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expression for calculating the Coulomb energy for atomic nuclei
taking into consideration the finite size of protons. The corresponding
results are compared with the direct Coulomb energy obtained from
two-parameter Fermi distributions. The formula obtained, which
varies directly to the proton number and varies inversely to the cube
root of mass number, was applied and calculated numerically the
values of Coulomb energy for light, medium and heavy nuclei. To
examine the effect of finite size of proton on Coulomb energy, a graph
of Coulomb energy as a function of proton number was presented. The
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of the previously calculated values of the Coulomb energy are reduced
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by taking into consideration, the finite size of proton leads to
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structure, it is very natural to assume the protons to be extended rather
than point charges.
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1. Introduction

The calculation of the Coulomb energy for nuclei or atoms with small computing effort and high
accuracy is a great challenge in physics and quantum chemistry research [1-3]. It is very interesting
and useful to accurately estimate the Coulomb energy acting in the nuclear interior using methods
more quantitative and convenient for numerical calculation. This allows us to understand some
phenomena, such as nuclear fission, in more detail. The Coulomb energy can be calculated in the
framework of the liquid drop model, in which atomic nuclei have reorganized as charge drops of
Van der Waal like fluid [4,5]. The Liquid Drop Model proposed by Von and Weizsacker (1935) and
Bohr and Wheeler, (1939) is found very successful in explaining collective nuclear excitations and
fission [6-10]. A separate investigation was devoted to the calculation of the Coulomb energy of
fission fragments at the scission point during nuclear fission using the assumption of their arbitrary
shape and nuclear density distributions. In the liquid-drop model, the Coulomb energy is roughly
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calculated under a uniform charge distribution approximation. Later, investigations of the
dependence of Coulomb energy upon the shape and the density distributions of the nucleus have
been made. Based on these investigations, some terms which depend on the shape and density
distributions (including constant distribution, Gaussian distribution, diffuse surface distributions,
two-parameter Fermi distribution and Wood Saxon distribution) are added to the expression of the
Coulomb energy [11-14].

It has been established that the net contribution of all these correction terms in Ref. [1,10-14] are
not consistent with experimental data. It was first pointed out by Ohmura, (2018) that contrary to
earlier estimates, the Coulomb energy corrections due to the effect of finite size of proton is not
negligible [15]. Ohmura based on his findings on Coulomb energy of Helium — 3, suggested that if
an extended (finite-size) charge distribution is assumed for the proton, the Coulomb energy arising
from the small inter-proton distance in the atomic nucleus would be reduced. Thus, more accurate
results will be obtained.

In this work, we derive an analytical expression for calculating the Coulomb energy of atomic nuclei
due to the effect of finite-size of the proton using classical electrodynamics theory.

2. Theoretical Background

In the framework of liquid drop model, Coulomb energy can be calculated by considering the
nucleus as positively charged sphere with total charge +Ze where Z is the proton number and e the
electron charge. The charge density can be defined as:

charge _ 3Ze (1)
volume ~ 47R3

where R = rpA'3, is the outer radius of nucleus, A is the mass number of the nucleus, ro = 1.2 x 10°
®m, is the radius parameter.

Figure 1: A charge drops of VVan der Waal like fluid with a relatively thin surface layer dr

273



Aliyu Adamu et al./ NIPES Journal of Science and Technology Research
2(3) 2020 pp. 272-282

From Figure 1, the electrostatic potential at the surface of a sphere of radius r < R is given by

V(r) =K kamrip _ ke (1y" )

r r 3 R \R

And the next layer of nuclear matter has a charge equal to dq = 4mr2drp and potential energy:
2
V(r)dq = ZTIfe(%) 4mrdrp
3rt
= k(Ze)ZFdr 3)

Hence the total Coulomb energy,

3ke* z2
Ec=S"un (4)
is required to assemble a spherical nucleus, with uniform charge distribution. Equation (4) gives a
classical Coulomb energy. Thus, it needs some corrections due to the Coulomb self-energy, nuclear
surface diffuseness, nuclear deformation, finite-size effect of the proton and so on. Using a constant
distribution of charge Bjornholm and Lynn (1980) give the expression for the Coulomb energy
which depends on the shape of the nucleus as:

3e? 72
E; = Ei_oA1/3 g(shape) (5)

where g(shape) is a factor, expressing the dependence of Coulomb energy on the shape parameters
[12]. Hasse and Myers (1988) use the Gaussian charge distribution and expressed the Coulomb
energy as

Z2e?

- 20To (6)

E¢

where ¢ is the width (standard deviation) of the Gaussian distribution [1]. By introducing a factor
(1 - 1/Z) to remove the classical Coulomb self-energy in equation (1), Janecke (1972) use the two-
parameter Fermi distributions and calculate the Coulomb energy as:

_ 37(z-1)e? a\3 a\*
Bair =577 — [1 +bu(5) +02(5) ] (7
where e = 1.6 x 10°C, a = 0.531 fm, R = 1.2AY3fm, by = 18.0295 and b, = -85.2330. Yu et. al.
(2010) found that the Coulomb energies of spherical nuclei with Woods-Saxon charge distributions
can be well described with an analytical expression based on the leptodermous expansion as follows

EYS = E. [1 - ;wz +c30° + 0t +esw® + cw® ... ] )

T a 41 1/3 - . . . .
where, w = N and R = [Z/ (?po)] is the corresponding radius of a spherical nucleus with

uniform charge distribution and the coefficients cz = 3.005, cs = —4.822, ¢cg = 2.934. With the same
approach, Wang et, al. (2010) also investigate the Coulomb energies of nucleus with both the
nuclear surface diffuseness, a, and nuclear deformation being taken into account and found the
Coulomb energy of a nucleus with f. deformation as
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1
ENP = Ec |1 = — B2 + bywp3 +b,0?BE + by + -] 9)

These results showed that the Coulomb energy of a nucleus gradually decreases with increase of the
nuclear surface diffuseness and of the nuclear deformation.

3. Methodology

To calculate the Coulomb energy due to finite size of proton, we start by writing the most general
expression for the classical Coulomb energy of an arbitrary nuclear system with charge density
distribution p(r) which can be represented as

1 1
Fe=e f PV (r)dV = f PPV

all space

where ¢(r) = eVc(r) is the scalar electrostatic potential. Using the differential form of Gauss’s law
for electrostatic field in states;

V-E=£ (10)
&0
we have
o o
Ec =~ j (V-E)pdv (11)
all space

-

where the use of (10) has been made, E is the electric field vector, and o is the permittivity of free
space. This equation can be evaluated using the divergence vector identity,

V-(4B) = (V-A)B +4- (VB) (12)

Therefore,

E. = 47280 [ j V- (E(,b)rzdr — f E - (Vp)ridr

all space all space

1

= j ¢r2E - dA — j—(Vd))zrzdr

boundary all space
of space

Using the divergence theorem, fA E-dA=0and taking the area to be at infinity where ¢ ()

=0, we obtain:

1l space

E; = % j (Vo)?ridr (13)

all space
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where k = (47e0)™* = 9 x 10°Nm*C™2,

After the investigations of Coulomb energy based on liquid drop model of nucleus and taking into
account corrections due to nuclear surface diffuseness and deformation, the concept of extended
charge (finite-size) of proton was introduced to calculate the Coulomb energy. To do this, a new
nuclear potential which describes the interior of the proton can be applied to calculate the
electrostatic potential for a proton of charge +e as a uniformly charged sphere of radius R and a
spherical Gauss surface of radius r as shown in Figure 2. From this figure, for r <R, the total charge
inside a sphere of radius r is

Ginside = TZ€ (%)3 (14)

We can find the internal and external electric fields and hence the electrostatic potential, ¢, by
applying Gauss’ law which states:

ff E . d§ — Qinside (15)

€o

Gaussian surface

1 ‘ 4inside '

Figure 2: The Gaussian surface inside the charge distribution

By symmetry, the electric field, E is purely radial and so the flux through the Gaussian surface is E
x 4zr°. Since E is constant, then

3
insi +Ze (r
ATr2E = Qinside _ (_)
&o &o R

and therefore,

Zer do

T amegR3 T dr
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Or

Ze Zke r?
6= |

— dr = — —— 1
el A RO (16)

where C is a constant of integration.

In aregion r > R, the electric potential from Coulomb’s law states:

+Zke
r

The electric field inside a sphere of radius r (Figure 3) is the same as for a point charge e, located at
the origin.

_ __ Gaussian surface

Figure 3: The Gaussian surface outside the charge distribution

By matching the interior (16) and exterior (17) solutions for ¢ at the surface of the nucleus, r =R
we find:

__SZke
~ 2R

C

Thus, for r <R we have from (13) that:

Zk 2
»=5 13- ] (18)
This is the electrostatic potential for protons of charges +Ze.
4. Results and Discussion
Differentiating (18) with respect to r, we obtain:
Zke (21
v =-22(%)
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By taking the scalar electrostatic potential of a finite-size proton (18) of uniform charge distribution,
we can determine the Coulomb energy from (13) in a region r <R as

1 [oe]
— 2..2
Eey _—Zkf(qu) r2dr
0

Therefore,

R
£ = 1 (Z%k?e? f 4y _3ke? 77 1 19
FN =2k \" RS e A TVEY (19

0
Equations (3), (4), (5), (6), (7) and (19) say even one proton, i.e. Z = 1, could have a Coulomb
energy, even though there is nothing to repel it.

To obtain the Coulomb energy that vanishes at Z — 1, we use the idea that each proton in the nucleus
will repel the other Z — 1 proton in the nucleus. Based on this arrangement, the term Z2 in (19) can
be replaced with,

z0 2(z-1)(z-2)! _ 2(Z-1)
21(z=2)! ~ 21z-2)! 2

and finally have the Coulomb energy which should vanish at Z = 1 as

_3ke?z(z-1) _ z(z-1)
Erv =3 12r9 3 A1/3 (20)
where
3 ke?
a= 5127’0 (21)

By substituting the values of constants in (21), the value of the constant was calculated as, a =
60 keV. Equation (20) gives the Coulomb energy of atomic nucleus due to the finite size of proton.

The values of the direct Coulomb energy Eair of the atomic nuclei obtained from (7) and the coulomb
energy (20) due to finite — size of protons Ery are computed for light, medium and heavy atomic
nuclei and denoting

— (1= E

¢= (1 Edir) (22)
as the deviation of Coulomb energy due to finite size of proton relative to the direct Coulomb energy.
Then the results are presented in Table 1.

Table 1 showed that the values of finite-size Coulomb energy (calculated by taking into account the
extended charge of protons) is found to be smaller than that of direct Coulomb energy by less than
2%. This is because the finite size of proton increases very slightly, the proton — proton distance and
thus affects the values of the Coulomb energy.
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Table 1: The values of the direct Coulomb energy Eqir from (7) and Ern from (20)
Nuclide: AXz  Edir(MeV)  Ern(MeV) 1-9

H, 0.0000 0.0000 0.0000
“He, 0.0055 0.0063 -0.1374
bLis 0.0159 0.0165 -0.0390
°Be, 0.0288 0.0288 -0.0010
10Bg 0.0467 0.0465 0.0033
12Cg 0.0662 0.0655 0.0112
14N, 0.0884 0.0871 0.0145
1604 0.1130 0.1111 0.0163
R, 0.1372 0.1348 0.0176
DNeso 0.1690 0.1661 0.0172
BNay 0.1971 0.1937 0.0174
2Mgi2 0.2332 0.2292 0.0173
2TAl5 0.2646 0.2600 0.0172
2314 0.3046 0.2993 0.0172
31pys 0.3400 0.3344 0.0165
%2516 0.3848 0.3785 0.0162
®Clyy 0.4226 0.4159 0.0158
%Arg 0.4710 0.4636 0.0156
K19 0.5121 0.5044 0.0151
“Caz 0.5640 0.5556 0.0149
45Sco1 0.5984 0.5899 0.0142
46Tiy, 0.6543 0.6453 0.0139
V3 0.6911 0.6819 0.0132
0Crp 0.7601 0.7500 0.0132
Mngs 0.7995 0.7895 0.0126
4Feg 0.8709 0.8598 0.0128
¥Coy 0.9133 0.9023 0.0121
%8Nizg 0.9888 0.9767 0.0122
83Cupe 1.0321 1.0201 0.0116
84Znso 1.1002 1.0875 0.0115
%Gas; 1.1467 1.1341 0.0110
Ges, 1.2171 1.2039 0.0109
®Asss 1.2644 1.2512 0.0104
"Sesy 1.3499 1.3357 0.0105
"Brys 1.4010 1.3869 0.0100
BKrzg 1.4905 1.4754 0.0101
®Rbsy 1.5283 1.5136 0.0096
84Sr3g 1.6206 1.6050 0.0096
Y39 1.6769 1.6614 0.0092
0Zr40 1.7572 1.7411 0.0092
9Nbay 1.8265 1.8102 0.0090
2Mog, 1.9264 1.9091 0.0090
BT Cys 1.9758 1.9588 0.0086
100R U4 2.0563 2.0388 0.0085
193Rhys 2.1286 2.1109 0.0083
102pq g 2.2350 2.2163 0.0084
WAgsy 2.2944 2.2758 0.0081
106C (g 2.4044 2.3848 0.0081
131y 2.4538 2.4348 0.0078
128, 2.5616 2.5415 0.0078
1215hg, 2.5950 2.5758 0.0074
120Tes, 2.7098 2.6897 0.0074
127|154 2.7593 2.7396 0.0071
124X es4 2.8887 2.8677 0.0073
133Css5 2.9319 2.9118 0.0069
130Basg 3.0589 3.0375 0.0070
19 as; 3.1017 3.0811 0.0067
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13%6Cesg 3.2378 3.2160 0.0068
141Prgg 3.3121 3.2904 0.0066
142N dso 3.4132 3.3908 0.0066
145Pmg, 3.5083 3.4857 0.0064
1445 me, 3.6323 3.6088 0.0065
B1Eygs 3.6872 3.6642 0.0063
1%4Gdgs 3.7845 3.7612 0.0061
159Thes 3.8608 3.8376 0.0060
156Dysgg 4.0114 3.9870 0.0061
185H 07 4.0582 4.0347 0.0058
162F rgq 4.2046 4.1798 0.0059
169Tmeg 4.2667 4.2423 0.0057
168Yhyg 4.4003 4.3750 0.0057
8 Uy, 4.4702 4.4454 0.0055
178Hf,, 4.5896 4.5643 0.0055
81Taz, 4.6684 4.6431 0.0054
18074 4.8067 4.7805 0.0054
185Ress 4.8945 4.8684 0.0053
1840576 5.0357 5.0088 0.0053
¥, 5.1063 5.0799 0.0052
192Ptsq 5.2315 5.2045 0.0052
197 Auze 5.3207 5.2938 0.0051
1%Hggo 5.4666 5.4389 0.0051
203T gy 5.5375 5.5102 0.0049
204phg, 5.6662 5.6384 0.0049
209Biigg 5.7663 5.7386 0.0048
209P gy 5.9070 5.8786 0.0048
209Atgs 6.0493 6.0202 0.0048
222Rngg 6.0590 6.0314 0.0046
283F g, 6.2015 6.1733 0.0046
26Ragg 6.3142 6.2857 0.0045
221A\Cgg 6.4487 6.4197 0.0045
282Thgg 6.5519 6.5228 0.0044
Z1pag, 6.6991 6.6694 0.0044
238Uy 6.7810 6.7516 0.0043
ZNpos 6.9413 6.9111 0.0043
244Pygy 7.0234 6.9936 0.0042
283 Amos 7.1860 7.1555 0.0043
247Cmos 7.2916 7.2611 0.0042
247Bkgy 7.4451 7.4140 0.0042
B1Cfog 7.5638 7.5325 0.0041
22Egqq 7.7075 7.6756 0.0041
BTEm 0 7.8148 7.7830 0.0041
260Md 101 7.9348 7.9030 0.0040
262 wipp 8.0807 8.0484 0.0040
261Rf103 8.2408 8.2078 0.0040
262Dy g4 8.4023 8.3688 0.0040
26350105 8.5520 8.5179 0.0040
262Ns106 8.7302 8.6953 0.0040
2645407 8.8684 8.8333 0.0040
266Mt105 9.0077 8.9721 0.0040

The information represented in Table 1 is extended further by plotting a graph of two Coulomb
energies (7) and (20) as a function of proton number, Z (Figure 4).
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Figure 4: The Coulomb energies of atomic nuclei as functions of proton number, Z

Figure 4 represents a comparison of the results from Coulomb energy obtained by (7) using two-
parameter Fermi distribution and (20) using extended proton charge distribution. The Figure showed
that both direct Coulomb energy and the Coulomb energy due to finite size of proton are very closely
related, both energies vanishes at Z = 1 (in case of hydrogen atom and its isotopes) and then
gradually increases with the proton number, Z. Thus, the results obtained are in good agreement
with the values of Coulomb energies calculated from the past.
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Figure 5: The relative Coulomb energies of atomic nuclei, (, as functions of Z

Figure 5 showed that the deviation of Coulomb energy due to finite size of proton (20) relative to
direct Coulomb energy (7) increases rapidly with increasing Z up to about Z ~ 10 and then more
slowly decreases with further increase in Z. Therefore, the values of the finite-sized Coulomb energy
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are about 2% less than the previously calculated values of the Coulomb energies. This is because of
the increase in proton — proton distance due to the finite size of proton and therefore changes the
magnitude of the respective Coulomb energy. This seems to indicate that the coulomb energy
calculated due to finite size of proton is even more consistent with the experimentally measured
values.

5. Conclusion

A classical electrodynamics’ approach has been investigated to determine the effect of finite size of
proton on Coulomb energy of atomic nuclei. An exact analytical expression or result has been
derived for the Coulomb energy potential for finite size protons. Results for different atomic number
nuclei, ranging from light, medium and large have been plotted, and compared with the earlier
theoretical values of Coulomb energy and found to be smaller by about 0% to a maximum of 2%.
This is because of the consideration of the finite-size nature of protons instead of point-like protons,
thus affecting the values of the Coulomb energy.
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