

NIPES Journal of Science and Technology Research 2(3) 2020 pp.127 -147 pISSN-2682-5821, eISSN-2682-5821

127

Development of a Hybrid Tabu Search and Genetic Algorithms for the

Examination Timetabling Problem

Ezike J.O.Ja*, Oyeleye C.A.b, Olabiyisi S.O.b, Omidiora E.O.b
aDept. of Computer Science and Information Technology, Bells University of Technology, Ota, Nigeria
bDept. of Computer Science and Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

*Corresponding Author Email: joezike@bellsuniversity.edu.ng, 08035057550

Article Info Abstract

Keywords:

Genetic Algorithm, Tabu Search,
Automated Examination Timetabling,
Hybrid Algorithm, Combinatorial
Optimization

 Genetic Algorithms (GA) and Tabu Search Algorithm (TSA) are

amongst the leading research approaches for solving the

Examination Timetabling Problem (ETP), however, both algorithms

are not optimal. GA returns poor solution, uses excessive memory,

experience damage to solution during crossover while solving the

ETP. TSA consumes much time, can easily miss some regions of the

search space since it uses one solution, and may fail to generate some

neighborhood candidate solution. TSA also selects best solution

based on the current steps without taking future steps into

consideration. This research developed a hybrid of GA and TSA, the

GATS algorithm, with the aim of mitigating against the GA’s and TS

weaknesses to produce higher quality results when solving the ETP.

The ETP was modeled as an optimization problem, implemented in

Java for the three algorithms and experimented with dataset from

Bells University of Technology, Ota. The algorithms’ performances

were evaluated using first Order Conflict Counts (OCC) and second

OCC for students and invigilators respectively, as well as with space

complexity. The GA, TSA and GATSA yielded average first Order

Conflict Counts (OCC) of 0.0, 0.0 and 0.0 for both students and

invigilators. They yielded average second OCC of 5228.5, 18.8 and

0.7 for students and, 0.0, 0.0 and 0.0 for invigilators respectively.

The Developed GATSA produced higher quality timetables than TSA

and GA, and consumes similar amount of memory as the TSA and

has an empirical space complexity of O(n).

Received 16 June 2020

Revised 22 June 2020

Accepted 25 June 2020

Available online 31 August 2020

https://doi.org/10.37933/nipes/2.3.2020.14

https://nipesjournals.org.ng

© 2020 NIPES Pub. All rights reserved

1. Introduction

Educational timetabling, one of the most widely studied of all variants of the timetabling problem

[1, 2], has been noted to be very time-consuming, and the quality of the timetable produced have

great impact on a broad range of different stake-holder. Variants of the timetabling problems

discussed in literatures differ from each other based on the type of institution involved (University

or high school) and the types of constraints. University timetabling can be categorized into course

timetabling and examination timetabling as noted in [3, 4]. A summary of the three broad categories

of educational timetabling is given in [1] and [5]. The focus of this research is on solving the

Examination Timetabling Problem (ETP).

mailto:joezike@bellsuniversity.edu.ng

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

128

1.2 The Examination Timetabling Problem (ETP)

The ETP is a well-known NP-Complete combinatorial problem present in universities with a large

number of students and courses, especially if the courses are many and the student can choose from

a wide range of electives[6-8]. No classical operations research (OR) approach is directly applicable

for solving the ETP [9]. Some of the approaches used over the years are listed in [10], [11] and [5].

Among the leading approaches are Tabu search (TS) and Genetic Algorithm (GA). However, the

two algorithms are not optimal: GA returns poor quality result with increasing problem size; damage

is also done to solution during cross-over, lastly, GA utilizes excessive memory before returning

result [12, 13]. On the other hand, TS which consume much time and uses only one solution can

easily miss some areas of the search space. TS with a larger set of parallel solutions does not

exchange information [14]. TS also choose the best solution based on the current step and position

without taking the future steps into consideration. It suffers in handling the solution search space

diversity as some neighborhood candidate solution is not necessarily to be generated [15]. In [5],

[16] and [17] it was noted that many of the successful methodologies that have appeared in resent

timetabling literature represent hybridization of a number of techniques. These hybrid meta-

heuristic algorithms are now used to find high quality solution to an ever-increasing number of

complex, ill-defined real world combinatorial problems. They often perform substantially better

than their “pure” counterparts when properly designed. It is currently believed that choosing an

adequate combination of multiple algorithmic concepts is the key for achieving top performance in

solving most difficult problems [17]. This research aim to develop a hybrid of Genetic and Tabu

Search Algorithms for solving the ETP that through synergy, mitigate against the GA’s and TS

weaknesses and capitalizes on their strength to produce higher quality results while consuming less

computing resources.

1.3 Genetic Algorithm

Genetic Algorithm (GA), an evolutionary algorithm, has been widely studied, particularly in

hybridization with local search methods (sometimes called memetic algorithms) and have recorded

some success [5]. Genetic Algorithm mimics the evolution in nature by manipulating and evolving

a population of solutions within the search space. Solutions are coded as chromosomes and are

evolved by a reproduction process using crossover and mutation operators. The aim is to obtain

increasingly improving solutions through a number of generations. A template for GA is given in

[18]. In [19], it was shown that direct representation in GA was incapable of dealing with certain

problem structures in some specially generated graph coloring problems. Further evidence to this

was given in [2]. Result generated by GA may not be as good as those generated by some local

search-based algorithms like TS and simulated annealing as noted in [20, 21]. As such, hybridizing

GA and local search-based techniques is often desirable.

1.4 Tabu Search

Tabu Search (TS) is a “higher level” heuristic procedure for solving optimization problems,

designed to guide other methods (or their components) to escape the trap of local optimality [22],

as a result, TS have often been used to implement “hyperheuristics,” a heuristics which choose

between heuristics in order to solve a given optimization problem as seen in [23] and [24]. The goal

of hyperheuristic applications is usually that of developing automated scheduling methods which

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

129

are not restricted to one problem. TS has been used in a wide range of applications ranging from

scheduling to telecommunications, character recognition to neural networks, to obtain optimal and

near optimal solutions in classical and practical problems. In [25], TS was noted to be amongst the

most effective, if not the best in tackling difficult problems and finding good solutions to the large

combinatorial problems encountered in many practical settings, resulting in TS popularity among

researchers.

TS uses flexible memory structures, classified as short term memory, intermediate term and long

term memories, which allow search information to be exploited more thoroughly. TS also uses

conditions for strategically constraining and freeing the search process (embodied in tabu

restrictions and aspiration criteria), and memory functions of varying time spans for intensifying

and diversifying the search, thereby reinforcing attributes historically found good and driving the

search into new regions [26]. Parameters, such as that for the tabu list, stopping criteria, usually

need to be fine-tuned in line with the problem being solved to enable efficient and effective

performance of the algorithm. The challenge with TS which use only one solution is that it can

easily miss some areas of the search space, while TS with a larger set of parallel solutions does not

exchange information [14]. A template for TS is given in [27],

1.5 Hybridization of GA and TS Algorithms

A hybrid algorithm incorporate concepts and optimization techniques from different algorithms in

order to better solve an ever-growing number of complex, ill-defined real world combinatorial

problems [28]. In fact, many of the successful and current methodologies that have appeared in

resent timetabling literature represent hybridization of a number of techniques [5]. Well designed-

hybrids often perform substantially better than their “pure” counterparts. As a result, a number of

dedicated scientific events such as workshops on metahuristics and conferences are dedicated to

hybridization techniques [29], [30], [31], [32], [33], [34], [35]. However, it should be noted that

compared to the classical “pure” strategies, metaheuristic hybrids are significantly more complex,

requiring more substantial efforts in development and tuning, and does not necessary automatically

translates into better performance. Adequate design and appropriate tuning efforts, which increases

with the system’s complexity, is often mandatory [17]. A classification of hybrid metaheuristics

based on some basic characteristics and design templates used in implementing successful hybrid

algorithms was given in [17].

2. Methodology

Table 1 summarizes the constrained used in Bells University of Technology, Nigeria, as well as key

constrains considered in literature as can be seen in [5, 36]. These constraints are grouped as hard

and soft with penalties attached in view of their severity if violated. The choice of penalty values

follows recommendations in literature and determined from trial experimental runs; they were found

to be effective in guiding the search, TS in particular.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

130

Table 1: Constraint Types and Penalty Values

Type Code Definition Penalty Cost

Hard

HC1 No student should write more than one exam at a time (that is, write two
or more exams at a time)

1,000,000,000

HC2 No teacher (staff) should be scheduled to be in more than one room at
any time.

1,000,000,000

HC3 No exam should be schedule more than one 1,000,000,000

HC4 All scheduled venues must have adequate capacity to contain the
students that enrolled for the exam.

1,000,000,000

Soft

SC1 No student should be scheduled to sit for two non-consecutive exams in
a given day.

1

SC2 No student should be scheduled to sit for two consecutive exams in a
day.

100

SC3 No student should be scheduled to sit for three consecutive exams in a
day.

100,000

SC4 No teacher should be scheduled to invigilate two non-consecutive exams
in a day.

1

SC5 No teacher should be scheduled to invigilate two consecutive exams in a
day.

100

SC6 No teacher should be scheduled to invigilate three consecutive exams in
a day

100,000

In literature, HC1, HC2 and HC3 violations (see Table 1) are referred to as first-order conflicts [24,

37] In this paper, second order conflicts refers SC3 and SC6 violations, third order conflict to SC2

and SC5, while fourth-order conflicts to SC1 and SC4.

2.1 Mathematical Formulation of the ETP

From constraints in Table 1, the ETP is formulated as follows:

2.1.1 Resource Definition

The resources used in solving the ETP are defined as follows:

𝑃: A set of p periods (or time-slots), p1, p2, …, pp.

𝐷: A set of d days (i.e. examination duration), 𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑑: a day comprise 1 to 3 periods.

𝐸: A set of e examinations, 𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑒

𝐸𝑝: A set of 𝛽 examinations scheduled in period 𝑝𝑝, that is, 𝑒1𝑝𝑝, 𝑒2𝑝𝑝, 𝑒3𝑝𝑝 … 𝑒𝛽𝑝𝑝

𝑆: A set of s students, 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑠, in the campus of the university

𝐿: A set of l teachers, 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑙 in the university.

𝑅: A set of s course registration lists for all students in the campus, that is, 𝑅𝑠1
, 𝑅𝑠2

 , 𝑅𝑠3
, … , 𝑅𝑠𝑠

𝑉: A set of all v venues in the campus, that is, 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑣

2.1.2 Decision Variables

All decision variables can have a value of 0 or 1.

i. 𝑒𝑚𝑝𝑘𝑑ℎ
: is the instance of an examination 𝑒𝑚 scheduled in period 𝑝𝑘 of day 𝑑ℎ. 𝑒𝑚𝑝𝑘𝑑ℎ

= 1

if schedule or 0 otherwise.

ii. 𝑠𝑗𝑒𝑚: is the instance that student 𝑠𝑗 enrolled for examination 𝑒𝑚. 𝑠𝑗𝑒𝑚 = 1 if student enrolled

or 0 otherwise.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

131

iii. 𝑠𝑖𝑒𝑚𝑣𝑦: is the instance that student 𝑠𝑗 who enrolled for examination 𝑒𝑚 is scheduled for

venue 𝑣𝑦 . 𝑠𝑖𝑒𝑚𝑣𝑦= 1 if scheduled or 0 otherwise.

iv. 𝑠𝑗𝑒𝑚𝑝𝑘𝑑ℎ
: is the instance that student 𝑠𝑗 is to sit for examination 𝑒𝑚 scheduled for period 𝑝𝑘

of day 𝑑ℎ. 𝑠𝑗𝑒𝑚𝑝𝑘𝑑ℎ
= 1 if student 𝑠𝑗 is scheduled or 0 otherwise.

v. 𝑙𝑔𝑣𝑦𝑝𝑘𝑑ℎ
: is the instance of a teacher 𝑙𝑔 scheduled to be in venue 𝑣𝑦 at period 𝑝𝑘 of day 𝑑ℎ.

2.1.3 Notations Used

The notation 𝑛(𝑒1) denote the number of students that enrolled for examination 𝑒1, 𝑐𝑎𝑝(𝑣𝑦)

denote the capacity of venue 𝑣𝑦 , and 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑝𝑘) denote the number of hours in period 𝑝𝑘 .

2.1.4 Assumptions

The following are the assumption made in carrying out the research experimentation:

i. There are only three (3) periods in a day, that is,

∀ 𝑑ℎ ∈ 𝐷 , ∃𝑝𝑘+𝑖 ∈ 𝑃 ∶ 𝑖 = 1, 2, 3.
Where 𝑝𝑘 is the last period of the previous day and 𝑘 ∈ ℕ0.

ii. Each period is of a fixed 3-hour duration, that is,

∀ 𝑡𝑏 ∈ 𝑇, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑡𝑏) = 3.
iii. All venues dedicated for use during examination are available during the entire examination

period.

2.2 Constraint and Objective Function Modelling

Using the decision variables defined, constraints used in this research (see Table 1) are modelled as

follows:

HC1: No student should write more than one examination at a time (period) in any given day.

𝐻𝐶1 = ∑ 𝑠𝑖𝑒𝑗𝑝𝑘𝑑ℎ
≤ 1 (1)

𝑒

𝑗=1

HC2: No Teacher should be scheduled to be in more than one venue at the same time (period) in

any given day.

𝐻𝐶2 = ∑ 𝑙𝑔𝑣𝑦𝑝𝑘𝑑ℎ

𝑝

𝑘=1

≤ 1 (2)

HC3: All scheduled venues must have adequate capacity to contain the students that enrolled for the

examinations scheduled in them. If 𝑥 is the number of students that enrolled for the examination

𝑒𝑚, then:

𝐻𝐶3 = ∑ 𝑠𝑖𝑒𝑚𝑣𝑦 =

𝑥

𝑖=1

𝑛𝑠(𝑒𝑚) ∶ 𝑛𝑠(𝑒𝑚) ≤ 𝑐𝑎𝑝(𝑣𝑦) (3)

SC1: No student should be scheduled to sit for two non-consecutive (or more than one)

examination in a day.

𝑆𝐶1 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
≤ 1 (4)

𝑘=3

𝑘=1

SC2: No student should be scheduled to sit for two consecutive examinations in a given day.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

132

𝑆𝐶2 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
< 2 (5)

𝑘=𝑎+1

𝑘=𝑎

where a = 1 or 2: a + 1 ≤ 3.

SC3: No student should be scheduled to sit for three consecutive examinations in a day.

𝑆𝐶3 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
< 3 (6)

𝑘=3

𝑘=1

SC4: No teacher should be scheduled to invigilate two non-consecutive examinations in a day.

𝑆𝐶4 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
≤ 1

𝑘=3

𝑘=1

 (7)

SC5: No teacher should be scheduled to invigilate in two consecutive periods.

𝑆𝐶5 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
< 2

𝑘=𝑎+1

𝑘=𝑎

 (8)

where a = 1 or 2 : a + 1 ≤ 3.

SC6: No teacher should be scheduled to invigilate in three consecutive periods.

𝑆𝐶6 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
< 3

𝑘=3

𝑘=1

 (9)

2.3 The ETP Objective Function

In this research, the objective 𝑓𝑜 is defined in terms of the penalty function 𝑓𝑝 as:

𝑓𝑜 = 𝑓𝑝 = 𝑓𝑝 (ℎ𝑎𝑟𝑑) + 𝑓𝑝 (𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠) + 𝑓𝑝 (𝑖𝑛𝑣𝑖𝑔𝑖𝑙𝑎𝑡𝑜𝑟𝑠) (10)

where 𝑓𝑝 (ℎ𝑎𝑟𝑑), 𝑓𝑝 (𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠) and 𝑓𝑝 (𝑖𝑛𝑣𝑖𝑔𝑖𝑙𝑎𝑡𝑜𝑟𝑠) represent the three components of the penalty

function as can be deduced from Table 1. Equation (10) can be written as:

𝑓𝑜 = 𝑓𝑝 = 𝑤ℎ ∑ 𝐻𝐶𝑖

𝑖=4

𝑖=1

+ ∑ 𝑤𝑗𝑆𝐶𝑗

𝑗=3

𝑗=1

+ ∑ 𝑤𝑘𝑆𝐶𝑘

𝑘=3

𝑘=1

 (11)

Where 𝑤𝑗𝑆𝐶𝑗 and 𝑤𝑘𝑆𝐶𝑘 represent the students and invigilator-related constraints respectively. If

the number of student-related constraints is pairwise comparable with that of the invigilator

constraints and the assigned weights (penalty) are same for each pair as in the case in this work (see

Table 1), that is,

∑ 𝑤𝑗𝑆𝐶𝑗 ≡

𝑞

𝑗=1

 𝑤𝑘 ∑ 𝑆𝐶𝑘

𝑧

𝑘=1

 ∶ 𝑞 = 𝑧 and 𝑤𝑗 = 𝑤𝑘;

With the objective function stated in terms of the penalty function as a minimization problem,

Equation 11 can be simplified to:

𝑓𝑝 = 𝑤ℎ ∑ 𝐻𝐶𝑖

𝑖=4

𝑖=1

+ ∑ 𝑤𝑗(𝑆𝐶𝑗 + 𝑆𝐶𝑘)

𝑞=𝑧=3

𝑗,𝑘=1

 (12)

Considering that 𝐻𝐶𝑖, 𝑆𝐶𝑗, and 𝑆𝐶𝑘 are hard and soft constraints for which the consequence of their

violation varies, the weights 𝑤ℎ, 𝑤𝑗=1, 𝑤𝑗=2 and 𝑤𝑗=3 are chosen such that 𝑤ℎ ≫ 𝑤𝑗=1 ≫ 𝑤𝑗=2 ≫

𝑤𝑗=3. These choice of weights values enable the search algorithms to be effectively guided.

From the foregoing, the ETP can now be stated as an optimization problem as follows:

Minimize Equation (12), subject to the following constraints:

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

133

𝐻𝐶1 = ∑ 𝑠𝑖𝑒𝑗𝑝𝑘𝑑ℎ
≤ 1 (1)

𝑒

𝑗=1

𝐻𝐶2 = ∑ 𝑙𝑔𝑣𝑦𝑝𝑘𝑑ℎ

𝑝

𝑘=1

≤ 1 (2)

𝐻𝐶3 = ∑ 𝑠𝑖𝑒𝑚𝑣𝑦 =

𝑥

𝑖=1

𝑛𝑠(𝑒𝑚) ∶ 𝑛𝑠(𝑒𝑚) ≤ 𝑐𝑎𝑝(𝑣𝑦) (3)

𝑆𝐶1 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
≤ 1 (4)

𝑘=3

𝑘=1

𝑆𝐶2 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
< 2 (5)

𝑘=𝑎+1

𝑘=𝑎

𝑆𝐶3 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
< 3 (6)

𝑘=3

𝑘=1

𝑆𝐶4 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
≤ 1

𝑘=3

𝑘=1

 (7)

𝑆𝐶5 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
< 2

𝑘=𝑎+1

𝑘=𝑎

 (8)

𝑆𝐶6 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
< 3

𝑘=3

𝑘=1

 (9)

2.4 Timetable Representation
The timetable was represented as an object, modeled using the following classes: Staff,
Student, Examination, Registration, Venue, Period and Timetable. The relationship
between these classes is shown in Figure 1.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

134

PersonTimetable Venue

Period

Staff«uses»

«uses»

«uses»

«uses»
Examination

Student

Registration

1

*

1..*

1

1..*

*

**

-registers for

Figure 1: Classes used in the object-oriented design of the timetable object

The timetable solution was implemented using Java objects containing list of period objects, which

in turn contains list of examinations, list of venue and list of invigilators. For the GA, the population

of individual solution was contained in a list for processing.

2.5 Implemented Algorithms

The pseudo code for the developed application that implemented the GA, TS and GATS algorithms

is given below.

 Pseudo Code for Timetabling Application

1 Start

2 Declare and Initialize working variables

3 Load Data from Database (Venues, Courses, Registrations, Students)

4 Extract Course Registration List for each student in semester

5 Extract student’s list for each enrolled course

6 Create Initial Population (or Solution)

7 Optimize Solution (Population) (with GA, TS or hybrid algorithms)

8 Allocate examinations & Students to actual venues

9 Schedule Invigilators to venues

10 Display Timetable

11 End.

Section 2.5.1 presents a formal description of the implemented GA algorithm as indicated in line 7

of the generic application pseudo code.

2.5.1 Description of Genetic Algorithm (GA)

Using the following declared variables, the GA algorithm is illustrated in Table 2.

H = List of n individual forming initial GA population

H’ = List of n individual forming final pupation

P = List of two selected individuals (parent)

T = List of individuals selected from H for tournament

t = an individual (that is, a single timetable solution)

StudSemRegL = the list of all examinations registered for by each student in the semester.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

135

Table 2: Description of the Implemented Genetic Algorithm

 Algorithm GA

 Input: H, studSemRegL

 Output: H’

1 T ← ∅ // Tournament Individuals List

2 P ← ∅

3 t ← 𝑛𝑢𝑙𝑙

4 x ← 𝑓(𝐻) // the number of competing individuals, a function of H

5 for(i = 1 to N, do)

6 evaluateTitness(Hi)

7 endfor

8 while(not stopCondition)

9 T ← selectIndividualsForTournament(H,x)

10 P ← peformTornamentSelection(T)

11 t ← peformCrossOverWithMutation(P, studSemRegL)

13 evaluateFitness(t)

14 normalisePopulation(H, t)

15 endwhile

16 H’ ← sort(H)

17 return H’

(a) The Crossover Operator
The GA implements a heuristic crossover operator identical to that shown in Figure 2 as described

in [38]. The crossover process elicit all common exams in both periods and introduces some other

examinations in the pool or from that left over in previous crossing, while ensuring feasibility.

Figure 2: A heuristic hybrid crossover operator [38]

(b) The GA’s Mutation Operator

The mutation operator was incorporated into the crossover function as done in [38], i.e. by adding

examination into the current search that would otherwise not be considered until a later period. This

was necessary because mutation by randomly picking two examination from different period and

exchanging them may result in an infeasible examination timetable.

2.5.2 Description of the TS Algorithm

The description of the Tabu Search algorithm is given Table 3.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

136

Table 3: Description of the Implemented Tabu Search Algorithm

 Algorithm Tabu Search

 Input: t0, StudSemRegL // StudSemRegL is the list of all examinations registered

 for by each student in the semester.

 Output: tbest

1 t ← t0

2 tbest ← t0

3 TL ← ∅

4 while (not stoppingCondition)

5 CL ← ∅//CL, the list for all candidate solution

6 CL ← Nt // N, the neighborhood operator, generates all candidate solution of t

7 t ←applyBest(CL)

8 if (fitness(t) > fitness(tbest))

9 tbest← t

10 endif

11 TL ← t

12 if((size(TL) > maxSize(TL))

13 removeFirst(TL)

14 endif

15 if(DiversificationCondition)

16 diversify()

17 endif

18 endwhile

19 return tbest

TS Neighborhood Operator Description

In the TS Algorithm implementation, the neighborhood operator (line 6) generated all the possible

“moves” to different new timetable solutions, that is, candidate solutions (see Figure 3) and held

these in the generated moves list ((represented by CL). The technique applies an atomic move and

produce a resulting candidate timetable solution, evaluate its fitness and then reverse the move. This

was done with all the generated moves. The acceptance of the best candidate solution results in the

implementation of the move that resulted in that candidate solution.

N
2
(t) N

3
(t) N

4
(t)

N
n-1

(t)

N

N
1(

t) N
n
(t)

t1

t2

t3 t4 tn-1

tn

t

Figure 3: The operation of the Neighborhood operator N on timetable t to produce its

neighbors t1 to tn.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

137

TS Parameter Tuning

Trial experimental runs were carried out on the TS algorithm with tabu-list sizes of 5, 7, 8, 9, 10,

11, 12, 15, 20. Tabu-list size of 10 was found to be more effective in guiding the search. Different

other conditions such as when the generated moves list was empty because all generated moves

were not admissible, were monitored and used to determined appropriate time to diversify to other

search region.

2.6 Description of the Developed Hybrid Algorithm (GATS)

The multi-stage approaches listed in [17], which improves solution by embedded methods was the

design template used in this work. An enhanced crossover operator was used with the GA employed

in the GATS algorithm. In producing a child, the operator searches Parent 1 and extracts all

examinations from the day with lowest penalty into a pool; all examinations from the day with

highest penalty in Parent 2 were also extracted into the pool while preventing duplicate

examinations. Then all examinations that were previously scheduled in any period in the child were

removed from the pool; the remaining exams are then scheduled into day 1 of child timetable while

ensuring feasibility and avoiding 2nd order (SC3) conflicts where possible. Scheduling for day 2

involve searching for the day in Parent 1 that is next in order of lowest penalty while for Parent 2,

day that is next in order of highest penalty is used, etc. Figure 4 illustrates this.

Figure 4: An enhanced Crossover for the GA component of the GATS hybrid algorithm

The GATS algorithm also employed a modified and improved TS algorithm that was used to

improve every child solution produced by the GA in each generation. As such, the developed

algorithm, the GATS, incorporates features of the GA and TS algorithms. The GATS algorithm is

described in Table 4.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

138

Table 4: Description of the developed GATS hybrid Algorithm

 Algorithm GATS

 Input: H , studSemRegL // StudSemRegL is the list of all examinations registered

 for by each student in the semester.

 Output: H’

1 T ← ∅// Tournament Individuals List

2 P ← ∅ // selected parent’s List

3 t ← 𝑛𝑢𝑙𝑙 // individual solution

4 t’ ← 𝑛𝑢𝑙𝑙 // improved t

5 x ← 𝑓(𝐻) // the number of competing individuals, a function of H

6 for (i = 1 to N, do)

7 evaluateTitness(Hi)

8 endfor

9 while (not stopCondition)

10 T ← selectIndividualsForTournament(H,x)

11 P ← peformTornamentSelection(T)

12 t ← peformEnhancedCrossOverWithMutation (P, studSemRegL)

13 t’ ←TS-MMG(t) // apply enhanced TS-based optimization technique

14 evaluateFitness(t’)

15 normalisePopulation(H, t’) // using steady state GA mechanism

16 endwhile

17 H’ ← sort(H)

18 return H’

2.7 Data Gathering

The data used for solving the ETP was gathered from Bells University of Technology, Ota, as at the

end of 1st Semester 2012/2013 Sessions. A summary of this is given as follows:

1 Total number of Students 1896

2 Total number of Registrations 16938

3 Total number of Examinations 501

4 Total number of Venues 25 (Total capacity is 1436)

5 Total Number of Invigilating Staff 170

2.8 Experimental Environment

The algorithms were implemented in Java (JDK8u54) on Windows 10 Pro Operating System (64

bits) on a HP Elite book 2560p having Intel ® Core ™ i5-2520M CPU. 8.00GB installed RAM and

500GB HDD (Toshiba) at 540 RPM. NetBeans IDE 8.02 was used for the application development

with XAMPP version 3.2., which incorporates MySQL Database and phpMyAdmin for

administering the database.

2.9 Experimental Procedures

The ETP data was loaded from the database and preprocessed. Initial timetable solution (or

population) was then generated, as required by the algorithm under consideration: examinations

were randomly picked from the examination pool and scheduled into the available venue spaces,

while avoiding HC constraints violation (see Table 1). The process resulted in the number of periods

in the initial solutions varying from 21 to 28. The initial solutions were then normalized to 30 periods

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

139

for all algorithms so as to give a common base for final timetables comparison. The normalization

improves the initial timetable quality as courses were spread into additional periods.

The 30 period used implies examination duration of 10 day, or two weeks of five working days each

for a three-period-in-a-day examination schedule. A database of 25,000, 50,000, 75,000 and 100,000

students were also generated using the Bells University of Technology dataset as seed. This was

used to test the performance of the algorithms for a larger student’s population and to determine

their space complexities. Two sets of experimental runs were conducted 10 times each for the GA,

TS and the GATS hybrid algorithms. The 1st set uses the Bells University dataset of 1896 students

while the 2nd set uses the 25,000 student population dataset. The results captured are analyzed and

reported in the next section.

 3. Results and Discussion

The results obtained from the conducted experiments are here presented and discussed. Appendix

A is an extracted page of one of the generated timetable using actual data from Bells University of

Technology. Table 5 summaries the result and salient data on the performance of the three

algorithms.

Table 5: Result Summary from 1st Set of Experimental Runs using Bells University Dataset

(Parameters: Student Population = 1896, TS Epoch-Time bound (300s), GA Population = 100, GA

Gen = Time-bound (300s), GATS Pop = 10, GATS Gen/Epoch-Time bound (300s)).

Descriptions GA TS GATS

Constraints Violation Best of 10 Runs

First Order Conflict Count (OCC) 0 0 0

2nd OCC 356 0 0

3rd OCC 2402 601 336

4th OCC 1139 2256 1600

Penalties of Best Generated
Timetable

35841339 62356 35200

 % Improvement (GATS
comparison)

99.9% 43.5% 0.0%

 Average of 10 Runs

1st OCC 0 0 0

2nd OCC 454.78 1.5 0.1

3rd OCC 2584.89 865.5 824.9

4th OCC 1172.44 1599.1 1438.6

Penalties of Best Generated
Timetable (Average)

45737439 238149.1 93928.6

Average % Improvement (GATS
comparison)

99.8 60.6% 0.0%

Invigilators

1st OCC 0 0 0

2nd OCC 0 0 0

3rd OCC 0 0 0

4th OCC 0 0 0

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

140

Table 6: Result Summary from 2nd Set of Experimental Runs using Generated Dataset

(Parameters: Student Population = 25,000, TS Epoch-Time bound (5400 s), GA Population = 100,

GA Gen = Time-bound (5400 sec), GATS Pop = 10, GATS Gen/Epoch-Time bound (5400 s)).

Descriptions (25k) GA TS GATS

Constraints Violations Best of 10 Runs

First Order Conflict Count
(OCC)

0 0 0

2nd OCC 4801 0 0

3rd OCC 39624 8952 5085

4th OCC 10110 21123 24126

Final Timetable Penalties
(Best result)

484072510 916323 532626

% Improvement (GATS) 99.9% 41.9 % 0.0%

Time (s) to eliminate 2nd OCC Nil 1120s 181s

Constraints Violations Average of 10 Runs

First OCC 0 0 0

2nd OCC 5228.5 18.8 0.7

3rd OCC 33375.0 19222.7 11114.5

4th OCC 19341.3 19222.7 19792.4

Final Timetable Penalties
(Best result)

526206841.3 2891433.0 1201242.4

% Improvement (GATS) 99.8% 58.5% 0.0%

Time (s) to eliminate 2nd OCC Nil 1707.7s 509.4s

3.1 The Effect of Processing Time (GA, TS and GATS) on Timetable Quality

Figure 5 showed the effect of varying the processing time for the three algorithms from 0 to 5,400

seconds (i.e. 1½ hours), while Figure 6 illustrate the quality of the Final Timetable generated by

each of the algorithm.

Figure 5: Timetable penalty reduction with time

0

500

1000

1500

2000

P
en

al
ty

 (
M

ill
io

n
s)

Time (S)

TIMETABLE QUALITY VS PROCESSING TME
(A l l A lgor i thms)

GA (best) GA (Avg) TS (best)

TS (Avg) GATS (best) GATS (Avg)

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

141

Figure 6: Comparison of Generated Timetables Qualities- All Algorithms (Best and

Average)

The GATS hybrid algorithm produced more quality timetables than the GA and TS algorithms. For

the 1st set of experimental run, the quality of result produced by the GATS algorithm in the best case

was 99.9% better than the GA and 43.5% than the TS algorithms. For the second set, the GATS’s

best result was again 99.9% better than that of GA and 41.9 % than that of TS. The GA performance

was poor; this was due to limitation of the crossover operator, the key search operator in GA. GA

may indeed not be very effective in solving highly constrained problems like the ETP as noted in

[2].

3.2 Eliminated 2nd Order Conflict Violation

This soft constraint SC3, the constraint of student not sitting for three consecutive examinations in

a day (see Table 1) is the most costly as no hard (HC) constraints were broken. The TS algorithm

returned timetable solutions with the SC3 constraints eliminated in three out of the 10 experimental

runs while the GA algorithm returned no such solution. The developed GATS hybrid algorithm

returned timetable solution with the SC3 constraints eliminated in nine out of the 10 experimental

runs. In actual fact, a total of 18 of such solutions with SC3 constraint violation removed were

actually returned by the GATS algorithm with its population of 10 solutions over five generations

within the specified time of 5400s (see Figure 7). Figure 8 is an illustration of the time take by the

TS and GATS algorithms to achieve the elimination of the SC3 constraint violation.

4840.7251
5262.068413

9.16323 28.91433 5.32626 12.012424
0

1000

2000

3000

4000

5000

6000

GA(best) GA(Avg) TS(best) TS(Avg) GATS (best) GATS (Avg)

P
en

al
ty

 v
al

u
e

(x
 1

0
0

0
0

)

Algorithms

Quality of Timetables Generated

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

142

Figure 7: Comparison of All Algorithms based on Number of Students Having 3 Consecutive

Exams (Best and Avg. of 10 Runs)

Figure 8: Time taken to eliminate the Second Order Conflicts (Best and Avg. of 10 Runs)

3.3. Evaluation based on Empirical Space Complexity

The empirical Space Complexity of the three Algorithms was determined using the generated

databases of students’ populations varying from 25,000 to 100,000 in steps of 25,000. The memory

consumed by the GA, TS and the GATS algorithms before and after garbage collection differs.

Figure 9 shows the space complexity without Garbage Collection (GC). The graph shows a linear

plot for the GA and TS algorithm and approximately linear for the GATS algorithm. From Figure

9, the GA used more memory during program execution compared to the TS algorithm. Memory

consumption of the GATS algorithm is comparable to that of the TS algorithm. Figure 10 shows the

complexity with GC, and shows a linear relationship with population increase. All three algorithms

showed identical complexity of order 𝑂(𝑛) without and with garbage collection done.

4801
5228.5

0 18.8 0 0.7
0

1000

2000

3000

4000

5000

6000

GA(best) GA(Avg) TS(best) TS(Avg) GATS
(best)

GATS
(Avg)

SC
3

 C
o

n
fl

ic
ts

 C
o

u
n

t

Algorithms

No of 2nd Order Conflicts Violation

1120

181

1707.667

509.3889

0

500

1000

1500

2000

TS (best) GATS (best) TS (Avg) GATS (Avg)

Ti
im

e
(s

)

Algorithms

Simulation Time to eliminate
Second Order Conflicts

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

143

Figure 9: A Comparison of Space Complexity of GA, TS and GATS Algorithms (without GC)

Figure 10: A Comparison of Space Complexity of GA, TS and GATS Algorithms (without

GC)

4. Conclusion

In this research, a hybrid Genetic and Tabu Search algorithms, the GATS algorithm, was developed

for solving the Examination Timetabling Problem. GATS algorithm incorporated features of both

the GA and TS algorithms. The GA, TS and the developed GATS algorithms were tested using data

from Bells University of Technology, Ota. The GATS algorithm exhibited superior performance

when compared to both the GA and TS algorithms in terms of quality of timetable results returned

and time required for such returns. Its memory consumption is similar to that of the TS algorithm

and its space complexity is of order 𝑂(𝑛). The result showed that hybridization of two or more

search algorithms, when properly done can benefit from synergy and outperform the individual

component.

0

200

400

600

800

2 5 0 0 0 5 0 0 0 0 7 5 0 0 0 1 0 0 0 0 0

M
EM

O
R

Y
(M

B
)

STUDENT POPULATION

S P A C E C O M P L EX I T Y
(W i t h o u t C G)

GA TS GATS

0

100

200

300

400

500

600

2 5 0 0 0 5 0 0 0 0 7 5 0 0 0 1 0 0 0 0 0

M
EM

O
R

Y
(M

B
)

STUDENT POPULATION

S P AC E C O M P LEXIT Y
(With G ar bage C o l le ct ion)

GA TS GATS

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

144

Nomenclature
GA Genetic Algorithm

TS Tabu Search

GATS Hybrid GA-TS algorithm

1st OCC First Order Conflict Counts

2nd, 3rd, .. OCC Second, third, … Order Conflict Count

HC Hard Constraint

SC Soft Constrating

𝑓𝑜 Objective Function

𝑓𝑝 Penalty Function

𝑤ℎ Penalty weight for constraint h

ℕ0 The set of Natural numbers (counting from zero)

References

[1] Schaerf, A., A survey of automated timetabling. . Artificial Intelligence Review., 1999. 13(2): p. 87-127.

[2] Ross, P., E. Hart, and D. Corne, eds. Some observations about GA-based exam timetabling. LNCS 1408,

Practice and Theory of Automated Timetabling II: Selected Papers from the 2nd International Conference. II :

Second International Conference, PATAT 1997, ed. E.K. Burke and M.W. Carter. Vol. 1408. 1997, Springer-

Verlag: Toronto, Canada. 115-129.

[3] Carter, M.W., A survey of practical applications of examination timetabling algorithms. Operations Research,

1986. 34.(2.): p. 193-202.

[4] Burke, E.K., D.G. Elliman, and R. Weare, A University Timetabling System based n Graph colouring and

Constraint Manipulation. . Journal of Research on Computing in Education., 1993: p. 26.

[5] Qu, R., et al., A Survey of Search Methodologies and Automated System Development for Examination

Timetabling. Journal of Scheduling, 2009. 12(1): p. 55 - 89.

[6] Garey, M.R. and D.S. Johnson, Computers and intractability. A guide to the theory of NP-completeness. A

Series of Books in the Mathematical Sciences. 1979, San Francisco, Calif: WH Freeman and Company.

[7] Cooper, T.B. and J.H. Kingston, The complexity of timetable construction problems. In (Burke & Ross, 1996).

1995: p. 283-295.

[8] Burke, E.K., et al., Examination timetabling in British universities: A survey., in Practice and Theory of

Automated Timetabling: Selected Papers from the 1st International Conference. LNCS 1153. , B. E.K. and R.

P., Editors. 1996, Springer-Verlag: Berlin, Heidelberg. p. 76-90.

[9] Boizumault, P., Y. Delon, and L. Peridy, Constraint logic programming for examination timetabling. The

Journal Of Logic Programming, 1996.

[10] Carter, M.W. and G. Laporte, Recent developments in practical examination timetabling. In: E.K. Burke and

P. Ross (eds) (1996) 1996: p. 3-21.

[11] Burke, E.K. and S. Petrovic, Recent Research Directions in Automated Timetabling. European Journal of

Operational Research - EJOR, 2002. 140(2): p. 266-280.

[12] Zahra Beheshti, Z., S. Mariyam, and H. Shamsuddin, A Review of Population-based Meta-Heuristic

Algorithms International Journal of Advance. Soft Comput. Applications, 2013. 5(1).

[13] Oyeleye, C.A., Development of a Hybrid Model for Solving Examination Timetabling Problem, in Department

of Computer Science and Engineering2011, Department of Computer Science and Engineering, Ladoke

Akintola University of Technology, Ogbomoso, Nigeria: Ogbomoso.

[14] Zdansky, M. and J. Pozivil. Combination Genetic/Tabu Search Algorithm for Hybrid Flow Shops Optimization.

in ALGORITMY 2002 Conference on Scientic Computing. 2002.

[15] Nayak, S.K., S.K. Padhy, and S.P. Panigrahi, A novel algorithm for dynamic task scheduling. Future

Generation Computer Systems, 2012.

[16] Gendreau, M. and J. Potvin, Handbook of Metaheuristics. 2 ed. International Series in Operations Research &

Management Science, ed. F.S. Hillier. Vol. 146. 2010, New York Dordrecht Heidelberg London: Springer

[17] Raidl, G.R., J. Puchinger, and C. Blum, Metaheuristic Hybrids, in Handbook of Metaheuristics, M. Gendreau

and J. Potvin, Editors. 2010, Springer New York Dordrecht Heidelberg London. p. 469-496.

[18] Hassani, A. and J. Treijs, An Overview of Standard and Parallel Genetic Algorithms, in IDT Workshop on

Interesting Results in Computer Science and Engineering (IRCSE '09)2009: Mälardalen University, Sweden

[19] Corne, D., P. Ross, and H. Fang, Evolutionary timetabling: Practice, prospects and work in progress. , in

Proceedings of UK Planning and Scheduling SIG Workshop., P. Prosser, Editor. 1994.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

145

[20] Oyeleye, C.A., et al., Performance evaluation of simulated annealing and genetic algorithm in solving

examination timetabling problem. Scientific Research and Essays, 2012. 7(17): p. 1727-1733.

[21] Hou, J.H., J.M. Wang, and X.J. Xu, A Comparison of Three Heuristic Algorithms for Molecular Docking,.

Chinese Chemical Letters Vol., 1999. 10(7): p. 615-618.

[22] Glover, F., Tabu Search: A Tutorial. Interfaces, 1990. 20: p. 74-94.

[23] Burke, E.K., G. Kendall, and E. Soubeiga, A Tabu-Search Hyperheuristics for Timetabling and Rostering.

Journal of Heuristics, 2003. 9: p. 451-470.

[24] Kendall, G. and N.M. Hussin, Tabu Search Hyper-heuristic Approach to the Examination Timetabling

Problem at University of Technology MARA], in PATAT 2004, Selected Papers from the 5th International

Conference. Lecture Notes in Computer (LNCS) 3616, , E.K. Burke and M. Trick, Editors. 2005, Springer-

Verlag Berlin Heidelberg (2005). p. 199-218.

[25] Gendreau, M. and J. Potvin, Tabu Search, in Handbook of Metaheuristics., M. Gendreau and J. Potvin, Editors.

2010, Springer Science+Business Media, LLC 2010: International Series in Operations Research and

Management Sciences 146, New York Dordrecht Heidelberg London.

[26] Glover, F., Tabu Search - Part I. ORSA Journal on Computing 1989. 1(3).

[27] Gendreau, M. An Introduction to Tabu Search. 2002.

[28] Malek, M., et al., A Hybrid Algorithm Technique, 1989, University of Texas: Austin, TX, USA ©1989.

[29] Almeida, F., et al., eds. Proceedings of HM 2006 – Third International Workshop on Hybrid Metaheuristics,

Lecture Notes in Computer Science. Vol. 4030. 2006, Springer: Berlin

[30] Bartz-Beielstein, T., et al., eds. Proceedings of HM 2007 – Fourth International Workshop on Hybrid

Metaheuristics, Lecture Notes in Computer Science. Vol. 4771. 2007, Springer: Berlin.

[31] Blesa Aguilera, M.J., et al., eds. Proceedings of HM 2005 – Second International Workshop on Hybrid

Metaheuristics. Lecture Notes in Computer Science. Vol. 3636. 2005, Springer: Berlin.

[32] Blum, C., A. Roli, and M. Sampels, eds. Proceedings of HM 2004 – First International Workshop on Hybrid

Metaheuristics 2004: Valencia, Spain.

[33] Maniezzo, V., P. Hansen, and S. Voss, eds. Proceedings of Matheuristics 2006: First International Workshop

on Mathematical Contributions to Metaheuristics. 2006: Bertinoro, Italy.

[34] Hansen, P., et al., eds. Proceedings of Matheuristics 2008: Second International Workshop on Model Based

Metaheuristics. 2008: Bertinoro, Italy.

[35] Perron, L. and M.A. Trick, eds. Integration of AI and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems – CPAIOR 2008, 5th International Conference: Lecture Notes in

Computer Science. Lecture Notes in Computer Science. Vol. 5015. 2008, Springer: Berlin (2008).

[36] McCollum, B. University Timetabling: Bridging the Gap between Research and Practice. in The Proceedings

of the 6 th International Conference on the Practice and Theory of Automated Timetabling (PATAT). 2006.

[37] White, G.M. and B.S. Xie, Examination Timetables and Tabu Search with Longer-Term Memory, in PATAT

2000, Lecture Notes in Computer Sciences (LNCS) 2079, E. Burke and W. Erben, Editors. 2001 Springer-

Verlag Berlin Heidelberg. p. 85-103.

[38] Burke, E.K., D.G. Elliman, and R. Weare, The automated timetabling of university exams using a hybrid

genetic algorithm., in AISB Workshop on Evolutionary Computing. 19951995, Society for the Study of

Artificial Intelligence and Simulation of Behaviour (SSAISB), 1995: University of Leeds, UK, 3-7 April 1995.

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

146

APPENDIX A

Extracted Pages of a Generated Examination Timetables

BELLS UNIVERSITY OF TECHNOLOGY, OTA

EXAMINATION TIMETABLE

--

| Days | Courses/No of Students | Venues(Count) | Invigilators' IDs |

--

| Mon | MEE207(157)-HD(157) | MPH(240) | 38; 39; 50; 64; 65 |

| 9.00am-12.00pm| BUS101(133)-MPH(133) | HD(230) | 66; 67; 68; 89; 99 |

| | ECO309(107)-MPH(107) | Rm5(56) | 103; 104 |

| | ARC101(68)-HD(68) | MScStu 2(43) | 105 |

| | ARC209(54)-Rm5(54) | MScStd1(40) | 108 |

| | CSC505(41)-MScStu 2(41) | Adenuga 2(34) | 110 |

| | MEE307(38)-MScStd1(38) | BioCLab(30) | 120 |

| | BUS411(21)-BioCLab(21) | SoftWLab 2(30) | 121 |

| | HRM305(20)-DigitalLab(20) | BioLab3(25) | 123 |

| | CHM207(19)-TRLab(19) | DigitalLab(20) | 124 |

| | BIO203(15)-FoodPLab(15) | CtrlMicLab(20) | 134 |

| | MEE409(12)-CtrlMicLab(12) | FoodPLab(20) | 135 |

| | CEN403(12)-SoftWLab 2(12) | TRLab(20) | 137 |

| | PMT205(11)-SoftWLab 2(11) | AnalytLab(10) | 147 |

| | EST207(11)-Adenuga 2(11) | BuildgTech(10) | 155 |

| | PMT405(10)-AnalytLab(10) | ButechLab(10) | 159 |

| | ARC403(10)-BuildgTech(10) | | |

| | BIC401(9)-BioCLab(9) | | |

| | BIC311(8)-CtrlMicLab(8) | | |

| | SGF205(7)-SoftWLab 2(7) | | |

| | FDT405(6)-ButechLab(6) | | |

| | BTE303(6)-Adenuga 2(6) | | |

| | BUS405(6)-Adenuga 2(6) | | |

| | BME303(6)-Adenuga 2(6) | | |

| | CHM307(6)-BioLab3(6) | | |

| | MKT303(6)-BioLab3(6) | | |

| | PHY309(5)-HD(5) | | |

| | BDT301(4)-ButechLab(4) | | |

| | CHM411(3)-FoodPLab(3) | | |

| | ECO411(3)-Adenuga 2(3) | | |

Ezike J.O.J. et al. / NIPES Journal of Science and Technology Research

2(3) 2020 pp. 127-147

147

| | TCE403(2)-Rm5(2) | | |

| | EST403(2)-MScStu 2(2) | | |

| | BTE403(2)-MScStd1(2) | | |

| | URP313(2)-FoodPLab(2) | | |

| | URP415(2)-Adenuga 2(2) | | |

| | NUD311(2)-BioLab3(2) | | |

| | MCT407(2)-BioLab3(2) | | |

| | BDT403(2)-BioLab3(2) | | |

| | BTE507(1)-TRLab(1) | | |

| | SGF307(1)-BioLab3(1) | | |

| | AMS421(1)-BioLab3(1) | | |

| | QTS403(1)-BioLab3(1) | | |

| | TML505(1)-BioLab3(1) | | |

| | NUD411(1)-BioLab3(1) | | |

| | NUD203(1)-BioLab3(1) | | |

| | QTS305(1)-BioLab3(1) | | |

--

| Mon | ARC413(11)-DigitalLab(11) | Adenuga 3(80) | 171; 177 |

| 12:30pm-3.00pm| BIC305(10)-AnalytLab(10) | E-Lib(80) | 178; 179 |

| | FDT303(4)-DigitalLab(4) | StrOfMLab(60) | 181; 185 |

| | BME405(1)-DigitalLab(1) | Rm5(56) | 194; 196 |

| | ACC403(41)-MScStu 2(41) | MScStu 2(43) | 200 |

| | SGF201(7)-BuildgTech(7) | Adenuga 4(42) | 218 |

| | CSC307(59)-StrOfMLab(59) | MScStd1(40) | 219 |

| | TCE401(2)-MScStu 2(2) | Adenuga 2(34) | 221 |

| | ECO303(39)-MScStd1(39) | SoftWLab 2(30) | 236 |

| | AMS417(1)-StrOfMLab(1) | BioCLab(30) | 238 |

| | PHY307(6)-ButechLab(6) | BioLab3(30) | 240 |

| | MEE313(29)-BioCLab(29) | DigitalLab(20) | 243 |

| | PMT501(2)-BuildgTech(2) | TRLab(20) | 246 |

| | MIC307(9)-TRLab(9) | FoodPLab(20) | 252 |

| | EEE411(30)-SoftWLab 2(30) | CtrlMicLab(11) | 253 |

| | EST407(2)-DigitalLab(2) | AnalytLab(10) | 254 |

| | EEE415(1)-MScStd1(1) | BuildgTech(10) | 255 |

| | NUD305(2)-DigitalLab(2) | ButechLab(10) | 258 |

