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 The Coulomb energy for different nuclear model with small computing 

effort and high accuracy is a great challenge in physics as well as in 

quantum chemistry research. In this work we applied a classical 

electrodynamics theory and derived a simple procedure and 

expression for calculating the Coulomb energy for atomic nuclei 

taking into consideration the finite size of protons. The corresponding 

results are compared with the direct Coulomb energy obtained from 

two-parameter Fermi distributions. The formula obtained, which 

varies directly to the proton number and varies inversely to the cube 

root of mass number, was applied and calculated numerically the 

values of Coulomb energy for light, medium and heavy nuclei. To 

examine the effect of finite size of proton on Coulomb energy, a graph 

of Coulomb energy as a function of proton number was presented. The 

results obtained showed that due to the finite size of proton, the values 

of the previously calculated values of the Coulomb energy are reduced 

by less than 2%. This is because the proton – proton distance increased 

due to finite size effect of the proton and thus affects the magnitude of 

the Coulomb energy. This showed that calculation of Coulomb energy 

by taking into consideration, the finite size of proton leads to 

agreement with the experimental values. Thus, in studying the nuclear 

structure, it is very natural to assume the protons to be extended rather 

than point charges.  
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1. Introduction 

The calculation of the Coulomb energy for nuclei or atoms with small computing effort and high 

accuracy is a great challenge in physics and quantum chemistry research [1-3]. It is very interesting 

and useful to accurately estimate the Coulomb energy acting in the nuclear interior using methods 

more quantitative and convenient for numerical calculation. This allows us to understand some 

phenomena, such as nuclear fission, in more detail. The Coulomb energy can be calculated in the 

framework of the liquid drop model, in which atomic nuclei have reorganized as charge drops of 

Van der Waal like fluid [4,5]. The Liquid Drop Model proposed by Von and Weizsäcker (1935) and 

Bohr and Wheeler, (1939) is found very successful in explaining collective nuclear excitations and 

fission [6-10]. A separate investigation was devoted to the calculation of the Coulomb energy of 

fission fragments at the scission point during nuclear fission using the assumption of their arbitrary 

shape and nuclear density distributions. In the liquid-drop model, the Coulomb energy is roughly 
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calculated under a uniform charge distribution approximation. Later, investigations of the 

dependence of Coulomb energy upon the shape and the density distributions of the nucleus have 

been made. Based on these investigations, some terms which depend on the shape and density 

distributions (including constant distribution, Gaussian distribution, diffuse surface distributions, 

two-parameter Fermi distribution and Wood Saxon distribution) are added to the expression of the 

Coulomb energy [11-14].  

It has been established that the net contribution of all these correction terms in Ref. [1,10-14] are 

not consistent with experimental data. It was first pointed out by Ohmura, (2018) that contrary to 

earlier estimates, the Coulomb energy corrections due to the effect of finite size of proton is not 

negligible [15]. Ohmura based on his findings on Coulomb energy of Helium – 3, suggested that if 

an extended (finite-size) charge distribution is assumed for the proton, the Coulomb energy arising 

from the small inter-proton distance in the atomic nucleus would be reduced. Thus, more accurate 

results will be obtained. 

In this work, we derive an analytical expression for calculating the Coulomb energy of atomic nuclei 

due to the effect of finite-size of the proton using classical electrodynamics theory. 

2. Theoretical Background  

In the framework of liquid drop model, Coulomb energy can be calculated by considering the 

nucleus as positively charged sphere with total charge +Ze where Z is the proton number and e the 

electron charge. The charge density can be defined as: 

 𝜌 =
charge

volume
=

3𝑍𝑒

4𝜋𝑅3                                                                                         (1) 

where R = r0A
l/3, is the outer radius of nucleus, A is the mass number of the nucleus, r0 = 1.2 × 10-

15m, is the radius parameter. 

 

 

Figure 1: A charge drops of Van der Waal like fluid with a relatively thin surface layer dr 

 



 
Aliyu Adamu et al./ NIPES Journal of Science and Technology Research 

2(3) 2020 pp. 272-282 

274 

 

From Figure 1, the electrostatic potential at the surface of a sphere of radius r < R is given by 

 𝑉(𝑟) =
𝑘𝑞

𝑟
=

𝑘

𝑟

4𝜋𝑟3𝜌

3
=

𝑍𝑘𝑒

𝑅
(

𝑟

𝑅
)
2

                                                                               (2) 

And the next layer of nuclear matter has a charge equal to 𝑑𝑞 = 4𝜋𝑟2𝑑𝑟𝜌 and potential energy: 

 𝑉(𝑟)𝑑𝑞 =
𝑍𝑘𝑒

𝑅
(

𝑟

𝑅
)
2

4𝜋𝑟2𝑑𝑟𝜌 

     = 𝑘(𝑍𝑒)2 3𝑟4

𝑅6 𝑑𝑟                                                                                         (3) 

Hence the total Coulomb energy,  

 𝐸𝐶 =
3

5

𝑘𝑒2

𝑟0

𝑍2

𝐴1/3
                    (4) 

is required to assemble a spherical nucleus, with uniform charge distribution. Equation (4) gives a 

classical Coulomb energy. Thus, it needs some corrections due to the Coulomb self-energy, nuclear 

surface diffuseness, nuclear deformation, finite-size effect of the proton and so on. Using a constant 

distribution of charge Bjornholm and Lynn (1980) give the expression for the Coulomb energy 

which depends on the shape of the nucleus as: 

 𝐸𝐶 =
3

5

𝑒2

𝑟0

𝑍2

𝐴1/3 g(𝑠ℎ𝑎𝑝𝑒)                   (5) 

where g(shape) is a factor, expressing the dependence of Coulomb energy on the shape parameters 

[12]. Hasse and Myers (1988) use the Gaussian charge distribution and expressed the Coulomb 

energy as 

 𝐸𝐶
𝐺 =

𝑍2𝑒2

2√𝜋𝜎
                    (6) 

where σ is the width (standard deviation) of the Gaussian distribution [1]. By introducing a factor 

(1 – l/Z) to remove the classical Coulomb self-energy in equation (1), Janecke (1972) use the two-

parameter Fermi distributions and calculate the Coulomb energy as: 

     𝐸𝑑𝑖𝑟 =
3

5

𝑍(𝑍−1)𝑒2

𝑅
[1 + 𝑏1 (

𝑎

𝑅
)
3

+ 𝑏2 (
𝑎

𝑅
)
4

]                  (7) 

where e = 1.6 × 10-19C, a = 0.531 fm, R = 1.2A1/3fm, b1 = 18.0295 and b2 = -85.2330. Yu et. al. 

(2010) found that the Coulomb energies of spherical nuclei with Woods-Saxon charge distributions 

can be well described with an analytical expression based on the leptodermous expansion as follows 

 𝐸𝐶
𝑊𝑆 = 𝐸𝐶 [1 −

5

2
𝜔2 + 𝑐3𝜔

3 + 𝜔4 +𝑐5𝜔
5 + 𝑐6𝜔

6 … ]                    (8) 

where, 𝜔 =
𝜋

√3

𝑎

𝑅
 and  𝑅 = [𝑍/ (

4𝜋

3
𝜌0)]

1/3

 is the corresponding radius of a spherical nucleus with 

uniform charge distribution and the coefficients c3 = 3.005, c5 = −4.822, c6 = 2.934. With the same 

approach, Wang et, al. (2010) also investigate the Coulomb energies of nucleus with both the 

nuclear surface diffuseness, a, and nuclear deformation being taken into account and found the 

Coulomb energy of a nucleus with β2 deformation as 
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 𝐸𝐶
𝑁𝐷 = 𝐸𝐶 [1 −

1

4𝜋
𝛽2

2 + 𝑏1𝜔𝛽2
2 +𝑏2𝜔

2𝛽2
2 + 𝑏3𝛽2

3 + ⋯ ]     (9) 

These results showed that the Coulomb energy of a nucleus gradually decreases with increase of the 

nuclear surface diffuseness and of the nuclear deformation.  

3. Methodology 

To calculate the Coulomb energy due to finite size of proton, we start by writing the most general 

expression for the classical Coulomb energy of an arbitrary nuclear system with charge density 

distribution ρ(r) which can be represented as  

𝐸𝐶 =
1

2
𝑒 ∫𝜌(𝑟)𝑉𝐶(𝑟)𝑑𝑉 =

1

2
∫ 𝜌(𝑟)𝜙(𝑟)𝑑𝑉

all space

                                     

where 𝜙(r) = eVC(r) is the scalar electrostatic potential. Using the differential form of Gauss’s law 

for electrostatic field in states;  

 ∇ ∙ �⃗� =
𝜌

𝜀0
                     (10) 

we have 

𝐸𝐶 =
𝜀0

2
∫ (∇ ∙ �⃗� )𝜙𝑑𝑉

all space

                                                                                                      (11) 

where the use of (10) has been made, �⃗�  is the electric field vector, and ε0 is the permittivity of free 

space. This equation can be evaluated using the divergence vector identity, 

 ∇ ∙ (𝐴 𝐵) = (∇ ∙ 𝐴 )𝐵 + 𝐴 ∙ (∇𝐵)                  (12) 

Therefore, 

𝐸𝐶 =
4𝜋𝜀0

2
[ ∫ ∇ ∙ (�⃗� 𝜙)𝑟2𝑑𝑟

all space

− ∫ �⃗� ∙ (∇𝜙)𝑟2𝑑𝑟

all space

] 

=
1

2𝑘

[
 
 
 
 

∫ 𝜙𝑟2�⃗� ∙ 𝑑𝐴

boundary
 of space

− ∫ −(∇𝜙)2𝑟2𝑑𝑟

all space
]
 
 
 
 

                                            

Using the divergence theorem, ∫ �⃗� ∙ 𝑑𝐴
All space

= 0 and taking the area to be at infinity where 𝜙(∞) 

= 0, we obtain: 

𝐸𝐶 =
1

2𝑘
∫ (∇𝜙)2𝑟2𝑑𝑟

all space

                                                                                              (13) 
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where k = (4πε0)
-1 = 9 × 109Nm2C-2. 

After the investigations of Coulomb energy based on liquid drop model of nucleus and taking into 

account corrections due to nuclear surface diffuseness and deformation, the concept of extended 

charge (finite-size) of proton was introduced to calculate the Coulomb energy. To do this, a new 

nuclear potential which describes the interior of the proton can be applied to calculate the 

electrostatic potential for a proton of charge +e as a uniformly charged sphere of radius R and a 

spherical Gauss surface of radius r as shown in Figure 2. From this figure, for r < R, the total charge 

inside a sphere of radius r is  

 𝑞inside = +𝑍𝑒 (
𝑟

𝑅
)
3

         (14) 

We can find the internal and external electric fields and hence the electrostatic potential, 𝜙, by 

applying Gauss’ law which states: 

∬�⃗� ∙ 𝑑𝑠 =
𝑞𝑖𝑛𝑠𝑖𝑑𝑒

𝜀0
                                                                                                                 (15) 

 

Figure 2: The Gaussian surface inside the charge distribution 

 

By symmetry, the electric field, E is purely radial and so the flux through the Gaussian surface is E 

× 4πr2. Since E is constant, then  

 4𝜋𝑟2𝐸 =
𝑞𝑖𝑛𝑠𝑖𝑑𝑒

𝜀0
=

+𝑍𝑒

𝜀0
(

𝑟

𝑅
)
3

 

and therefore, 

 𝐸 =
𝑍𝑒𝑟

4𝜋𝜀0𝑅3 = −
𝑑𝜙

𝑑𝑟
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Or  

𝜙 = −
𝑍𝑒

4𝜋𝜀0𝑅3
∫𝑟 𝑑𝑟 = −

𝑍𝑘𝑒

𝑅3

𝑟2

2
+ 𝐶                                                                             (16) 

where C is a constant of integration.  

In a region r > R, the electric potential from Coulomb’s law states: 

 𝜙 =
+𝑍𝑘𝑒

𝑟
          (17) 

The electric field inside a sphere of radius r (Figure 3) is the same as for a point charge e, located at 

the origin.  

 

Figure 3: The Gaussian surface outside the charge distribution 

 

By matching the interior (16) and exterior (17) solutions for 𝜙 at the surface of the nucleus, r = R 

we find: 

 𝐶 =
3𝑍𝑘𝑒

2𝑅
 

Thus, for r ≤ R we have from (13) that: 

 𝜙 =
𝑍𝑘𝑒

2𝑅
[3 − (

𝑟

𝑅
)
2

]         (18) 

This is the electrostatic potential for protons of charges +Ze. 

4. Results and Discussion 

Differentiating (18) with respect to r, we obtain: 

 ∇𝜙 = −
𝑍𝑘𝑒

2𝑅
(

2𝑟

𝑅2
) 
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By taking the scalar electrostatic potential of a finite-size proton (18) of uniform charge distribution, 

we can determine the Coulomb energy from (13) in a region r ≤ R as 

𝐸𝐹𝑁 =
1

2𝑘
∫(∇𝜙)2𝑟2𝑑𝑟

∞

0

 

 

Therefore, 

𝐸𝐹𝑁 =
1

2𝑘
(
𝑍2𝑘2𝑒2

𝑅6
)∫ 𝑟4

𝑅

0

𝑑𝑟 =
3

5

𝑘𝑒2

𝑟0

𝑍2

𝐴1/3

1

6
                                                                   (19) 

Equations (3), (4), (5), (6), (7) and (19) say even one proton, i.e. Z = 1, could have a Coulomb 

energy, even though there is nothing to repel it.  

To obtain the Coulomb energy that vanishes at Z – 1, we use the idea that each proton in the nucleus 

will repel the other Z – 1 proton in the nucleus. Based on this arrangement, the term Z2 in (19) can 

be replaced with, 

 
𝑍!

2!(𝑍−2)!
=

𝑍(𝑍−1)(𝑍−2)!

2!(𝑍−2)!
=

𝑍(𝑍−1)

2
 

and finally have the Coulomb energy which should vanish at Z = 1 as 

 𝐸𝐹𝑁 =
3

5

𝑘𝑒2

12𝑟0

𝑍(𝑍−1)

𝐴
1
3

= 𝛼
𝑍(𝑍−1)

𝐴1/3        (20) 

where 

𝛼 =
3

5

𝑘𝑒2

12𝑟0
          (21) 

By substituting the values of constants in (21), the value of the constant was calculated as, 𝛼 =
60 𝑘𝑒𝑉. Equation (20) gives the Coulomb energy of atomic nucleus due to the finite size of proton.  

The values of the direct Coulomb energy Edir of the atomic nuclei obtained from (7) and the coulomb 

energy (20) due to finite – size of protons 𝐸𝐹𝑁 are computed for light, medium and heavy atomic 

nuclei and denoting  

 𝜁 = (1 −
𝐸𝐹𝑁

𝐸𝑑𝑖𝑟
)          (22) 

as the deviation of Coulomb energy due to finite size of proton relative to the direct Coulomb energy. 

Then the results are presented in Table 1. 

Table 1 showed that the values of finite-size Coulomb energy (calculated by taking into account the 

extended charge of protons) is found to be smaller than that of direct Coulomb energy by less than 

2%. This is because the finite size of proton increases very slightly, the proton – proton distance and 

thus affects the values of the Coulomb energy. 
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Table 1: The values of the direct Coulomb energy Edir from (7) and EFN from (20) 

Nuclide: AXZ Edir(MeV) EFN(MeV) (1 – ζ) 
1H1 0.0000 0.0000 0.0000 

4He2 0.0055 0.0063 -0.1374 
6Li3 0.0159 0.0165 -0.0390 
9Be4 0.0288 0.0288 -0.0010 
10B5 0.0467 0.0465 0.0033 
12C6 0.0662 0.0655 0.0112 
14N7 0.0884 0.0871 0.0145 
16O8 0.1130 0.1111 0.0163 
19F9 0.1372 0.1348 0.0176 

20Ne10 0.1690 0.1661 0.0172 
23Na11 0.1971 0.1937 0.0174 
24Mg12 0.2332 0.2292 0.0173 
27Al13 0.2646 0.2600 0.0172 
28Si14 0.3046 0.2993 0.0172 
31P15 0.3400 0.3344 0.0165 
32S16 0.3848 0.3785 0.0162 

35Cl17 0.4226 0.4159 0.0158 
36Ar18 0.4710 0.4636 0.0156 
39K19 0.5121 0.5044 0.0151 

40Ca20 0.5640 0.5556 0.0149 
45Sc21 0.5984 0.5899 0.0142 
46Ti22 0.6543 0.6453 0.0139 
51V23 0.6911 0.6819 0.0132 

50Cr24 0.7601 0.7500 0.0132 
55Mn25 0.7995 0.7895 0.0126 
54Fe26 0.8709 0.8598 0.0128 
59Co27 0.9133 0.9023 0.0121 
58Ni28 0.9888 0.9767 0.0122 
63Cu29 1.0321 1.0201 0.0116 
64Zn30 1.1002 1.0875 0.0115 
69Ga31 1.1467 1.1341 0.0110 
70Ge32 1.2171 1.2039 0.0109 
75As33 1.2644 1.2512 0.0104 
74Se34 1.3499 1.3357 0.0105 
79Br45 1.4010 1.3869 0.0100 
78Kr36 1.4905 1.4754 0.0101 
85Rb37 1.5283 1.5136 0.0096 
84Sr38 1.6206 1.6050 0.0096 
89Y39 1.6769 1.6614 0.0092 

90Zr40 1.7572 1.7411 0.0092 
93Nb41 1.8265 1.8102 0.0090 
92Mo42 1.9264 1.9091 0.0090 
98Tc43 1.9758 1.9588 0.0086 

100Ru44 2.0563 2.0388 0.0085 
103Rh45 2.1286 2.1109 0.0083 
102Pd46 2.2350 2.2163 0.0084 
107Ag47 2.2944 2.2758 0.0081 
106Cd48 2.4044 2.3848 0.0081 
113In49 2.4538 2.4348 0.0078 
112Sn50 2.5616 2.5415 0.0078 
121Sb51 2.5950 2.5758 0.0074 
120Te52 2.7098 2.6897 0.0074 

127I53 2.7593 2.7396 0.0071 
124Xe54 2.8887 2.8677 0.0073 
133Cs55 2.9319 2.9118 0.0069 
130Ba56 3.0589 3.0375 0.0070 
139La57 3.1017 3.0811 0.0067 
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136Ce58 3.2378 3.2160 0.0068 
141Pr59 3.3121 3.2904 0.0066 
142Nd60 3.4132 3.3908 0.0066 
145Pm61 3.5083 3.4857 0.0064 
144Sm62 3.6323 3.6088 0.0065 
151Eu63 3.6872 3.6642 0.0063 
154Gd64 3.7845 3.7612 0.0061 
159Tb65 3.8608 3.8376 0.0060 
156Dy66 4.0114 3.9870 0.0061 
165Ho67 4.0582 4.0347 0.0058 
162Er68 4.2046 4.1798 0.0059 
169Tm69 4.2667 4.2423 0.0057 
168Yb70 4.4003 4.3750 0.0057 
175Lu71 4.4702 4.4454 0.0055 
176Hf72 4.5896 4.5643 0.0055 
181Ta73 4.6684 4.6431 0.0054 
180W74 4.8067 4.7805 0.0054 
185Re75 4.8945 4.8684 0.0053 
184Os76 5.0357 5.0088 0.0053 
191Ir77 5.1063 5.0799 0.0052 
192Pt78 5.2315 5.2045 0.0052 
197Au79 5.3207 5.2938 0.0051 
196Hg80 5.4666 5.4389 0.0051 
203Tl81 5.5375 5.5102 0.0049 
204Pb82 5.6662 5.6384 0.0049 
209Bi83 5.7663 5.7386 0.0048 
209Po84 5.9070 5.8786 0.0048 
209At85 6.0493 6.0202 0.0048 
222Rn86 6.0590 6.0314 0.0046 
223Fr87 6.2015 6.1733 0.0046 
226Ra88 6.3142 6.2857 0.0045 
227Ac89 6.4487 6.4197 0.0045 
232Th90 6.5519 6.5228 0.0044 
231Pa91 6.6991 6.6694 0.0044 
238U92 6.7810 6.7516 0.0043 

237Np93 6.9413 6.9111 0.0043 
244Pu94 7.0234 6.9936 0.0042 
243Am95 7.1860 7.1555 0.0043 
247Cm96 7.2916 7.2611 0.0042 
247Bk97 7.4451 7.4140 0.0042 
251Cf98 7.5638 7.5325 0.0041 
252Es99 7.7075 7.6756 0.0041 

257Fm100 7.8148 7.7830 0.0041 
260Md101 7.9348 7.9030 0.0040 
262Lw102 8.0807 8.0484 0.0040 
261Rf103 8.2408 8.2078 0.0040 

262Db104 8.4023 8.3688 0.0040 
263Sg105 8.5520 8.5179 0.0040 
262Ns106 8.7302 8.6953 0.0040 
264Hs107 8.8684 8.8333 0.0040 
266Mt108 9.0077 8.9721 0.0040 

 

The information represented in Table 1 is extended further by plotting a graph of two Coulomb 

energies (7) and (20) as a function of proton number, Z (Figure 4). 
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Figure 4: The Coulomb energies of atomic nuclei as functions of proton number, Z 

Figure 4 represents a comparison of the results from Coulomb energy obtained by (7) using two-

parameter Fermi distribution and (20) using extended proton charge distribution. The Figure showed 

that both direct Coulomb energy and the Coulomb energy due to finite size of proton are very closely 

related, both energies vanishes at Z = 1 (in case of hydrogen atom and its isotopes) and then 

gradually increases with the proton number, Z. Thus, the results obtained are in good agreement 

with the values of Coulomb energies calculated from the past. 

 

Figure 5: The relative Coulomb energies of atomic nuclei, ζ, as functions of Z 

Figure 5 showed that the deviation of Coulomb energy due to finite size of proton (20) relative to 

direct Coulomb energy (7) increases rapidly with increasing Z up to about Z ~ 10 and then more 

slowly decreases with further increase in Z. Therefore, the values of the finite-sized Coulomb energy 
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are about 2% less than the previously calculated values of the Coulomb energies. This is because of 

the increase in proton – proton distance due to the finite size of proton and therefore changes the 

magnitude of the respective Coulomb energy. This seems to indicate that the coulomb energy 

calculated due to finite size of proton is even more consistent with the experimentally measured 

values. 

5. Conclusion  

A classical electrodynamics’ approach has been investigated to determine the effect of finite size of 

proton on Coulomb energy of atomic nuclei. An exact analytical expression or result has been 

derived for the Coulomb energy potential for finite size protons.  Results for different atomic number 

nuclei, ranging from light, medium and large have been plotted, and compared with the earlier 

theoretical values of Coulomb energy and found to be smaller by about 0% to a maximum of 2%. 

This is because of the consideration of the finite-size nature of protons instead of point-like protons, 

thus affecting the values of the Coulomb energy.  
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