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 Genetic Algorithms (GA) and Tabu Search Algorithm (TSA) are 

amongst the leading research approaches for solving the 

Examination Timetabling Problem (ETP), however, both algorithms 

are not optimal. GA returns poor solution, uses excessive memory, 

experience damage to solution during crossover while solving the 

ETP. TSA consumes much time, can easily miss some regions of the 

search space since it uses one solution, and may fail to generate some 

neighborhood candidate solution. TSA also selects best solution 

based on the current steps without taking future steps into 

consideration. This research developed a hybrid of GA and TSA, the 

GATS algorithm, with the aim of mitigating against the GA’s and TS 

weaknesses to produce higher quality results when solving the ETP. 

The ETP was modeled as an optimization problem, implemented in 

Java for the three algorithms and experimented with dataset from 

Bells University of Technology, Ota. The algorithms’ performances 

were evaluated using first Order Conflict Counts (OCC) and second 

OCC for students and invigilators respectively, as well as with space 

complexity. The GA, TSA and GATSA yielded average first Order 

Conflict Counts (OCC) of 0.0, 0.0 and 0.0 for both students and 

invigilators. They yielded average second OCC of 5228.5, 18.8 and 

0.7 for students and, 0.0, 0.0 and 0.0 for invigilators respectively. 

The Developed GATSA produced higher quality timetables than TSA 

and GA, and consumes similar amount of memory as the TSA and 

has an empirical space complexity of O(n). 
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1. Introduction 

Educational timetabling, one of the most widely studied of all variants of the timetabling problem 

[1, 2], has been noted to be very time-consuming, and the quality of the timetable produced have 

great impact on a broad range of different stake-holder. Variants of the timetabling problems 

discussed in literatures differ from each other based on the type of institution involved (University 

or high school) and the types of constraints. University timetabling can be categorized into course 

timetabling and examination timetabling as noted in [3, 4]. A summary of the three broad categories 

of educational timetabling is given in [1] and [5]. The focus of this research is on solving the 

Examination Timetabling Problem (ETP). 
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1.2 The Examination Timetabling Problem (ETP) 

The ETP is a well-known NP-Complete combinatorial problem present in universities with a large 

number of students and courses, especially if the courses are many and the student can choose from 

a wide range of electives[6-8]. No classical operations research (OR) approach is directly applicable 

for  solving the ETP [9]. Some of the approaches used over the years are listed in [10], [11] and [5]. 

Among the leading approaches are Tabu search (TS) and Genetic Algorithm (GA). However, the 

two algorithms are not optimal: GA returns poor quality result with increasing problem size; damage 

is also done to solution during cross-over, lastly, GA utilizes excessive memory before returning 

result [12, 13]. On the other hand, TS which consume much time and uses only one solution can 

easily miss some areas of the search space. TS with a larger set of parallel solutions does not 

exchange information [14]. TS also choose the best solution based on the current step and position 

without taking the future steps into consideration.  It suffers in handling the solution search space 

diversity as some neighborhood candidate solution is not necessarily to be generated [15]. In [5], 

[16] and [17] it was noted that many of the successful methodologies that have appeared in resent 

timetabling literature represent hybridization of a number of techniques. These hybrid meta-

heuristic algorithms are now used to find high quality solution to an ever-increasing number of 

complex, ill-defined real world combinatorial problems.  They often perform substantially better 

than their “pure” counterparts when properly designed. It is currently believed that choosing an 

adequate combination of multiple algorithmic concepts is the key for achieving top performance in 

solving most difficult problems [17]. This research aim to develop a hybrid of Genetic and Tabu 

Search Algorithms for solving the ETP that through synergy, mitigate against the GA’s and TS 

weaknesses and capitalizes on their strength to produce higher quality results while consuming less 

computing resources. 

 

1.3 Genetic Algorithm 

Genetic Algorithm (GA), an evolutionary algorithm, has been widely studied, particularly in 

hybridization with local search methods (sometimes called memetic algorithms) and have recorded 

some success [5]. Genetic Algorithm mimics the evolution in nature by manipulating and evolving 

a population of solutions within the search space. Solutions are coded as chromosomes and are 

evolved by a reproduction process using crossover and mutation operators. The aim is to obtain 

increasingly improving solutions through a number of generations. A template for GA is given in 

[18]. In [19], it was shown that direct representation in GA was incapable of dealing with certain 

problem structures in some specially generated graph coloring problems. Further evidence to this 

was given in [2]. Result generated by GA may not be as good as those generated by some local 

search-based algorithms like TS and simulated annealing as noted in [20, 21]. As such, hybridizing 

GA and local search-based techniques is often desirable. 

 

1.4 Tabu Search 

Tabu Search (TS) is a “higher level” heuristic procedure for solving optimization problems, 

designed to guide other methods (or their components) to escape the trap of local optimality [22], 

as a result, TS have often been used to implement “hyperheuristics,” a heuristics which choose 

between heuristics in order to solve a given optimization problem as seen in [23] and [24]. The goal 

of hyperheuristic applications is usually that of developing automated scheduling methods which 
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are not restricted to one problem. TS has been used in a wide range of applications ranging from 

scheduling to telecommunications, character recognition to neural networks, to obtain optimal and 

near optimal solutions in classical and practical problems. In [25], TS was noted to be amongst the 

most effective, if not the best in tackling difficult problems and finding good solutions to the large 

combinatorial problems encountered in many practical settings, resulting in TS popularity among 

researchers.   

 

TS uses flexible memory structures, classified as short term memory, intermediate term and long 

term memories, which allow search information to be exploited more thoroughly.  TS also uses 

conditions for strategically constraining and freeing the search process (embodied in tabu 

restrictions and aspiration criteria), and  memory functions of varying time spans for intensifying 

and diversifying the search, thereby reinforcing attributes historically found good and driving the 

search into new regions [26].  Parameters, such as that for the tabu list, stopping criteria, usually 

need to be fine-tuned in line with the problem being solved to enable efficient and effective 

performance of the algorithm.  The challenge with TS which use only one solution is that it can 

easily miss some areas of the search space, while TS with a larger set of parallel solutions does not 

exchange information [14]. A template for TS is given in [27], 

 

1.5      Hybridization of GA and TS Algorithms 

A hybrid algorithm incorporate concepts and optimization techniques from different algorithms in 

order to better solve an ever-growing number of complex, ill-defined real world combinatorial 

problems [28]. In fact, many of the successful and current methodologies that have appeared in 

resent timetabling literature represent hybridization of a number of techniques [5]. Well designed-

hybrids often perform substantially better than their “pure” counterparts. As a result, a number of 

dedicated scientific events such as workshops on metahuristics and  conferences are dedicated to 

hybridization techniques [29], [30], [31], [32], [33], [34], [35]. However, it should be noted that 

compared to the classical “pure” strategies, metaheuristic hybrids are significantly more complex, 

requiring more substantial efforts in development and tuning, and does not necessary automatically 

translates into better performance. Adequate design and appropriate tuning efforts, which increases 

with the system’s complexity, is often mandatory [17]. A classification of hybrid metaheuristics 

based on some basic characteristics and design templates used in implementing successful hybrid 

algorithms was given in [17].  

 

2. Methodology 

 

Table 1 summarizes the constrained used in Bells University of Technology, Nigeria, as well as key 

constrains considered in literature as can be seen in [5, 36]. These constraints are grouped as hard 

and soft with penalties attached in view of their severity if violated. The choice of penalty values 

follows recommendations in literature and determined from trial experimental runs; they were found 

to be effective in guiding the search, TS in particular.  
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Table 1: Constraint Types and Penalty Values 

Type Code Definition Penalty Cost 

Hard 
 

HC1 No student should write more than one exam at a time (that is, write two 
or more exams at a time) 

1,000,000,000 

HC2 No teacher (staff) should be scheduled to be in more than one room at 
any time.  

1,000,000,000 

HC3 No exam should be schedule more than one 1,000,000,000 

HC4 All scheduled venues must have adequate capacity to contain the 
students that enrolled for the exam.  

1,000,000,000 

Soft 
 

SC1 No student should be scheduled to sit for two non-consecutive exams in 
a given day. 

1 

SC2 No student should be scheduled to sit for two consecutive exams in a 
day. 

100 

SC3 No student should be scheduled to sit for three consecutive exams in a 
day. 

100,000 

SC4 No teacher should be scheduled to invigilate two non-consecutive exams 
in a day. 

1 

SC5 No teacher should be scheduled to invigilate two consecutive exams in a 
day. 

100 

SC6 No teacher should be scheduled to invigilate three consecutive exams in 
a day 

100,000 

 

In literature, HC1, HC2 and HC3 violations (see Table 1) are referred to as first-order conflicts [24, 

37]  In this paper, second order conflicts refers SC3 and SC6 violations, third order conflict to SC2 

and SC5, while fourth-order conflicts to SC1 and SC4.  

 

2.1 Mathematical Formulation of the ETP  

From constraints in Table 1, the ETP is formulated as follows: 

 

2.1.1 Resource Definition 

The resources used in solving the ETP are defined as follows: 

𝑃: A set of p periods (or time-slots), p1, p2, …, pp. 

𝐷: A set of d days (i.e. examination duration), 𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑑: a day comprise 1 to 3 periods. 

𝐸: A set of e examinations,  𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑒 

𝐸𝑝: A set of 𝛽 examinations scheduled in period 𝑝𝑝, that is,  𝑒1𝑝𝑝, 𝑒2𝑝𝑝, 𝑒3𝑝𝑝 …  𝑒𝛽𝑝𝑝 

𝑆: A set of s students, 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑠, in the campus of the university 

𝐿: A set of l teachers, 𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑙 in the university. 

𝑅: A set of s course registration lists for all students in the campus, that is, 𝑅𝑠1
, 𝑅𝑠2

 , 𝑅𝑠3
, … , 𝑅𝑠𝑠

 

𝑉: A set of all v venues in the campus, that is, 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑣 

 

2.1.2 Decision Variables 

All decision variables can have a value of 0 or 1. 

i. 𝑒𝑚𝑝𝑘𝑑ℎ
: is the instance of an examination 𝑒𝑚 scheduled in period 𝑝𝑘 of day 𝑑ℎ. 𝑒𝑚𝑝𝑘𝑑ℎ

= 1 

if schedule or 0 otherwise. 

ii. 𝑠𝑗𝑒𝑚: is the instance that student 𝑠𝑗 enrolled for examination 𝑒𝑚.  𝑠𝑗𝑒𝑚 = 1 if student enrolled 

or 0 otherwise.  
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iii. 𝑠𝑖𝑒𝑚𝑣𝑦: is the instance that student 𝑠𝑗 who enrolled for examination 𝑒𝑚 is scheduled for 

venue 𝑣𝑦 .  𝑠𝑖𝑒𝑚𝑣𝑦= 1 if scheduled or 0 otherwise.  

iv. 𝑠𝑗𝑒𝑚𝑝𝑘𝑑ℎ
: is the instance that student 𝑠𝑗 is to sit for examination 𝑒𝑚 scheduled for period 𝑝𝑘 

of day 𝑑ℎ.  𝑠𝑗𝑒𝑚𝑝𝑘𝑑ℎ
= 1 if student 𝑠𝑗 is scheduled or 0 otherwise.   

v. 𝑙𝑔𝑣𝑦𝑝𝑘𝑑ℎ
: is the instance of a teacher 𝑙𝑔 scheduled to be in venue 𝑣𝑦  at period 𝑝𝑘 of day 𝑑ℎ. 

 

2.1.3 Notations Used  

The notation 𝑛(𝑒1) denote the number of students that enrolled for examination 𝑒1, 𝑐𝑎𝑝(𝑣𝑦) 

denote the capacity of venue 𝑣𝑦 , and 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑝𝑘) denote the number of hours in period 𝑝𝑘 .  

 

2.1.4 Assumptions 

The following are the assumption made in carrying out the research experimentation: 

i. There are only three (3) periods in a day, that is,  

∀ 𝑑ℎ  ∈ 𝐷 , ∃𝑝𝑘+𝑖  ∈ 𝑃 ∶ 𝑖 = 1, 2, 3. 
Where 𝑝𝑘 is the last period of the previous day and 𝑘 ∈ ℕ0. 

ii. Each period is of a fixed 3-hour duration, that is,  

∀ 𝑡𝑏  ∈ 𝑇, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑡𝑏) = 3. 
iii. All venues dedicated for use during examination are available during the entire examination 

period. 

 

2.2   Constraint and Objective Function Modelling  

Using the decision variables defined, constraints used in this research (see Table 1) are modelled as 

follows:  

 

HC1: No student should write more than one examination at a time (period) in any given day.  

𝐻𝐶1 =  ∑ 𝑠𝑖𝑒𝑗𝑝𝑘𝑑ℎ
≤ 1                                                           (1)

𝑒

𝑗=1

 

HC2: No Teacher should be scheduled to be in more than one venue at the same time (period) in 

any given day.  

𝐻𝐶2 = ∑ 𝑙𝑔𝑣𝑦𝑝𝑘𝑑ℎ

𝑝

𝑘=1

≤ 1                                                          (2) 

HC3: All scheduled venues must have adequate capacity to contain the students that enrolled for the 

examinations scheduled in them. If 𝑥 is the number of students that enrolled for the examination 

𝑒𝑚, then:   

𝐻𝐶3 = ∑ 𝑠𝑖𝑒𝑚𝑣𝑦  =  

𝑥

𝑖=1

𝑛𝑠(𝑒𝑚) ∶  𝑛𝑠(𝑒𝑚) ≤ 𝑐𝑎𝑝(𝑣𝑦)         (3) 

 

SC1: No student should be scheduled to sit for two non-consecutive (or more than one) 

examination in a day.   

𝑆𝐶1 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
≤  1                                                           (4) 

𝑘=3

𝑘=1

 

SC2: No student should be scheduled to sit for two consecutive examinations in a given day.  
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𝑆𝐶2 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
<  2                                                      (5) 

𝑘=𝑎+1

𝑘=𝑎

 

where a = 1 or 2: a + 1 ≤ 3. 

SC3: No student should be scheduled to sit for three consecutive examinations in a day.  

𝑆𝐶3 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
<  3                                                          (6) 

𝑘=3

𝑘=1

 

SC4: No teacher should be scheduled to invigilate two non-consecutive examinations in a day.   

𝑆𝐶4 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
≤  1 

𝑘=3

𝑘=1

                                                        (7) 

SC5: No teacher should be scheduled to invigilate in two consecutive periods.  

𝑆𝐶5 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
<  2 

𝑘=𝑎+1

𝑘=𝑎

                                                    (8) 

where a = 1 or 2 : a + 1  ≤  3. 

SC6: No teacher should be scheduled to invigilate in three consecutive periods.  

𝑆𝐶6 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
<  3 

𝑘=3

𝑘=1

                                                         (9) 

 

2.3 The ETP Objective Function 

In this research, the objective 𝑓𝑜 is defined in terms of the penalty function 𝑓𝑝 as:   

𝑓𝑜 =  𝑓𝑝 =  𝑓𝑝 (ℎ𝑎𝑟𝑑) +  𝑓𝑝 (𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠) + 𝑓𝑝 (𝑖𝑛𝑣𝑖𝑔𝑖𝑙𝑎𝑡𝑜𝑟𝑠)                      (10) 

where 𝑓𝑝 (ℎ𝑎𝑟𝑑), 𝑓𝑝 (𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠) and 𝑓𝑝 (𝑖𝑛𝑣𝑖𝑔𝑖𝑙𝑎𝑡𝑜𝑟𝑠) represent the three components of the penalty 

function as can be deduced from Table 1.  Equation (10) can be written as: 

𝑓𝑜 =  𝑓𝑝 =  𝑤ℎ ∑ 𝐻𝐶𝑖 

𝑖=4

𝑖=1

+  ∑ 𝑤𝑗𝑆𝐶𝑗

𝑗=3

𝑗=1

+   ∑ 𝑤𝑘𝑆𝐶𝑘

𝑘=3

𝑘=1

                         (11) 

 

Where 𝑤𝑗𝑆𝐶𝑗  and 𝑤𝑘𝑆𝐶𝑘 represent the students and invigilator-related constraints respectively. If 

the number of student-related constraints is pairwise comparable with that of the invigilator 

constraints and the assigned weights (penalty) are same for each pair as in the case in this work (see 

Table 1), that is,  

∑ 𝑤𝑗𝑆𝐶𝑗  ≡

𝑞

𝑗=1

  𝑤𝑘 ∑ 𝑆𝐶𝑘

𝑧

𝑘=1

   ∶  𝑞 = 𝑧 and 𝑤𝑗 =  𝑤𝑘; 

With the objective function stated in terms of the penalty function as a minimization problem, 

Equation 11 can be simplified to: 

𝑓𝑝 =  𝑤ℎ ∑ 𝐻𝐶𝑖 

𝑖=4

𝑖=1

+ ∑ 𝑤𝑗(𝑆𝐶𝑗 +  𝑆𝐶𝑘)

𝑞=𝑧=3

𝑗,𝑘=1

                                         (12) 

Considering that 𝐻𝐶𝑖, 𝑆𝐶𝑗, and 𝑆𝐶𝑘 are hard and soft constraints for which the consequence of their 

violation varies, the weights 𝑤ℎ, 𝑤𝑗=1, 𝑤𝑗=2 and 𝑤𝑗=3 are chosen such that 𝑤ℎ ≫  𝑤𝑗=1 ≫  𝑤𝑗=2 ≫

𝑤𝑗=3. These choice of weights values enable the search algorithms to be effectively guided.   

From the foregoing, the ETP can now be stated as an optimization problem as follows:  

Minimize Equation (12), subject to the following constraints: 
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𝐻𝐶1 =  ∑ 𝑠𝑖𝑒𝑗𝑝𝑘𝑑ℎ
≤ 1                                                           (1)

𝑒

𝑗=1

 

 

𝐻𝐶2 = ∑ 𝑙𝑔𝑣𝑦𝑝𝑘𝑑ℎ

𝑝

𝑘=1

≤ 1                                                          (2) 

 

𝐻𝐶3 = ∑ 𝑠𝑖𝑒𝑚𝑣𝑦  =  

𝑥

𝑖=1

𝑛𝑠(𝑒𝑚) ∶  𝑛𝑠(𝑒𝑚) ≤ 𝑐𝑎𝑝(𝑣𝑦)         (3) 

 

𝑆𝐶1 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
≤  1                                                           (4) 

𝑘=3

𝑘=1

 

 

𝑆𝐶2 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
<  2                                                      (5) 

𝑘=𝑎+1

𝑘=𝑎

 

 

𝑆𝐶3 = ∑ 𝑠𝑖𝑒𝑚𝑝𝑘𝑑ℎ
<  3                                                          (6) 

𝑘=3

𝑘=1

 

 

 

𝑆𝐶4 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
≤  1 

𝑘=3

𝑘=1

                                                        (7) 

 

𝑆𝐶5 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
<  2 

𝑘=𝑎+1

𝑘=𝑎

                                                    (8) 

 

𝑆𝐶6 = ∑ 𝑙𝑔𝑒𝑚𝑝𝑘𝑑ℎ
<  3 

𝑘=3

𝑘=1

                                                         (9) 

 

 

2.4 Timetable Representation 
The timetable was represented as an object, modeled using the following classes: Staff, 
Student, Examination, Registration, Venue, Period and Timetable. The relationship 
between these classes is shown in Figure 1.  
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PersonTimetable Venue

Period

Staff«uses»

«uses»

«uses»

«uses»
Examination

Student

Registration

1

*

1..*

1

1..*

*

**

-registers for

Figure 1: Classes used in the object-oriented design of the timetable object 
 

The timetable solution was implemented using Java objects containing list of period objects, which 

in turn contains list of examinations, list of venue and list of invigilators. For the GA, the population 

of individual solution was contained in a list for processing. 

 

2.5 Implemented Algorithms 

The pseudo code for the developed application that implemented the GA, TS and GATS algorithms 

is given below.  

 Pseudo Code for Timetabling Application 

1 Start 

2 Declare and Initialize working variables 

3 Load Data from Database (Venues, Courses, Registrations, Students) 

4 Extract Course Registration List for each student in semester 

5 Extract student’s list for each enrolled course 

6 Create Initial Population (or Solution)  

7 Optimize Solution (Population) (with GA, TS or hybrid algorithms) 

8 Allocate examinations & Students to actual venues 

9 Schedule Invigilators to venues 

10 Display Timetable 

11 End. 

Section 2.5.1 presents a formal description of the implemented GA algorithm as indicated in line 7 

of the generic application pseudo code. 

2.5.1 Description of Genetic Algorithm (GA) 

Using the following declared variables, the GA algorithm is illustrated in Table 2.  

H = List of n individual forming initial GA population 

H’ = List of n individual forming final pupation 

P = List of two selected individuals (parent) 

T = List of individuals selected from H for tournament 

t = an individual (that is, a single timetable solution) 

StudSemRegL = the list of all examinations registered for by each student in the semester.  
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Table 2: Description of the Implemented Genetic Algorithm 

 

 Algorithm GA  

  Input: H, studSemRegL  

 

 

  Output: H’  

1  T ← ∅  // Tournament Individuals List  

2  P ← ∅  

3  t ← 𝑛𝑢𝑙𝑙  

4  x ← 𝑓(𝐻)  // the number of competing individuals, a function of H  

5  for(i = 1 to N, do)  

6        evaluateTitness(Hi)  

7  endfor  

8  while(not stopCondition)  

9        T ←  selectIndividualsForTournament(H,x)  

10         P ←  peformTornamentSelection(T)  

11  t ←  peformCrossOverWithMutation(P, studSemRegL)  

13         evaluateFitness(t)  

14         normalisePopulation(H, t)  

15  endwhile  

16  H’  ← sort(H)  

17  return H’  

 

 

(a) The Crossover Operator 
The GA implements a heuristic crossover operator identical to that shown in Figure 2 as described 

in [38].  The crossover process elicit all common exams in both periods and introduces some other 

examinations in the pool or from that left over in previous crossing, while ensuring feasibility.  

 

 
 

Figure 2: A heuristic hybrid crossover operator [38] 

 

(b) The GA’s Mutation Operator 

The mutation operator was incorporated into the crossover function as done in [38], i.e. by adding 

examination into the current search that would otherwise not be considered until a later period. This 

was necessary because mutation by randomly picking two examination from different period and 

exchanging them may result in an infeasible examination timetable. 

2.5.2 Description of the TS Algorithm 

The description of the Tabu Search algorithm is given Table 3. 
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Table 3: Description of the Implemented Tabu Search Algorithm 

 

 Algorithm Tabu Search 

 Input: t0, StudSemRegL  // StudSemRegL is the list of all examinations registered 

                                            for by each student in the semester. 

 Output: tbest 

1 t ← t0 

2 tbest ← t0 

3 TL ← ∅ 

4 while (not stoppingCondition) 

5 CL ← ∅//CL, the list for all candidate solution 

6 CL ← Nt   // N, the neighborhood operator, generates all candidate solution of t 

7 t  ←applyBest(CL) 

8 if (fitness(t) > fitness(tbest))      

9        tbest←  t 

10 endif 

11 TL ← t 

12 if((size(TL) > maxSize(TL)) 

13       removeFirst(TL) 

14             endif 

15 if(DiversificationCondition) 

16 diversify()  

17             endif 

18 endwhile 

19 return tbest 

 

TS Neighborhood Operator Description 

In the TS Algorithm implementation, the neighborhood operator (line 6) generated all the possible 

“moves” to different new timetable solutions, that is, candidate solutions (see Figure 3) and held 

these in the generated moves list ((represented by CL). The technique applies an atomic move and 

produce a resulting candidate timetable solution, evaluate its fitness and then reverse the move. This 

was done with all the generated moves. The acceptance of the best candidate solution results in the 

implementation of the move that resulted in that candidate solution.  
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Figure 3: The operation of the Neighborhood operator N on timetable t to produce its     

neighbors t1 to tn. 
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TS Parameter Tuning 

Trial experimental runs were carried out on the TS algorithm with tabu-list sizes of 5, 7, 8, 9, 10, 

11, 12, 15, 20. Tabu-list size of 10 was found to be more effective in guiding the search. Different 

other conditions such as when the generated moves list was empty because all generated moves 

were not admissible, were monitored and used to determined appropriate time to diversify to other 

search region. 

2.6 Description of the Developed Hybrid Algorithm (GATS) 

The multi-stage approaches listed in [17], which improves solution by embedded methods was the 

design template used in this work. An enhanced crossover operator was used with the GA employed 

in the GATS algorithm. In producing a child, the operator searches Parent 1 and extracts all 

examinations from the day with lowest penalty into a pool; all examinations from the day with 

highest penalty in Parent 2 were also extracted into the pool while preventing duplicate 

examinations. Then all examinations that were previously scheduled in any period in the child were 

removed from the pool; the remaining exams are then scheduled into day 1 of child timetable while 

ensuring feasibility and avoiding 2nd order (SC3) conflicts where possible. Scheduling for day 2 

involve searching for the day in Parent 1 that is next in order of lowest penalty while for Parent 2, 

day that is next in order of highest penalty is used, etc. Figure 4 illustrates this. 

  
 

Figure 4: An enhanced Crossover for the GA component of the GATS hybrid algorithm 

 

The GATS algorithm also employed a modified and improved TS algorithm that was used to 

improve every child solution produced by the GA in each generation. As such, the developed 

algorithm, the GATS, incorporates features of the GA and TS algorithms. The GATS algorithm is 

described in Table 4. 
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Table 4: Description of the developed GATS hybrid Algorithm 

 

 Algorithm GATS 

 Input: H , studSemRegL    // StudSemRegL is the list of all examinations registered 

                                              for by each student in the semester. 

 Output: H’ 

1 T ← ∅// Tournament Individuals List 

2 P ← ∅          // selected parent’s List 

3 t ← 𝑛𝑢𝑙𝑙      // individual solution 

4 t’ ← 𝑛𝑢𝑙𝑙     // improved t 

5 x ← 𝑓(𝐻)    // the number of competing individuals, a function of H 

6 for (i = 1 to N, do) 

7        evaluateTitness(Hi) 

8 endfor 

9 while (not stopCondition) 

10         T ←  selectIndividualsForTournament(H,x) 

11         P ←  peformTornamentSelection(T) 

12         t ←  peformEnhancedCrossOverWithMutation (P, studSemRegL) 

13         t’ ←TS-MMG(t) // apply enhanced TS-based optimization technique  

14        evaluateFitness(t’) 

15        normalisePopulation(H, t’) // using steady state GA mechanism 

16 endwhile 

17 H’ ←   sort(H) 

18 return H’ 

 
 

2.7 Data Gathering 

The data used for solving the ETP was gathered from Bells University of Technology, Ota, as at the 

end of 1st Semester 2012/2013 Sessions.  A summary of this is given as follows: 

1 Total number of Students 1896 

2 Total number of Registrations 16938 

3 Total number of Examinations 501 

4 Total number of Venues 25 (Total capacity is 1436) 

5 Total Number of Invigilating Staff 170 

 

2.8 Experimental Environment 

The algorithms were implemented in Java (JDK8u54) on Windows 10 Pro Operating System (64 

bits) on a HP Elite book 2560p having Intel ® Core ™ i5-2520M CPU. 8.00GB installed RAM and 

500GB HDD (Toshiba) at 540 RPM.  NetBeans IDE 8.02 was used for the application development 

with XAMPP version 3.2., which incorporates MySQL Database and phpMyAdmin for 

administering the database. 

 

2.9 Experimental Procedures 

The ETP data was loaded from the database and preprocessed. Initial timetable solution (or 

population) was then generated, as required by the algorithm under consideration: examinations 

were randomly picked from the examination pool and scheduled into the available venue spaces, 

while avoiding HC constraints violation (see Table 1). The process resulted in the number of periods 

in the initial solutions varying from 21 to 28. The initial solutions were then normalized to 30 periods 
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for all algorithms so as to give a common base for final timetables comparison. The normalization 

improves the initial timetable quality as courses were spread into additional periods.  

 

The 30 period used implies examination duration of 10 day, or two weeks of five working days each 

for a three-period-in-a-day examination schedule. A database of 25,000, 50,000, 75,000 and 100,000 

students were also generated using the Bells University of Technology dataset as seed. This was 

used to test the performance of the algorithms for a larger student’s population and to determine 

their space complexities. Two sets of experimental runs were conducted 10 times each for the GA, 

TS and the GATS hybrid algorithms. The 1st set uses the Bells University dataset of 1896 students 

while the 2nd set uses the 25,000 student population dataset. The results captured are analyzed and 

reported in the next section. 

 3. Results and Discussion 

The results obtained from the conducted experiments are here presented and discussed. Appendix 

A is an extracted page of one of the generated timetable using actual data from Bells University of 

Technology. Table 5 summaries the result and salient data on the performance of the three 

algorithms.  

 

Table 5: Result Summary from 1st Set of Experimental Runs using Bells University Dataset 

(Parameters: Student Population = 1896, TS Epoch-Time bound (300s), GA Population = 100, GA 

Gen = Time-bound (300s), GATS Pop = 10, GATS Gen/Epoch-Time bound (300s)). 

 

Descriptions GA TS GATS 

Constraints Violation Best of 10 Runs 

First Order Conflict Count (OCC) 0 0 0 

2nd OCC 356 0 0 

3rd OCC 2402 601 336 

4th OCC 1139 2256 1600 

Penalties of Best Generated 
Timetable 

35841339 62356 35200 

 % Improvement (GATS 
comparison) 

99.9% 43.5% 0.0% 

 Average of 10 Runs       

1st OCC 0 0 0 

2nd OCC 454.78 1.5 0.1 

3rd OCC 2584.89 865.5 824.9 

4th OCC 1172.44 1599.1 1438.6 

Penalties of Best Generated 
Timetable (Average) 

45737439 238149.1 93928.6 

Average % Improvement (GATS 
comparison) 

99.8 60.6% 0.0% 

Invigilators       

1st OCC 0 0 0 

2nd OCC 0 0 0 

3rd OCC 0 0 0 

4th OCC 0 0 0 
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Table 6: Result Summary from 2nd Set of Experimental Runs using Generated Dataset 

(Parameters: Student Population = 25,000, TS Epoch-Time bound (5400 s), GA Population = 100, 

GA Gen = Time-bound (5400 sec), GATS Pop = 10, GATS Gen/Epoch-Time bound (5400 s)). 

 

Descriptions (25k) GA TS GATS 

Constraints Violations Best of 10 Runs 

First Order Conflict Count 
(OCC) 

0 0 0 

2nd OCC 4801 0 0 

3rd OCC 39624 8952 5085 

4th OCC 10110 21123 24126 

Final Timetable Penalties 
(Best result) 

484072510 916323 532626 

% Improvement (GATS) 99.9% 41.9 % 0.0% 

Time (s) to eliminate 2nd OCC Nil 1120s 181s 

Constraints Violations Average of 10 Runs 

First OCC 0 0 0 

2nd OCC 5228.5 18.8 0.7 

3rd OCC 33375.0 19222.7 11114.5 

4th OCC 19341.3 19222.7 19792.4 

Final Timetable Penalties 
(Best result) 

526206841.3 2891433.0 1201242.4 

% Improvement (GATS) 99.8% 58.5% 0.0% 

Time (s) to eliminate 2nd OCC Nil 1707.7s 509.4s 

 

3.1 The Effect of Processing Time (GA, TS and GATS) on Timetable Quality 

Figure 5 showed the effect of varying the processing time for the three algorithms from 0 to 5,400 

seconds (i.e. 1½ hours), while Figure 6 illustrate the quality of the Final Timetable generated by 

each of the algorithm.  

 
 

Figure 5: Timetable penalty reduction with time 
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Figure 6: Comparison of Generated Timetables Qualities- All Algorithms (Best and 

Average) 

 
The GATS hybrid algorithm produced more quality timetables than the GA and TS algorithms. For 

the 1st set of experimental run, the quality of result produced by the GATS algorithm in the best case 

was 99.9% better than the GA and 43.5% than the TS algorithms. For the second set, the GATS’s 

best result was again 99.9% better than that of GA and 41.9 % than that of TS. The GA performance 

was poor; this was due to limitation of the crossover operator, the key search operator in GA. GA 

may indeed not be very effective in solving highly constrained problems like the ETP as noted in 

[2]. 

 

 

3.2   Eliminated 2nd Order Conflict Violation  

This soft constraint SC3, the constraint of student not sitting for three consecutive examinations in 

a day (see Table 1) is the most costly as no hard (HC) constraints were broken. The TS algorithm 

returned timetable solutions with the SC3 constraints eliminated in three out of the 10 experimental 

runs while the GA algorithm returned no such solution. The developed GATS hybrid algorithm 

returned timetable solution with the SC3 constraints eliminated in nine out of the 10 experimental 

runs. In actual fact, a total of 18 of such solutions with SC3 constraint violation removed were 

actually returned by the GATS algorithm with its population of 10 solutions over five generations 

within the specified time of 5400s (see Figure 7). Figure 8 is an illustration of the time take by the 

TS and GATS algorithms to achieve the elimination of the SC3 constraint violation.  
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Figure 7: Comparison of All Algorithms based on Number of Students Having 3 Consecutive 

Exams (Best and Avg. of 10 Runs) 

 

 
 

Figure 8: Time taken to eliminate the Second Order Conflicts (Best and Avg. of 10 Runs) 

 

3.3. Evaluation based on Empirical Space Complexity 

The empirical Space Complexity of the three Algorithms was determined using the generated 

databases of students’ populations varying from 25,000 to 100,000 in steps of 25,000. The memory 

consumed by the GA, TS and the GATS algorithms before and after garbage collection differs.  

Figure 9 shows the space complexity without Garbage Collection (GC). The graph shows a linear 

plot for the GA and TS algorithm and approximately linear for the GATS algorithm. From Figure 

9, the GA used more memory during program execution compared to the TS algorithm. Memory 

consumption of the GATS algorithm is comparable to that of the TS algorithm. Figure 10 shows the 

complexity with GC, and shows a linear relationship with population increase. All three algorithms 

showed identical complexity of order 𝑂(𝑛) without and with garbage collection done. 
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Figure 9: A Comparison of Space Complexity of GA, TS and GATS Algorithms (without GC) 

 

 

 
 

Figure 10: A Comparison of Space Complexity of GA, TS and GATS Algorithms (without 

GC) 

 

4. Conclusion 

In this research, a hybrid Genetic and Tabu Search algorithms, the GATS algorithm, was developed 

for solving the Examination Timetabling Problem. GATS algorithm incorporated features of both 

the GA and TS algorithms. The GA, TS and the developed GATS algorithms were tested using data 

from Bells University of Technology, Ota. The GATS algorithm exhibited superior performance 

when compared to both the GA and TS algorithms in terms of quality of timetable results returned 

and time required for such returns. Its memory consumption is similar to that of the TS algorithm 

and its space complexity is of order 𝑂(𝑛). The result showed that hybridization of two or more 

search algorithms, when properly done can benefit from synergy and outperform the individual 

component. 
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Nomenclature 
GA Genetic Algorithm 

TS Tabu Search 

GATS Hybrid GA-TS algorithm 

1st OCC First Order Conflict Counts 

2nd, 3rd, .. OCC Second, third, … Order Conflict Count 

HC Hard Constraint 

SC Soft Constrating 

𝑓𝑜 Objective Function 

𝑓𝑝 Penalty Function 

𝑤ℎ Penalty weight for constraint h 

ℕ0 The set of Natural numbers (counting from zero) 
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APPENDIX A 

Extracted Pages of a Generated Examination Timetables 

 
BELLS UNIVERSITY OF TECHNOLOGY, OTA 

EXAMINATION TIMETABLE 

------------------------------------------------------------------------------------------------------------------------ 

|       Days    |   Courses/No of Students                |  Venues(Count) |   Invigilators' IDs                        |                                   

------------------------------------------------------------------------------------------------------------------------ 

|     Mon       | MEE207(157)-HD(157)                     | MPH(240)       | 38; 39; 50; 64; 65                         | 

| 9.00am-12.00pm| BUS101(133)-MPH(133)                    | HD(230)        | 66; 67; 68; 89; 99                         | 

|               | ECO309(107)-MPH(107)                    | Rm5(56)        | 103; 104                                   | 

|               | ARC101(68)-HD(68)                       | MScStu 2(43)   | 105                                        | 

|               | ARC209(54)-Rm5(54)                      | MScStd1(40)    | 108                                        | 

|               | CSC505(41)-MScStu 2(41)                 | Adenuga 2(34)  | 110                                        | 

|               | MEE307(38)-MScStd1(38)                  | BioCLab(30)    | 120                                        | 

|               | BUS411(21)-BioCLab(21)                  | SoftWLab 2(30) | 121                                        | 

|               | HRM305(20)-DigitalLab(20)               | BioLab3(25)    | 123                                        | 

|               | CHM207(19)-TRLab(19)                    | DigitalLab(20) | 124                                        | 

|               | BIO203(15)-FoodPLab(15)                 | CtrlMicLab(20) | 134                                        | 

|               | MEE409(12)-CtrlMicLab(12)               | FoodPLab(20)   | 135                                        | 

|               | CEN403(12)-SoftWLab 2(12)               | TRLab(20)      | 137                                        | 

|               | PMT205(11)-SoftWLab 2(11)               | AnalytLab(10)  | 147                                        | 

|               | EST207(11)-Adenuga 2(11)                | BuildgTech(10) | 155                                        | 

|               | PMT405(10)-AnalytLab(10)                | ButechLab(10)  | 159                                        | 

|               | ARC403(10)-BuildgTech(10)               |                |                                            | 

|               | BIC401(9)-BioCLab(9)                    |                |                                            | 

|               | BIC311(8)-CtrlMicLab(8)                 |                |                                            | 

|               | SGF205(7)-SoftWLab 2(7)                 |                |                                            | 

|               | FDT405(6)-ButechLab(6)                  |                |                                            | 

|               | BTE303(6)-Adenuga 2(6)                  |                |                                            | 

|               | BUS405(6)-Adenuga 2(6)                  |                |                                            | 

|               | BME303(6)-Adenuga 2(6)                  |                |                                            | 

|               | CHM307(6)-BioLab3(6)                    |                |                                            | 

|               | MKT303(6)-BioLab3(6)                    |                |                                            | 

|               | PHY309(5)-HD(5)                         |                |                                            | 

|               | BDT301(4)-ButechLab(4)                  |                |                                            | 

|               | CHM411(3)-FoodPLab(3)                   |                |                                            | 

|               | ECO411(3)-Adenuga 2(3)                  |                |                                            | 
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|               | TCE403(2)-Rm5(2)                        |                |                                            | 

|               | EST403(2)-MScStu 2(2)                   |                |                                            | 

|               | BTE403(2)-MScStd1(2)                    |                |                                            | 

|               | URP313(2)-FoodPLab(2)                   |                |                                            | 

|               | URP415(2)-Adenuga 2(2)                  |                |                                            | 

|               | NUD311(2)-BioLab3(2)                    |                |                                            | 

|               | MCT407(2)-BioLab3(2)                    |                |                                            | 

|               | BDT403(2)-BioLab3(2)                    |                |                                            | 

|               | BTE507(1)-TRLab(1)                      |                |                                            | 

|               | SGF307(1)-BioLab3(1)                    |                |                                            | 

|               | AMS421(1)-BioLab3(1)                    |                |                                            | 

|               | QTS403(1)-BioLab3(1)                    |                |                                            | 

|               | TML505(1)-BioLab3(1)                    |                |                                            | 

|               | NUD411(1)-BioLab3(1)                    |                |                                            | 

|               | NUD203(1)-BioLab3(1)                    |                |                                            | 

|               | QTS305(1)-BioLab3(1)                    |                |                                            | 

------------------------------------------------------------------------------------------------------------------------ 

|     Mon       | ARC413(11)-DigitalLab(11)               | Adenuga 3(80)  | 171; 177                                   | 

| 12:30pm-3.00pm| BIC305(10)-AnalytLab(10)                | E-Lib(80)      | 178; 179                                   | 

|               | FDT303(4)-DigitalLab(4)                 | StrOfMLab(60)  | 181; 185                                   | 

|               | BME405(1)-DigitalLab(1)                 | Rm5(56)        | 194; 196                                   | 

|               | ACC403(41)-MScStu 2(41)                 | MScStu 2(43)   | 200                                        | 

|               | SGF201(7)-BuildgTech(7)                 | Adenuga 4(42)  | 218                                        | 

|               | CSC307(59)-StrOfMLab(59)                | MScStd1(40)    | 219                                        | 

|               | TCE401(2)-MScStu 2(2)                   | Adenuga 2(34)  | 221                                        | 

|               | ECO303(39)-MScStd1(39)                  | SoftWLab 2(30) | 236                                        | 

|               | AMS417(1)-StrOfMLab(1)                  | BioCLab(30)    | 238                                        | 

|               | PHY307(6)-ButechLab(6)                  | BioLab3(30)    | 240                                        | 

|               | MEE313(29)-BioCLab(29)                  | DigitalLab(20) | 243                                        | 

|               | PMT501(2)-BuildgTech(2)                 | TRLab(20)      | 246                                        | 

|               | MIC307(9)-TRLab(9)                      | FoodPLab(20)   | 252                                        | 

|               | EEE411(30)-SoftWLab 2(30)               | CtrlMicLab(11) | 253                                        | 

|               | EST407(2)-DigitalLab(2)                 | AnalytLab(10)  | 254                                        | 

|               | EEE415(1)-MScStd1(1)                    | BuildgTech(10) | 255                                        | 

|               | NUD305(2)-DigitalLab(2)                 | ButechLab(10)  | 258                                        | 

 

 

 


