 8, 10, 12, 14 and 16 for all seven responses. The quadratic model was shown to have 

insignificant lack of fit, (a situation that is desirable) for all the responses apart from tensile strength, 

density and coefficient of friction while the same observation was recorded for the special cubic 

model for tensile strength, density and coefficient of friction. Thus, the quadratic model was adopted 

for predicting the hardness, compressive strength, water absorption, and wear rate while the special 

cubic model was used for predicting tensile strength, density and coefficient of friction. 

Table 3: Summary of model fit results for hardness 

Source 
Standard 

deviation 
R² 

Adjusted 

R² 

Predicted 

R² 
PRESS Remark 

Linear 4.89 0.9312 0.9183 0.9033 661.50  

Quadratic 4.13 0.9694 0.9419 0.9111 538.10 Suggested 

Special cubic 3.90 0.9836 0.9480  +  

Cubic 1.58 0.9978 0.9915  + Aliased 

 

Table 4: Lack of fit test results for hardness 

Source 
Sum of 

square 

degree of 

freedom 

Mean 

square 
F-value p value Remark 

Linear 370.27 11 33.66 13.46 0.0050  

Quadratic 157.66 5 31.53 12.61 0.0703 Suggested 

Special cubic 78.85 1 78.85 31.54 0.0025  

Cubic 0.000 0    Aliased 

Pure Error 12.50 5 2.50    

 

Table 5: Summary of model fit results for compressive strength 

Source 
Standard 

deviation 
R² 

Adjusted 

R² 

Predicted 

R² 
PRESS Remark 

Linear 0.16 0.8112 0.7758 0.6951 0.88  

Quadratic 0.14 0.9369 0.8318 0.5804 0.64 Suggested 

Special cubic 0.15 0.9115 0.8000  +  

Cubic 0.16 0.9393 0.7692  + Aliased 

 

Table 6: Lack of fit test results for compressive strength 

Source 
Sum of 

square 

degree of 

freedom 

Mean 

square 
F-value p value Remark 

Linear 0.27 11 0.025 0.96 0.5598  

Quadratic 0.058 5 0.012 0.46 0.7945 Suggested 

Special cubic 5.10E-3 1 5.10E-3 0.20 0.6737  

Cubic 0.000 0    Aliased 

Pure Error 0.13 5 0.026    

 

Table 7: Summary of model fit results for water absorption 

Source 
Standard 

deviation 
R² 

Adjusted 

R² 

Predicted 

R² 
PRESS Remark 
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Linear 0.58 0.6649 0.6021 0.4396 9.00  

Quadratic 0.38 0.9109 0.8307 0.6829 5.09 Suggested 

Special cubic 0.45 0.9240 0.7593  +  

Cubic 0.49 0.9265 0.7207  + Aliased 

 

Table 8: Lack of fit test results for water absorption 

Source 
Sum of 

square 

degree of 

freedom 

Mean 

square 
F-value p value Remark 

Linear 4.20 11 0.38 1.62 0.3109  

Quadratic 0.25 5 0.050 0.21 0.9429 Suggested 

Special cubic 0.040 1 0.040 0.17 0.6976  

Cubic 0.000 0    Aliased 

Pure Error 1.18 5 0.24    

 

Table 9: Summary of model fit results for tensile strength 

Source 
Standard 

deviation 
R² 

Adjusted 

R² 

Predicted 

R² 
PRESS Remark 

Linear 0.12 0.9076 0.8903 0.8661 0.33  

Quadratic 0.11 0.9519 0.9087 0.7199 0.68  

Special cubic 0.055 0.9925 0.9763  + Suggested 

Cubic 0.035 0.9974 0.9903  + Aliased 

 

Table 10: Lack of fit test results for tensile strength 

Source 
Sum of 

square 

degree of 

freedom 

Mean 

square 
F-value p value Remark 

Linear 0.22 11 0.020 15.97 0.0034  

Quadratic 0.11 5 0.022 17.80 0.0033  

Special cubic 0.012 1 0.012 9.65 0.0607 Suggested 

Cubic 0.000 0    Aliased 

Pure Error 6.25E-3 5 1.25E-3    

 

Table 11: Summary of model fit results for coefficient of friction 

Source 
Standard 

deviation 
R² 

Adjusted 

R² 

Predicted 

R² 
PRESS Remark 

Linear 0.12 0.1271 -0.0366 -0.3932 0.39  

Quadratic 0.11 0.5452 0.1359 -1.3282 0.66  

Special cubic 0.055 0.9348 0.7934  + Suggested 

Cubic 0.058 0.9411 0.7761  + Aliased 

 

Table 12: Lack of fit test results for coefficient of friction 

Source 
Sum of 

square 

degree of 

freedom 

Mean 

square 
F-value p value Remark 

Linear 0.23 11 0.021 6.28 0.0275  

Quadratic 0.11 5 0.022 6.72 0.0284  

Special cubic 1.78E-3 1 1.78E-3 0.54 0.4971 Suggested 
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Cubic 0.000 0    Aliased 

Pure Error 0.017 5 3.32E-3    

 

Table 13: Summary of model fit results for wear rate 

Source 
Standard 

deviation 
R² 

Adjusted 

R² 

Predicted 

R² 
PRESS Remark 

Linear 0.45 0.5478 0.2966 -0.4410 10.35  

Quadratic 0.52 0.6298 0.4631 0.3329 4.79 Suggested 

Special cubic 0.55 0.7477 0.2011  +  

Cubic 0.42 0.8746 0.5236  + Aliased 

 

Table 14: Lack of fit test results for wear rate 

Source 
Sum of 

square 

degree of 

freedom 

Mean 

square 
F-value p value Remark 

Linear 2.35 11 0.21 1.19 0.4538  

Quadratic 1.76 5 0.35 1.95 0.2401 Suggested 

Special cubic 0.91 1 0.91 5.06 0.0743  

Cubic 0.000 0    Aliased 

Pure Error 0.90 5 0.18    

 

                                 Table 15: Summary of model fit results for density 

Source 
Standard 

deviation 
R² 

Adjusted 

R² 

Predicted 

R² 
PRESS Remark 

Linear 0.28 0.2983 0.1667 -0.0232 1.79  

Quadratic 0.25 0.6299 0.2967 -0.8674 3.26  

Special cubic 0.098 0.9672 0.8961  + Suggested 

Cubic 0.085 0.9791 0.9206  + Aliased 

 

Table 16: Lack of fit test results for density 

Source 
Sum of 

square 

degree of 

freedom 

Mean 

square 
F-value p value Remark 

Linear 1.19 11 0.11 14.82 0.0040  

Quadratic 0.61 5 0.12 16.72 0.0039  

Special cubic 0.021 1 0.021 2.85 0.1520 Suggested 

Cubic 0.000 0    Aliased 

Pure Error 0.036 5 7.30E-3    

3.2. Analysis of Statistical Models 

The statistical models were analysed by fitting the selected models to the respective experimental 

data which was obtained from the 20 experiments carried out according to the D-Optimal mixture 

design. The quadratic model was fitted to the experimental data for hardness, compressive strength, 

water absorption, and wear rate while the special cubic model was fitted to the experimental data 

for tensile strength, density and coefficient of friction. This process was done using multiple 

regression analysis and resulted in the estimation of the unknown model parameters. The estimated 

model parameters were then fixed into the general quadratic and special cubic equations to obtain 
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the final models for hardness, compressive strength, water absorption, tensile strength and wear rate, 

density and coefficient of friction in terms of actual values of the input factors. The equations 

represent hardness, compressive strength, water absorption, tensile strength, coefficient of friction, 

wear rate and density as a function of Cow bone (X1), Binder (X2), Abrasive (X3), and Filler (X4). 

These equations (Equation 8 to 14) were used to predict their corresponding responses and the 

results are shown in Table 17 to 23.  

+= − − + +

− + − −

3 4
4.02 3.02 95.17 79.95 0.14 1.111 2 1 2 1 3

                    1.15 1.25 0.89 0.0544 4 41 2 3 2 3

X X X X X X X X

X X X X X X X X

Hardness
 (8) 

= − − + − +

− + − −

3
0.18 0.013 0.58 1.32 0.0011 0.005241 2 1 2 1 3

                                               0.019 0.012 0.014 0.0244 4 41 2 3 2 3

 X X X X X X X X

X X X X X X X X

Compressive strength
 (9) 

= − − − + + +

+ + − −

3
1.95 0.58 0.26 1.28 0.049 0.04341 2 1 2 1 3

                                      0.015 0.0012 0.014 0.0304 4 41 2 3 2 3

 X X X X X X X X

X X X X X X X X

Water absorption
 (10) 

+

+ +

= + + − −

− + − −

3

                                          0.0013

0.76 0.26 1.02 4.07 0.016 0.05541 2 1 2 1 3

                                  0.11 0.0065 0.064 0.154 4 41 2 3 2 3

0.00012 1 2 3

 X X X X X X X X

X X X X X X X X

X X X

Tensile strength

+ −0.0054 0.000964 41 2 3 1 3 2 3X X X X X X X X X

 (11) 

+

+ +

= + + − −

− − − +

5.91
3

                                          0.0

2.36 1.73 2.35 0.087 0.2341 2 1 2 1 3

                                  0.11 0.19 0.098 0.164 4 41 2 3 2 3

0.0062 1 2 3

  X X X X X X X X

X X X X X X X X

X X X

Coefficient of friction

− −031 0.0030 0.00144 41 2 3 1 3 2 3X X X X X X X X X

 (12) 

= − − + − + −

+ − + −

3
0.18 0.43 4.65 0.50 0.015 0.06041 2 1 2 1 3

                                      0.0021 0.044 0.015 0.0484 4 41 2 3 2 3

 X X X X X X X X

X X X X X X X X

Wear rate
 (13) 

+

− − +

= − − + + +

+ − − −

3

                                          0.0033 0.0

1.82 0.70 8.20 4.22 0.061 0.01441 2 1 2 1 3

                                  0.072 0.13 0.031 1.064 4 41 2 3 2 3

0.0018 1 2 3 1 2 3

X X X X X X X X

X X X X X X X X

X X X X X X

Density

+051 0.0194 41 3 2 3X X X X X X

 (14) 

 

Table 17: Experimental and RSM predicted results for hardness 

Run 

Actual values of factors Response (N/mm2) 

Cow bone (%) 
Binder 

(%) 

Abrasive 

(%) 

Filler 

(%) 

Actual 

Experiment 

RSM 

Predicted 

1 38 40 8 14 215 219 

2 30 50 5 15 190 191 

3 30 50 5 15 190 191 

4 35 47 5 13 205 207 

5 36 42 10 12 210 205 

6 40 40 10 10 230 230 

7 31 47 9 13 193 192 

8 32 43 10 15 195 194 

9 34 45 8 13 200 206 

10 40 44 6 10 240 237 

11 35 50 5 10 210 211 

12 30 50 10 10 185 187 
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13 40 44 6 10 235 237 

14 40 40 5 15 230 228 

15 30 50 10 10 185 187 

16 35 50 5 10 210 211 

17 32 43 10 15 195 194 

18 36 43 6 15 220 219 

19 32 50 7 11 205 197 

20 36 45 9 10 225 224 

 

 

 

Table 18: Experimental and RSM predicted results for compressive strength 

Run 

Actual values of factors Response (MPa) 

Cow bone (%) Binder (%) Abrasive (%) Filler (%) 
Actual Experiment RSM Predicted 

14 38 40 8 14 3.50 3.49 

2 30 50 5 15 3.10 3.09 

3 30 50 5 15 3.10 3.09 

4 35 47 5 13 3.30 3.30 

5 36 42 10 12 3.30 3.28 

6 40 40 10 10 3.80 3.83 

7 31 47 9 13 3.00 3.02 

8 32 43 10 15 3.10 3.00 

9 34 45 8 13 3.20 3.22 

10 40 44 6 10 3.80 3.80 

11 35 50 5 10 3.30 3.26 

12 30 50 10 10 3.29 3.15 

13 40 44 6 10 3.80 3.80 

14 40 40 5 15 3.88 3.87 

15 30 50 10 10 3.00 3.15 

16 35 50 5 10 3.20 3.26 

17 32 43 10 15 2.90 3.00 

18 36 43 6 15 3.50 3.54 

19 32 50 7 11 3.10 3.09 

20 36 45 9 10 3.60 3.56 

 
Table 19: Experimental and RSM predicted results for water absorption 

Run 

Actual values of factors Response (%) 

Cow bone (%) 
Binder 

(%) 

Abrasive 

(%) 

Filler 

(%) 

Actual 

Experiment 

RSM 

Predicted 

1 38 40 8 14 2.1 2.2 

2 30 50 5 15 3.5 3.5 

3 30 50 5 15 3.5 3.5 

4 35 47 5 13 3.4 3.4 

5 36 42 10 12 3.2 3.2 

6 40 40 10 10 1.5 1.5 

7 31 47 9 13 3.5 3.5 

8 32 43 10 15 3.6 3.6 

9 34 45 8 13 3.5 3.5 
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10 40 44 6 10 1.5 1.5 

11 35 50 5 10 3.4 3.5 

12 30 50 10 10 3.2 3.2 

13 40 44 6 10 1.4 1.5 

14 40 40 5 15 1.4 1.3 

15 30 50 10 10 3.2 3.2 

16 35 50 5 10 3.5 3.5 

17 32 43 10 15 3.7 3.6 

18 36 43 6 15 3.2 3.2 

19 32 50 7 11 3.6 3.5 

20 36 45 9 10 3.3 3.3 

 
Table 20: Experimental and RSM predicted results for tensile strength 

Run 

Actual values of factors Response (MPa) 

Cow bone (%) 
Binder 

(%) 

Abrasive 

(%) 

Filler 

(%) 

Actual 

Experiment 

RSM 

Predicted 

1 38 40 8 14 3.30 3.30 

2 30 50 5 15 2.20 2.20 

3 30 50 5 15 2.20 2.20 

4 35 47 5 13 2.60 2.60 

5 36 42 10 12 2.90 2.93 

6 40 40 10 10 3.30 3.29 

7 31 47 9 13 2.10 2.13 

8 32 43 10 15 2.40 2.45 

9 34 45 8 13 2.70 2.61 

10 40 44 6 10 3.10 3.10 

11 35 50 5 10 2.80 2.79 

12 30 50 10 10 2.45 2.47 

13 40 44 6 10 3.10 3.10 

14 40 40 5 15 3.00 2.99 

15 30 50 10 10 2.50 2.47 

16 35 50 5 10 2.80 2.79 

17 32 43 10 15 2.50 2.45 

18 36 43 6 15 2.85 2.88 

19 32 50 7 11 2.40 2.43 

20 36 45 9 10 2.90 2.91 

 
Table 21: Experimental and RSM predicted results for coefficient of friction 

Run 

Actual values of factors Response 

Cow bone (%) 
Binder 

(%) 

Abrasive 

(%) 

Filler 

(%) 

Actual 

Experiment 

RSM 

Predicted 

1 38 40 8 14 0.42 0.42 

2 30 50 5 15 0.51 0.53 

3 30 50 5 15 0.55 0.53 

4 35 47 5 13 0.38 0.38 

5 36 42 10 12 0.55 0.54 

6 40 40 10 10 0.70 0.70 

7 31 47 9 13 0.30 0.29 

8 32 43 10 15 0.40 0.43 
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9 34 45 8 13 0.42 0.45 

10 40 44 6 10 0.45 0.45 

11 35 50 5 10 0.40 0.37 

12 30 50 10 10 0.35 0.33 

13 40 44 6 10 0.46 0.45 

14 40 40 5 15 0.60 0.60 

15 30 50 10 10 0.31 0.33 

16 35 50 5 10 0.33 0.37 

17 32 43 10 15 0.46 0.43 

18 36 43 6 15 0.40 0.39 

19 32 50 7 11 0.63 0.62 

20 36 45 9 10 0.64 0.64 

 

 

Table 22: Experimental and RSM predicted results for wear rate 

Run 

Actual values of factors Response (mg/m) 

Cow bone (%) Binder (%) Abrasive (%) 
Filler 

(%) 

Actual Experiment RSM Predicted 

1 38 40 8 14 1.10 1.11 

2 30 50 5 15 0.30 0.28 

3 30 50 5 15 0.31 0.28 

4 35 47 5 13 1.40 1.43 

5 36 42 10 12 1.50 1.45 

6 40 40 10 10 1.65 1.70 

7 31 47 9 13 0.60 0.62 

8 32 43 10 15 0.95 1.02 

9 34 45 8 13 1.00 1.01 

10 40 44 6 10 2.00 2.00 

11 35 50 5 10 1.30 1.31 

12 30 50 10 10 0.60 0.62 

13 40 44 6 10 2.00 2.00 

14 40 40 5 15 1.60 1.54 

15 30 50 10 10 0.60 0.62 

16 35 50 5 10 1.30 1.31 

17 32 43 10 15 1.10 1.02 

18 36 43 6 15 1.10 1.20 

19 32 50 7 11 0.50 0.49 

20 36 45 9 10 1.50 1.41 

 

Table 23: Experimental and RSM predicted results for density 

Run 

Actual values of factors Response (g/cm3) 

Cow bone (%) 
Binder 

(%) 

Abrasive 

(%) 

Filler 

(%) 

Actual 

Experiment 

RSM 

Predicted 

1 38 40 8 14 1.01 1.01 

2 30 50 5 15 1.25 1.17 

3 30 50 5 15 1.08 1.17 

4 35 47 5 13 1.28 1.28 

5 36 42 10 12 1.30 1.26 

6 40 40 10 10 1.60 1.61 
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7 31 47 9 13 2.00 1.96 

8 32 43 10 15 1.27 1.26 

9 34 45 8 13 1.50 1.62 

10 40 44 6 10 1.85 1.92 

11 35 50 5 10 1.65 1.61 

12 30 50 10 10 1.35 1.41 

13 40 44 6 10 2.01 1.92 

14 40 40 5 15 1.95 1.96 

15 30 50 10 10 1.45 1.41 

16 35 50 5 10 1.56 1.61 

17 32 43 10 15 1.25 1.26 

18 36 43 6 15 1.75 1.71 

19 32 50 7 11 1.36 1.32 

20 36 45 9 10 1.80 1.79 

 

3.3 Discussion on Predictability of Model  

The design model was evaluated using the standard error of each model term to determine its 

suitability and the results are shown in Table 17-24. The standard error should be as small as possible 

for the model to be considered useful. Furthermore, the standard errors should be similar within type 

of coefficient. This was indeed the case with the results presented in Table 17-24. As shown in Table 

17-24, the VIF values obtained were equal to one. The variation inflation factor (VIF) is used as a 

measure of the increase in the variance of a model coefficient as a result of lack of orthogonality in 

the design [15]. A design that lacks orthogonality is a sign that the model terms exhibit collinearity 

and this is usually characterised by high values of VIF, a situation that is not desirable. VIFs above 

10 are cause for concern and VIFs above 100 are cause for alarm, indicating coefficients are poorly 

estimated due to multicollinearity. If the VIFs get above 1000, and there are no built-in extra 

constraints to the design, then it might not be possible to get a useful model. The ideal situation is 

that in which the VIF values are all unity [14]. A VIF value of one for a model coefficient indicates 

that the coefficient is orthogonal to the remaining model terms. The Ri squared value (Ri²) for a 

model term is the multiple correlation coefficient, and it shows the extent to which the coefficient 

of that model term is correlated to the others. For the ideal case of an orthogonal design, the Ri
2 value 

is usually zero. High Ri
2 values are not desirable because it is usually an indication that the model 

terms are correlated with each other and this could result in a bad model. For the results presented 

in Table 24, it can be seen that the Ri
2 value was in the range 0.0000 to 0.0779. This is acceptable 

as these values are close to the ideal value of Ri
2 i.e. 0.0000 (Abdi, 2007). Models were formulated 

to predict hardness, compressive strength, coefficient of friction, wear rate, and density using 

response surface modelling. A desirability of 0.91 was obtained which shows the adequacy of the 

model terms. The models were then validated using coefficient of determination R2 the coefficient 

of determination (R2) obtained ranged from 0.9213, (92.13%) to 0.98.1, (98.1%) which indicates 

that a substantial good fit was achieved by the models developed. The values obtained from the 

validation of these models were therefore found to be satisfactory, and shows good predictability of 

the model. 

4 Conclusion  

Modelling of an automobile brake pad using cow bone as base material has been achieved.  The 

models were validated using coefficient of determination (R2). The coefficient of determination (R2) 

obtained ranged from 0.9213 (92.13%) to 0.981 (98.1%) which indicates that a substantial good fit 

was achieved by the models developed. A desirability of 0.951 was obtained which shows the 
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adequacy of the model terms. The values obtained from the validation of these models were 

therefore found to be satisfactory, and shows good predictability of the model and its adequacy.  
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