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 A single variable shear deformable thick plate buckling equation 

is developed using systematic first principles approach. The 

equation is solved in closed form for simply supported boundary 

conditions using Galerkin method for in-plane uniaxial and 

biaxial compressive loads on the edges. The equation has one 

unknown and is similar in form as the thin plate equation, 

rendering it amenable to solution methods for the thin plate 

equation. The equation was derived using the total energy 

minimization method. The Galerkin method used exact 

sinusoidal shape functions of simply supported boundary 

conditions as the basis functions to construct the Galerkin 

variational integral which was minimized with respect to the 

unknown displacement parameters (amplitudes) to yield the 

governing equations of buckling. The eigenvalue problem was 

solved to find the zeros which gave the eigenvalues from which 

the critical buckling load was determined. Comparison of the 

critical buckling loads with the previous results in literature 

showed they were identical to the exact critical buckling results 

for simply supported plates for both cases of uniaxial and biaxial 

compressive loads considered for various ratios of dimension, a, 

to thickness h (a/h) and then dimension b to dimension a (b/a). 

The orthogonality of the eigenfunctions used as the solution basis 

simplified the resulting integration problem. The Galerkin 

methods gave exact results for the simply supported plate 

buckling problem because exact shape function which satisfied 

the Dirichlet boundary conditions were used, and the domain 

equations were also satisfied at all points on the plate. The 

novelty of this work is the first principle step by step approach 

used in the equilibrium method deployed in the derivation of the 

governing deferential equation of equilibrium (DEoE). Another 

unique feature of the study is the systematic formulation and 

solution of the Galerkin Variational Equation (GVE) for the 

plate problem considered.   
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1.0 Introduction 

Three-dimensional (3D) structural members whose in-plane dimensions are much larger than their transverse 

dimensions, and which carry in-plane compressive loads in one or both of the directions are commonly encountered in 

engineering applications in the fields of civil, mechanical, aeronautical, marine and geotechnical engineering. Such 

plates are susceptible to buckling failures when certain critical in-plane loads are attained even when their material 

strengths had not been reached. It is therefore prudent that buckling analysis aimed at finding the least in-plane 

compressive force that can cause buckling failure is a vital component of their design. The behaviour of plates under 

in-plane compressive loads also depends on whether the plate is thin or thick. Thin plates are those plates with ratio of 

 

 

 

mailto:charles.ike@esut.edu.ng
http://creativecommons.org/licenses/by/4.0/


Charles Chinwuba Ike  / NIPES Journal of Science and Technology Research 

7(2) 2025 pp. 235-252 

 

235 

 

depth h, to width, a, (h/a) less than or equal to 0.05. When h/a is more than 0.05, but less than 0.10, the plate is 

moderately thick, and thick when h/a exceeds 0.10. 

Thin plates have been extensively investigated and are governed by the Kirchhoff plate theory (KPT). KPT was derived 

using Kirchhoff hypothesis which essentially meant that the transverse shear strains which are responsible for distortions 

of the cross-sections are neglected. This limits the KPT and affects the accuracy of the theory when shear deformation 

effects become significant. The buckling analysis of thin plates has been extensively studied using a variety of analytical 

and numerical techniques. Onyia et al [1 – 3] studied elastic buckling analysis of thin rectangular plates using Galerkin-

Kantorovich, single finite Fourier sine integral transform methods respectively. Onah et al [4] used single finite sine 

integral transform method for the stability solutions of CCSS thin plate under uniaxial compressive forces. Nwoji et al 

[5] used two-dimensional remnant of the finite sine integral transform method for stability solutions of simply supported 

thin plates. 

Oguaghamba and Ike [6] used a Vlasov modification of the Galerkin method for the buckling analysis of thin SSSFr 

plates under uniaxial compressive loads, where the three edges are simply supported and one edge is free. Ike et al [7] 

utilized a generalized integral transformation method (GITM) for the buckling solutions of thin plates with two opposite 

clamped edges and two simply supported edges. Ike [8] used a combination of Ritz and Kantorovich methods for the 

accurate buckling solutions of clamped thin plates. In a recent study, Ike and Oguaghamba [9] used Kantorovich 

variational technique for the stability solutions of thin plates with two opposite simply supported edges. 

Ike [10] used generalized integral transform method (GITM) to derive closed form bending solutions for fully clamped 

rectangular thin plates subjected to uniformly distributed transverse loads. In another study, Ike [11] used a Vlasov 

modification of the variational Kantorovich method to derive closed form solutions for flexural analysis problems of 

thin plates with simply supported and free edges (SFr SFr) subjected to distributed transverse loads. A previous study 

by Nwoji et al [12] implemented the Ritz variational method for the accurate flexural solutions of thin plates under 

hydrostatic load distributions. Ike [13] employed the Vlasov modification of the Galerkin variational method for 

developing accurate flexural solutions of rectangular thin plates. 

The Kirchhoff hypothesis that assumes the orthogonality of lines normal to the middle surface of the plate before and 

during deformation implies that the Kirchhoff thin plate theory (KTP) as developed disregards transverse shear 

deformation. Hence, KPT is unable to correctly analyse the behaviours of thick plates, for which transverse shear 

deformations are significant. This led to the development of Reissner [14] plate theory (RPT) using a stress-based 

approach. Later, Mindlin [15] developed Mindlin plate theory (MPT) using a displacement formulation. Both RPT and 

MPT are first-order shear deformation theories yielding constant shear stress at the cross-section , and thus violating the 

shear stress-free conditions at the surfaces ( 0.5 ).z h=   Though shear correction factors ks have been introduced to 

ensure the correct prediction of strain energy of shear deformation in line with elasticity theories, the lack of 

mathematically rigorous procedure for the determination of ks renders the violation of shear-stress-free conditions at the 

surfaces a major issue of the RPT and MPT. 

Nwoji et al [16] studied the bending analysis of simply supported rectangular Mindlin plates subjected to bisinusiodal 

loading using the method of double trigonometric series with undetermined parameters but did not consider buckling 

analysis. In more recent studies Ike [17] used the Ritz variational method to develop closed form analytical solutions 

for bending problems of clamped rectangular Mindlin plates subjected to uniformly distributed loading. The work did 

not however, consider buckling solutions. Ike [18] utilized the double Fourier series method (DFSM) to develop closed 

form bending solutions for simply supported rectangular Mindlin plates under uniformly distributed load and linearly 

distributed loading. Mindlin plate problems have been further studied by Ike [19,20,21], Ike et al [22] and Nwoji et al 

[23].  

The search for improvements to the plate theories have led to further developments of plates using shear deformation 

theories of varying orders and refinements, primarily to ensure that the transverse shear stress-free conditions are 

satisfied at the edges and shear correction factors are not needed. Thus, trigonometric functions, hyperbolic functions, 

polynomial functions and exponential functions have been explored by several researchers as shear form functions 

leading to the construction of various shear deformation plate theories, higher order shear deformation plate theories 

and refined plate theories. 

Ike [24] developed a third-order shear deformable plate bending model using first principles approach. The model was 

then solved by Navier’s double trigonometric series method for the accurate flexural analysis of simply supported 

rectangular thick plate subjected to single sine loading, uniformly distributed load, linearly distributed load and enter 

point load.  Onah et al [25] derived displacement and stress functions for three-dimensional elastostatic problems using 

systematic first principles approach. They applied their model to the accurate bending solutions of thick circular plates 

subjected to uniformly distributed loads.  

Sayyad and Ghugal [26] used exponential shear deformation theory for the stability analysis of thick isotropic 

rectangular plates subjected to uniaxial and biaxial in-plane loads. Their formulation yielded a parabolic variation of 

the transverse shear strains ,xz yz   across the plate thickness. The transverse shear strains are zero at the top and bottom 
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surfaces where 0.5 .z h=   Virtual work principle was used to develop the governing differential equations of stability 

and the boundary conditions (BCs). They developed analytical solutions for simply supported (SSSS) square plates. 

Their study was validated with comparable buckling load results from previous studies. 

Khalfi et al [27] studied the stability solutions of plates modeled using a sinusoidal shear deformation theory. Their 

work considered transverse shear strain effects, satisfied the transverse shear strain-free conditions at the plate surfaces 

and gave accurate buckling load solutions for both uniaxially loaded and biaxially loaded cases. They also derived 

accurate buckling solutions for simply supported istropic and orthotropic plates under uniaxial and biaxial loadings. 

Mohseni and Naderi [28] innovatively used higher order shear and normal deformation plate theory (HOSNDT) to 

develop closed form solutions for the buckling of thick rectangular, porous plates made of functionally graded (FG) 

materials. The buckling equations were developed and solved to determine the critical buckling loads for simply 

supported BCs using Legendre’s orthogonal polynomials and Navier’s double trigonometric series method. 

Ike [29] used double finite sine transformation method (DFSTM) to develop analytical closed-form solutions for 

uniaxial and biaxial buckling of single variable thick plate buckling problems. The formulation considered shear 

deformation and was a partial differential equation (PDE) expressed using an unknown transverse displacement 

variable. The DFSTM converted the PDE of the domain to an algebraic eigenvalue problem in the transformed space. 

The DFSTM was ideal for the simply supported thick plate solved because the sinusoidal kernel of the transformation 

satisfied the boundary conditions. The study gave exact solutions. 

Gajbhiye et al [30] used a fifth order shear deformation plate theory for the stability investigations of thick rectangular 

plates under uniaxial and biaxial in-plane loads. They considered both transverse normal strain and transverse normal 

shear deformations. They assumed displacement field yielding non-linear variation of in-plane displacements and 

transverse shear strain variation with depth that satisfy the zero transverse shear strains at the surfaces. They obtained 

comparable buckling load parameters with previous results using first order shear deformation plate theory (FOSDPT), 

trigonometric shear deformation plate theory (TSDPT) and higher order shear deformation plate theory (HOSDPT). 

Onyeka et al [31] used the total potential energy extremization method for the stability investigations of a thick 

rectangular isotropic plate under uniform uniaxial compressive loads. They assumed trigonometric displacement 

functions and considered transverse shear and in-plane shear deformation effects. Their obtained results agreed with 

previous results in the literature. Onyeka et al [32] used polynomial buckling displacements in the Ritz method for the 

buckling analysis of a rectangular thick plate clamped along two opposite edges, simply supported along the third edge 

and free along the fourth edge (SCFrC plate). 

Onyeka et al [33] used direct variational method for the stability analysis of a clamped (CCCC) rectangular thick plate 

under uniaxial constant compressive load in the x direction. Polynomial displacement functions were used in the 

minimization of the total potential energy to find the critical buckling loads. Onyeka and Okeke [34] investigated the 

stability analysis of plate using one of the versions of the refined plate theory (RPT). In a related work, Onyeka et al 

[35] presented analytical solutions for the buckling of plates using direct variational techniques and minimizing the total 

energy of the buckling plate under uniaxial loading. 

Onodagu et al [36] investigated the buckling analysis of simply supported thick rectangular plates assumed to be of 

linear elastic, homogeneous isotropic materials. The study assumed the buckling deflection as polynomial functions and 

used the Ritz method to develop the critical loads. In a related study, Godwin [37] used displacement buckling functions 

in the Ritz energy method for buckling load solutions of thick rectangular plates simply supported on three edges and 

free on one edge. The principle of minimization of the total potential energy of the thick plate buckling problem was 

used to develop solutions for the critical buckling load of SSFS plates. Their results were verified by favourable 

comparison with previous solutions in the literature. Timoshenko and Gere [38] presented closed form buckling 

solutions to the uniaxial and biaxial buckling of rectangular thin and thick plates. 

In this work, a single variable thick plate buckling problem is formulated using first principles equilibrium approach. 

The Galerkin method is then used to obtain exact analytical solutions to the partial differential equation formulated for 

the case of simply supported edges and when the plate is subjected to uniaxial uniform compressive forces in one 

direction; and biaxial uniform compressive forces in both x and y directions. 

 

2. Theoretical Framework 

The assumptions are as follows: 

(i) the displacements are infinitesimally small relative to the plate depth, h, and the resulting strains are 

infinitesimal. 

(ii) the transverse displacement in the middle surface (z = 0) is the sum of transverse displacement components 

due to flexure wf and shear deformation ws. Both transverse displacement components are functions of the in-

plane coordinates x, y only and don’t vary with z. Thus, 

 ( , , ) ( , , 0) ( , , 0) ( , , 0) ( , ) ( , )f s f sw x y z w x y z w x y z w x y z w x y w x y= = = = + = = +   
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(iii) the transverse normal stress zz  is so small compared with the in-plane normal stresses ,xx yy   and can be 

neglected. 0zz =   

 

Displacements 

The displacement field components in the x, y and z directions are: 

 

( , , ) ( , , 0) , ( , , ) ( , , 0) ,

( , , ) ( , , 0) ( , ) ( , ) ( , )

f f

f s

w w
u x y z u x y z z v x y z v x y z z

x y

w x y z w x y z w x y w x y w x y

 
= = = − = = = −

 

= = = = +

    (1) 

 

where: wf is the flexural component of w(x, y), ws(x, y) is the shear component of w(x, y). 

 

Strains 

The normal strains , ,xx yy zz    are found using the kinematic equations of small displacement linear elasticity theory 

as: 

 
2

2

2

2

0

f
xx

f
yy

zz

wu
z

x x

wv
z

y y

w

z


 = = −

 


 = = −

 


 = =



          (2) 

 

The shear strains xy  and transverse shear strains ,xz yz   are similarly found using Equation (1) in the kinematic 

equations of small displacement linear elastic theory as: 

 
2

2
f

xy

s
xz

s
yz

wu v
z

y x x y

wu w

z x x

wv w

z y y

 
 = + = −

   

 
 = + =

  

 
 = + =

  

         (3) 

 

Stresses 

The normal stresses , ,xx yy zz    and shear stresses , ,xy xz yz    are obtained using the stress-strain laws for plane 

stress elasticity of homogeneous, isotropic materials. 

 

2
( )

1
xx xx yy

E
 =  + 

− 
  

2
( )

1
yy yy xx

E
 =  + 

− 
 

0zz =            (4) 

xy xyG =    

xz xzG =    

yz yzG =    

 

wherein E is the Young’s modulus of elasticity, G is the shear modulus,   is the Poisson’s ratio 
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2(1 )

E
G =

+ 
           (5) 

 

Hence, substitution of the strains Equations (2) and (3) into Equation (4) and simplifying, 

 

 

2 2

2 2 21

f f
xx

w wEz

x y

  
  = − + 
 −    

  

2 2

2 2 21

f f
yy

w wEz

y x

  
  = − + 
 −    

        (6) 

2 2

2
2 (1 )

1

f f
xy

w wE
zG

x y x y

 −
 = − = −

   − 
  

2

1

21

s s
xz

w wE
G

x x

 −  
 = =  

  − 
  

2

1

21

s s
yz

w wE

y y

 −  
 = =  

  − 
  

 

Introducing transverse shear stress correction factor, ks to correct the violation of transverse shear stress-free conditions 

at the plate surfaces 0.5 ,z h=   gives: 

 

2

1

21

s s
xz s s

w wE
k Gk

x x

 −  
 = = 

  − 
        (7a) 

2

1

21

s s
yz s s

w wE
k Gk

y y

 −  
 = = 

  − 
        (7b) 

 

Internal Stress Resultants (Bending moments, Mxx, Myy; Twisting moment, Mxy and Shear forces Qx, Qy) 

The bending moments Mxx, Myy are: 

 

2 2 2 2/2 /2 2

2 2 2 2 2
/2 /2 1

h h
f f f f

xx zz

h h

w w w wEz
M zdz dz D

x y x y− −

      
   =  = − +  = − + 
   −        

     (8) 

2 2 2 2/2 /2 2

2 2 2 2 2
/2 /2 1

h h
f f f f

yy zz

h h

w w w wEz
M zdz dz D

y x y x− −

      
   =  = − +  = − + 
   −        

     (9) 

where 
3

212(1 )

Eh
D =

− 
          (10) 

 

D is the modulus of flexural rigidity of the plate. 

The twisting moment Mxy is: 

 
2 2/2 /2 2

2
/2 /2

(1 ) (1 )
1

h h
f f

xy xy

h h

w wEz
M zdz dz D

x y x y
− −

 
=  = − −  = − − 

   − 
       (11) 

 

 

The shear force distributions Qx, Qy are: 

 
/2 /2

/2 /2
2(1 ) 2(1 )

h h
s s s s

x xz

h h

Ek w Ehk w
Q dz dz

x x
− −

 
=  = =

+   +          (12) 
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/2 /2

/2 /2
2(1 ) 2(1 )

h h
s s s s

y yz

h h

Ek w Ehk w
Q dz dz

y y
− −

 
=  = =

+   +          (13) 

 

Differential Equations of Equilibrium (DEoE) 

The gross DEoE are: 

 

0
xyxx

x

MM
Q

x y


+ − =

 
          (14a) 

0
yx yy

y

M M
Q

x y

 
+ − =

 
          (14b) 

2 2 2

2 2
2 0

yx
xx xy yy

QQ w w w
q N N N

x y x yx y

   
− − − + + + =

    
      (14c) 

 

where Nxx, Nyy, Nxy are the in-plane forces. 

Hence from Equation (14) 

 

2xyxx
x f

MM
Q D w

x y x

 
= + = − 

  
        (15a) 

2xy yy
y f

M M
Q D w

x y y

  
= + = − 

  
        (15b) 

 

Also, from Equations (7a) and (7b) 

 
/2 /2

/2 /2

h h
s s

x xz s s

h h

w w
Q dz Gk dz Ghk

x x
− −

 
=  = =

          (16a) 

/2 /2

/2 /2

h h
s s

y yz s s

h h

w w
Q dz Gk dz Ghk

y y
− −

 
=  = =

          (16b) 

 

Hence from Equations (15a) and (16a) 

 

2 s
x f s

w
Q D w Ghk

x x


= −  =

 
         (17a) 

 

Similarly, from Equations (15b) and (16b) 

 

2 s
y f s

w
Q D w Ghk

y y


= −  =

 
         (17b) 

 

Integrating Equations (17a) and (17b) gives: 

 
2

2 2

6 (1 )
s f f

s s

D h
w w w

Ghk k

− −
=  = 

−
        (18) 

 

Hence, 

 

2( , ) f f
s

D
w x y w w

Ghk
= −           (19) 

 

From Equation (14c), 
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xy yx yyxx
M M MM

q
x x y y x y

      
− + − + − +   
        

2 2 2

2 2
2 0xx xy yy

w w w
N N N

x yx y

  
+ + =

  
  (20) 

2 22 2 2 2

2 2 2 2
2 2 0

xy yyxx
xx xy yy

M MM w w w
q N N N

x y x yx y x y

    
− − − − + + + =

      
    (21) 

2 2 22 2

2 2 2
2 (1 )

f f fw w w
D D

x y x yx x y

       
    − − +  − − −  −

              

  

 

2 22 2 2 2

2 2 2 2 2
2 0

f f
xx xy yy

w w w w w
D q N N N

x yy y x x y

      
  − +  − + + + =

          

  (22) 

4 4 4 2 2 2

4 2 2 4 2 2
2 2 0

f f f
xx xy yy

w w w w w w
D q N N N

x yx x y y x y
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 + + − + + + =
         

    (23) 

 

Substituting the equation for w in terms of wf in Equation (23) gives the single variable thick plate equation as: 

 
2 2

4 2 2

2
2f xx f f xy f f

s s

D D
D w N w w N w w

Ghk x y Ghkx

    
 + −  + −  +   

     
  

      
2

2

2yy f f
s

D
N w w q

Ghky

 
−  = 

  
  (24) 

 

For buckling in the absence of transverse loads, q(x, y) = 0 and Equation (24) simplifies to: 

 
2 2

4 2 2

2
2f xx f f xy f f

s s

D D
D w N w w N w w

Ghk x y Ghkx

    
 + −  + −  +   

     
  

      
2

2

2
0yy f f

s

D
N w w

Ghky

 
−  = 

  
  (25) 

When Nxy = 0, 
2 2

4 2 2

2 2
0

yyxx
f f f f f

s s

NN D D
w w w w w

D Ghk D Ghkx y

    
 + −  + −  =   

    
    (26) 

 

3. Methodology 

This study considers the buckling of thick plates simply supported along all the edges x = 0, x = a, y = 0, y = b and 

subjected to: 

(i) Case 1: uniaxial uniform compressive load Nxx in the x direction shown in Figure 1. 

(ii) Case 2: uniaxial uniform compressive load Nyy in the y direction shown in Figure 2, and  

(iii) Case 3: biaxial compressive load Nxx = Nyy = N0 in both x and y directions as shown in Figure 3. 

 

 
 

Figure 1: Simply supported thick plate under uniaxial uniform compressive load, Nxx (in the x direction) 
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Figure 2: Simply supported thick plate subjected to uniaxial uniform compressive load, Nyy (in the y direction) 

 

 

 

 
 

 

Figure 3: Simply supported thick plate subjected to biaxial uniform compressive load, N0 

 

The boundary conditions are: 

 

2

0,

(0, ) 0f f
s x y

D
w y w w

Ghk
=

 
= −  = 
 

        (27) 

2 2

2 2

0,

(0, ) 0
f f

x

x y

w w
M y D

x y
=

  
 = − +  =
   

       (28) 

 

Hence, ( 0, ) 0fw x y= =   

 

2

2

0,

0
f

x y

w

x
=


=


           (29) 

 

Similarly, ( , ) 0fw x a y= =  

 
2

2
( , ) 0

fw
x a y

x


= =


          (30) 

( , 0) 0fw x y = =  
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2

2

( , 0)

0
f

x y

w

y
=


=


          (31) 

( , ) 0fw x y b= =  

2

2
( , ) 0

fw
x y b

y


= =


          (32) 

 

The deflection wf(x, y) is expressed using suitable exact buckling shape function that satisfies the boundary conditions 

as: 

 

1 1

( , ) sin sin
mnf f m n

m n

w x y w x y
 

= =

=           (33) 

 

where ,m n

m n

a b

 
 =  =          (34) 

 

The Galerkin Variational Equation (GVE) for the three cases are; for case 1: 

 

 

2
4

2
0 0

sin sin sin sin
mn mn

b a
xx

f m n f m n

m n m n

N
w x y w x y

D x

     
   +   −

 
    

  
2

2

2
sin sin sin sin 0

mnf m n m n
s m n

D
w x y x y dxdy

Ghk x

   
     =

 
    (35) 

where ,m n

m n

a b

 
 =  =          (36) 

 

 

For case 2, the GVE is: 

 

 

2
4

2
0 0

sin sin sin sin
mn mn

b a
yy

f m n f m n

m n m n

N
w x y w x y

D y

     
   +   −

 
    

  
2

2

2
sin sin sin sin 0

mnf m n m n
s m n

D
w x y x y dxdy

Ghk y

   
     =

 
    (37) 

 

For case 3, biaxial compressive loading N0, the GVE is: 

 

4 20

0 0

sin sin sin sin
mn mn

b a

f m n f m n

m n m n

N
w x y w x y

D

    
   +    −

 
    

 
2

2

2
sin sin

mnf m n
s m n

D
w x y

Ghk x

  
   +   
    

 
2

2

2
sin sin sin sin 0

mnf m n m n

m n

w x y x y dxdy
y

   
     =

 
     (38) 

 

Simplifying Equation (35) gives: 
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4 2 2 4( 2 )
mnm m n n f mn

m n

w I
 

 +   +  + 2 4 2 2( ) 0
mn mn

xx
m f mn m n m f mn

s

N D
w I w I

D Ghk

 
− −  +   = 
 

 (39) 

 

where 

 

0 0

(sin sin sin sin )

b a

mn m n m nI x y x y dxdy=             (40) 

2 2

0 0

sin sin

b a

mn m nI x y dxdy=             (41) 

4
mn

ab
I =   if ,m m n n= =          (42) 

0mnI =   if ,m m n n          (43) 

 

Case 2, the GVE is Equation (37), which is simplified as: 

 

2
4

2
0 0

sin sin sin sin
mn mn

b a
yy

f m n f m n

m n

N
w x y w x y

D y

    
   +   −

 
   

   
2

2

2
sin sin sin sin 0

mnf m n m n
s

D
w x y x y dxdy

Ghk y

  
     =     

  (44) 

 

Hence, 

 

4 2 2 4( 2 )
mnf m m n n mn

m n

w I
  

 +   +  +


 2 2 2 4( ) 0
yy

n mn m n n mn
s

N D
I I

D Ghk

 
− −   + = 

 

  (45) 

 

Hence, for nontrivial solutions, 

 

2 2 2 2 4 2 2( ) ( ) 0
yy

m n n n m n
s

N D

D Ghk

 
 +  −  +  +   = 

 
      (46) 

 

For Case 3, the GVE is from simplifying Equation (38),  

 

( )4 2 2 4 2 202 ( )
mnf m m n n mn m n mn

m n

N
w I I

D

   
 +   +  + −  +  − 

 
    

    4 2 2 2 2 4( ) ( ) 0m m n mn m n n mn
s

D
I I

Ghk


 +   +   +  =



  (47) 

 

Hence, for nontrivial solutions, 

 

2 2 2 2 2 4 2 2 40( ) ( ) ( 2 ) 0m n m n m m n n
s

N D

D Ghk

 
 +  −  +  +  +   +  = 

 
    (48) 

 

4. Results and Discussion 

For case 1, Equation (39) becomes: 

 

( )2 2 2 2 2 2 2( ) ( )
mn mn mn

xx
m n f m f m m n f

s

N D
w w w

D Ghk

 
 +  + − −   +  

 
     (49) 
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( )2 2 2 2 4 2 2( ) 0xx
m n m m m n

s

N D

D Ghk

 
 +  + − −  +   = 

 
       (50) 

 

 

For nontrivial solutions, 0.
mnfw    

 

Hence, 

 

( )2 4 2 2 2 2 2( )xx
m m m n m n

s

N D

D Ghk

 
 +  +   =  +  
 

       (51) 

( )

2 2 2

2 4 2 2

( )xx m n

m m m n
s

N

DD

Ghk

 + 
=

 +  +  

         (52) 

4 2 2 4

2 4 2 22

2

6(1 )

xx

s

m m n n

a a b bN

D m h m m n

a k a a b

           
 + +                

=
           
 + +        −         

      (53) 

4 2 2 4
4

4 2 2 4

2 2 2 4 4 2 2
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2
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s
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 
=

  
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        (54) 
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2 4
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2

2
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s
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b bN
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k b

 
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=
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2 4
4 4 2 2 4

22 2 4 4
2 4 2 2

2

2

6(1 )

xx

s

a a
m m n n

b bN
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      (59) 
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Solving for case 2, gives: 
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For case 3, biaxial compression load, N0, the solution is: 
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Dividing by 
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m n +   gives: 
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For m = 1, n = 1, 
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Table 1 

Dimensionless critical buckling load coefficients of square plate under uniaxial compressive load for 0.30, =  E =  

 

210GPa, 

2 2

2 3
,cr crxx xx

cr

a N N a
K N

D Eh
= =


  

 

a
h

  Reference  N   

5 

Present ks = 2/3 2.8200 

Present ks = 5/6 2.9498 

Present ks = 1  3.0432 

Khalfi et al [27] ks = 2/3 2.8200 

Khalfi et al [27] ks = 5/6 2.9498 

Khalfi et al [27] ks = 1 3.0432 

10 

Present ks = 2/3 3.3772 

Present ks = 5/6 3.4222 

Present ks = 1 3.4530 

Khalfi et al [27] ks = 2/3 3.3772 

Khalfi et al [27] ks =5/6 3.4222 

Khalfi et al [27] ks = 1 3.4530 

20 

Present ks = 2/3 3.5556 

Present ks = 5/6 3.5650 

Present ks = 1 3.5733 

Khalfi et al [27] ks = 2/3 3.5556 

Khalfi et al [27] ks = 5/6 3.5650 

Khalfi et al [27] ks = 1 3.5733 

50 
Present ks = 2/3 3.6051 

Present ks = 5/6 3.6071 
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Present ks = 1 3.6085 

Khalfi et al [27] ks = 2/3 3.6051 

Khalfi et al [27] ks = 5/6 3.6071 

Khalfi et al [27] ks = 1 3.6085 

100 

Present ks = 2/3 3.6127 

Present ks = 5/6 3.6132 

Present ks = 1 3.6135 

Khalfi et al [27] ks = 2/3 3.6127 

Khalfi et al [27] ks = 5/6 3.6132 

Khalfi et al [27] ks = 1 3.6135 

KPT (Timoshenko and Gere [38])  3.6152 

 

 

 

Table 1 is shown plotted as N  vs a/h (for ks = 5/6) in Figure 4. Figure 4 shows that the present results coincide with 

previous results by Khalfi et al [27]. 

Table 2 

Comparison of dimensionless critical buckling load factors for biaxial compression load, for 0.30, =  E = 210GPa, 

2

3

crN a
N

Eh
=     

a
h

  Reference  N  

5 

Present ks = 2/3 1.410 

Present ks = 5/6 1.4749 

Present ks = 1  1.5218 

Khalfi et al [27] ks = 2/3 1.410 

Khalfi et al [27] ks = 5/6 1.4749 

Khalfi et al [27] ks = 1 1.5218 

10 

Present ks = 2/3 1.6886 

Present ks = 5/6 1.7111 

Present ks = 1  1.7265 
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Khalfi et al [27] ks = 2/3 1.6886 

Khalfi et al [27] ks = 5/6 1.7111 

Khalfi et al [27] ks = 1 1.7265 

20 

Present ks = 2/3 1.7763 

Present ks = 5/6 1.7825 

Present ks = 1  1.7866 

Khalfi et al [27] ks = 2/3 1.7763 

Khalfi et al [27] ks = 5/6 1.7825 

Khalfi et al [27] ks = 1 1.7866 

50 

Present ks = 2/3 1.8025 

Present ks = 5/6 1.8036 

Present ks = 1  1.8042 

Khalfi et al [27] ks = 2/3 1.8025 

Khalfi et al [27] ks = 5/6 1.8036 

Khalfi et al [27] ks = 1 1.8042 

100 

Present ks = 2/3 1.8063 

Present ks = 5/6 1.8066 

Present ks = 1  1.8068 

Khalfi et al [27] ks = 2/3 1.8063 

Khalfi et al [27] ks = 5/6 1.8066 

Khalfi et al [27] ks = 1 1.8068 

KPT (Timoshenko and Gere [38])  1.8076 

 

Table 2 is plotted as 0N  vs a/h (for ks = 2/3) in Figure 5. Figure 5 shows that the present results are identical with 

previous results by Khalfi et al [27].   

 

 
 

5. Conclusion 

A single variable shear deformable plate buckling formulation has been derived in this paper using first principles 

approach. The equation has one variable and is similar to the equation of the thin plate theory. Galerkin method was 

used to derive analytical solutions for the case of simply supported plates under uniaxial and biaxial compressive loads. 

The conclusions are: 
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(i) the single variable shear deformable plate equation developed accounts for transverse shear deformation 

effects, and yields transverse shear stress-free conditions at the surfaces 0.5z h=    

(ii) the formulation accurately gives the critical buckling loads of isotropic rectangular plates for various a/h and 

b/a ratios. 

(iii) critical buckling load increased as the aspect ratio increased. 

(iv) this work is limited to thick plates that are isotropic and linearly plastic, and hence does not consider material 

nonlinearity. 

 

Notations/Nomenclature 

x, y   in-plane coordinates  

z  transverse coordinate  

a,  b  in-plane dimensions  

u  in-plane displacement component in the x direction  

v  in-plane displacement component in the y direction  

w  transverse displacement component in the z direction  

wf  flexural component of transverse displacement  

ws  shear component of transverse displacement  

εxx  in-plane normal strain in the x direction  

εyy  in-plane normal strain in the y direction 

εzz  transverse normal strain (in the z direction) 

yxy  in-plane shear strain  

yxz, yyz  transverse shear strains  

xx    in-plane normal stress in the x direction  

yy    in-plane normal stress in the y direction  

zz   transverse normal stress (in the z direction) 

τxy  in-plane shear stress   

τxz,      τyz  transverse shear stresses 

µ  Poisson’s ratio  

E  Young’s modulus of elasticity  

G  shear modulus  

ks  transverse shear stress correction factor  

Mxx,  Myy  bending moments  

Mxy  twisting moments  

Qx   Qy  shear force  

D  modulus of flexural rigidity  

Nxx,   Nyy  in-plane normal force in the x and y directions respectively 

Nxy  in-plane shear force    

q  transversely applied load distribution 

m  parameter defined in terms of m,  and a     

m   parameter defined in terms of m,  and a  

n  parameter defined in terms of n,  and b 

n    parameter defined in terms of n,  and b 

No  biaxial compressive load  

Imn  integrals  

Nyycr  critical buckling load for uniaxially loaded plate in the y direction  

Nxxcr  critical buckling load for uniaxially loaded plate in the x direction  

Nocr   critical buckling load for biaxially loaded plate in the x and y directions  

m,  n  buckling modes   

N    dimensionless critical buckling load parameter for uniaxial buckling in the x direction   

KPT  Kirchhoff plate theory  

GITM  generalized integral transform method  

MPT  Mindlin plate theory 

RPT  Reissner plate theory  

BCs  boundary conditions  

CCCC  clamped on all four edges  

SCFrC clamped along two opposite edges, simply supported along the third edge and free along the fourth 

edge 

SSSS  simply supported on all four edges  
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HOSNDT higher order shear and normal deformation plate theory 

FG  functionally graded  

DFSTM  double finite sine transform method  

FoSDPT  first order shear deformation plate theory 

TSDPT  trigonometric shear deformation plate theory  

PDE  partial differential equation  

DEoE  Differential Equations of Equilibrium  

GVE  Galerkin Variational Equation 
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