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 Conventional studies primarily focus on uniform or linear heat sources while 

often neglecting the effects of the induced magnetic field, leading to incomplete 

thermal and fluid flow characterizations. This study investigates the influence of 

inverse-square heat and mass generation on fully developed natural convection 

flow of an electrically conducting and viscous incompressible fluid, 

incorporating both applied and induced radial magnetic fields to provide a 

comprehensive understanding of their interplay. The governing equations of 

fluid motion, heat transfer, and induced magnetic fields are formulated in a non-

dimensional form and analytically solved for velocity, temperature, 

concentration, magnetic field, and induced current density distributions 

alongside the numerical values of mass flux, induced current flux, Nusselt 

number and Sherwood number are presented in tabular form. The findings reveal 

that increasing the Hartmann number (Ha) suppresses velocity due to Lorentz 

force effects and resistive dissipation, while heat generation enhances fluid 

motion and alters temperature distribution. Larger annular spacing improves 

heat transfer efficiency, and variations in the chemical reaction parameter 

significantly affect concentration profiles. Additionally, induced current density 

fluctuations play a crucial role in electromagnetic control mechanisms. This 

study extends existing research by integrating applied and induced magnetic 

fields with a non-uniform heat and mass generation model, offering novel 

insights for optimizing MHD-based thermal management systems. The results 

provide a foundation for enhancing energy transport efficiency in nuclear 

reactors, geothermal energy systems, and high-performance electromagnetic 

applications. 

Received 03 February 2025 

Revised   02 March 2025 

Accepted 16 March 2025 

Available online 25 April 2025 

 

 

 

 

 

 

 

 

https://doi.org/10.37933/nipes/7.1.2025.23 

 

eISSN-2682-5821, pISSN-2734-2352 

© 2025 NIPES Pub. All rights reserved. 

 

        This article is open access under the CC BY license (http://creativecommons.org/licenses/by/4.0/) 

 

1. Introduction 

Magnetohydrodynamic (MHD) natural convection flow in a vertical concentric annulus has attracted significant attention 

due to its broad applications in engineering and industrial processes, such as nuclear reactor cooling, geothermal energy 

extraction, and space technology. The interaction between magnetic fields and convective heat and mass transfer plays a 

critical role in optimizing thermal management systems. The study and development of heat exchangers frequently involve 

annular configurations due to their extensive applications in various engineering and geophysical disciplines. These include 

magnetohydrodynamic (MHD) power systems, geothermal energy extraction, nuclear fuel debris processing, and the 

solidification of metals and alloys [1]. Natural convection around vertical cylindrical structures is employed in solar power 

absorption, geothermal extraction, and enhanced oil recovery. The presence of heat generation/absorption within a concentric 

annular space significantly improves fluid dynamics and the overall performance of thermal systems [2]. 

Magnetohydrodynamics (MHD), which integrates the principles of fluid dynamics and electromagnetism, allows for the 

regulation and movement of electrically conductive fluids through Lorentz forces generated by the interaction of electric 

currents and magnetic field.           
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In vertical concentric annuli, analyzing MHD-driven convection is essential for optimizing nuclear reactor cooling 

mechanisms, enhancing both safety and operational efficiency [3]. Furthermore, the effects of radial and induced magnetic 

fields have direct implications in geothermal energy systems and industrial processes, such as MHD propulsion and metal 

casting [4]. Heat generation and absorption play a crucial role in natural convection by modifying temperature gradients and 

flow behavior. These thermal effects are particularly significant in applications such as nuclear reactor cores, semiconductor 

fabrication, and combustion analysis. An radial variation of heat generation model provides a more realistic representation 

of heat transfer, addressing the limitations in existing studies that primarily consider uniform or linear heat sources [5]. 

Several researchers, including Smith and Johnson [6], as well as [7], have investigated the influence of radial magnetic fields 

on convective heat transfer and flow stability in annular geometries. Findings indicate that magnetic fields stimulate 

additional fluid motion, enhancing convective efficiency. For instance, Gupta and Sharma [8] demonstrated that radial 

magnetic fields decrease boundary layer thickness, thereby improving heat transfer near cylindrical walls. Neglecting the 

influence of induced magnetic fields has been shown to underestimate velocity and current density in MHD flows, 

underscoring its significance [9, 5, 10]. Understanding the interplay between radial and induced magnetic fields on fluid 

motion is essential for advancing technologies in metallurgy, nuclear fusion, and space exploration. These magnetic 

interactions dictate flow structures, turbulence behavior, and thermal transfer, facilitating precise regulation in nuclear 

reactor cooling systems and metal processing. In astrophysical contexts, they contribute to explaining plasma dynamics in 

solar flares and accretion disks. Additionally, a deeper comprehension of these effects improves plasma confinement in 

fusion reactors and refines computational MHD models, with applications extending to biomedical fields, including targeted 

drug delivery and medical imaging. The radially varying heat generation describes a scenario where heat absorption 

diminishes in proportion to the square of the distance from the heat source. This spatial dependence plays a crucial role in 

shaping temperature distributions and flow patterns within a system. Studies by [11] have examined the effects of heat 

absorption on MHD driven convection, highlighting its impact on transient free convection over vertical porous plates 

subjected to thermal radiation. Likewise, [12] explored the effects of heat generation and absorption in thermally stratified 

MHD flows over inclined stretching surfaces, demonstrating how absorption influences boundary layer temperature and 

velocity profiles. Further research into MHD convection, coupled with chemical reactions, has shown that heat absorption 

significantly alters concentration distributions, which is essential for mass transport processes [13]. Investigations into Joule 

heating and heat absorption in MHD nanofluid flows have also emphasized the role of absorption in either enhancing or 

diminishing heat transfer, depending on system configurations [14]. Another study focused on natural convection of a polar 

fluid within vertical annular spaces under transverse magnetic fields and Newtonian heating, providing insights for 

applications involving polar fluids in annular geometries [11]. Parameters such as the Hartmann number, annular spacing, 

and heat absorption parameters have been extensively examined in MHD studies. [15] reported that increased heat absorption 

leads to a decline in the Nusselt number, while another study [16] found that applying constant iso-flux heating modifies 

thermal energy distribution in vertical annuli. However, the combined effects of inverse-square heat absorption, radial 

magnetic fields, and induced magnetic fields on MHD-driven natural convection in vertical concentric annuli remain 

underexplored. [17] conducted research on MHD convection in a rectangular enclosure containing a trapezoidal heated 

obstacle and semi-circular wall heaters, using the finite element method to assess temperature and flow variations. Their 

results revealed that as the Hartmann number and buoyancy ratio increased, heat transfer on the right semicircular wall heater 

exceeded that of the left. Mathematical modeling and analytical solutions for predicting fluid behavior in such systems have 

garnered significant attention due to their industrial relevance. Many studies have examined natural convection within 

vertical annuli under various boundary conditions. [12] analyzed heat sources, sinks, and induced magnetic fields using 

theoretical models. Likewise, [18] studied heat absorption effects in natural convection along coaxial cylinders under 

constant iso-flux heating conditions. Additional works include research by  [19] on laminar flow dynamics in open-ended 

[20] study on free convection in isothermal vertical annuli. Moreover, [21] presented analytical solutions for developing 

natural convection in vertical annuli under four distinct thermal boundary conditions. [22] further examined the role of 

induced magnetic fields in fully developed convection within annular micro-channels. Singh and Singh [23] examined free 

convective flow of electrically conducting fluid in vertical annular geometry when induced magnetic field is taken in to 

account in the presence of radial magnetic field. The behavior of electrically conductive fluids has attracted considerable 

attention for applications in battery technology and power generation. Foundational studies by Rossow [24] established 

theoretical frameworks, which were later expanded by researchers such as [25] [26] to explore MHD flows in coaxial 

cylinders under varying magnetic influences. Moalem [27] proposed that heat generation could be inversely related to 

temperature, a hypothesis that has been investigated in numerous studies focusing on heat generation and absorption in 

vertical concentric cylinders. The growing demand for advanced heat transfer solutions has driven research into heat-

generating and heat-absorbing fluids. Earlier models assumed constant heat generation rates [28, 29], whereas recent studies 

have explored spatially varying heat sources and sinks [30, 22]. Investigations by Oni et al. [31] assessed the impact of 

radially varying magnetic fields and heat sources in vertical annular systems, contributing to a growing body of research in 

this field. Unlike previous studies that primarily considered uniform or linear heat sources, this study investigates inverse-

square heat and mass generation and its impact on MHD convection. Furthermore, the inclusion of  both applied and induced 

magnetic fields and make it double-diffusive convection model provides a more comprehensive analysis relevant to 
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engineering applications. The current research seeks to fill existing gaps by examining how inverse-square heat and mass 

generation influences magnetohydrodynamic (MHD) natural convection within a vertical concentric annulus with induced 

and applied radial magnetic fields. Through analytical solutions of the governing equations, the research analyses the effects 

of key parameters which include the Hartmann number, heat generation parameter, and annular region on temperature 

profiles, velocity fields, induced magnetic density, and magnetic field distributions. The outcomes are pertinent to the 

optimization of MHD systems in engineering applications such as nuclear reactor cooling, geothermal energy extraction, 

and electromagnetic propulsion systems. 

2. Mathematical Formulation 

The configuration of the study as illustrated in Figure 1. We consider a fully developed natural convection flow of steady, 

viscous, incompressible electrically conducting fluid within a vertical concentric annulus of infinite length. The 𝑧′ axis is 

oriented along the axis of coaxial cylinders is measured in the vertically upward direction, while 𝑅′ represent the radial 

direction, measured outward from the axis of the cylinder. The applied magnetic field represented as 
𝑎𝐻𝑜

′

𝑅′
⁄  is directed radial 

outward. The temperatures 𝑇𝑖
′ and 𝑇𝑎

′ denote the temperature at the outer surface of the inner cylinder and the ambient 

temperature, respectively (
' '

i aT T ) or at persistent rate 
'q . The flow formation is in the domain 

'a R b   of the annulus 

filled with heat generation. The velocity components are 𝑈𝑅′
′  , 𝑈𝜃

′  and 𝑈𝑧′
′  in the direction 𝑅′, 𝜃and 𝑧′ direction respectively. 

Since the flow is fully developed, then the velocity components 𝑈𝑅′
′ = 𝑈𝜃

′ = 0. The flow depends solely on 𝑅′ due the fully 

developed nature and infinite length of the cylinders [18]. Exploring the Boussinesq approximation, the basic equations 

governing the flow for the model under study is obtained in dimensional form as (1), (2), (3), and (4). 

 

Figure 1: Geometry of the model [18]. 
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The boundary conditions for eqns. (1), (2), (3) and (4) are: 
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' * ' '
' ' ' ' ' '

' ' '

' ' ' ' ' '

'

0; / , / '

0; , ' (5)
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z o o

d C q d T q
U H C C T T at R a

dR D dR k

U H C C T T at R b


= = = = − = = − =


 = = = = =

 

In these equations, the following symbols represent various physical quantities: fluid velocity 𝑈′, gravitational acceleration 𝑔, 

coefficient of volume expansion 𝛽, Magnetic permeability 𝜇𝑒, fluid density 𝜌, magnetic diffusivity  , thermal conductivity of 

the fluid 𝑘, specific heat capacity at constant temperature 𝐶𝑝, fluid temperature 𝑇′, fluid concentration 𝐶′, reaction rate 𝐾′∗, 

diffusion coefficient D, ambient temperature 𝑇𝑎
′ , heat generation/absorption parameter respectively 𝑄0 > 0 and 𝑄0 < 0. 

Rendering equations (9)-(12) to the following non-dimensional variables and parameters we get (6), (7), (8), (9), and (10) 
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 𝑄𝑜 =
𝑄𝑜

∗𝑎2(𝑇′−𝑇𝑎
′)

𝑅′2 (radially-dependent heat generation function), 𝑆 =
𝑄𝑜

∗ 𝑎2

𝑘
 (heat generation parameter), 

 𝐾 =
𝐾′𝑎2(𝐶′−𝐶𝑎

′ )

𝑅′2  (radial dependent mass generation function),

 

' 2
* (chemical reaction parameter)

K a
K

D
=  

' '

* ' '
(buoyancy 

( )
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ratio paramet ,

)
er)i a

i a

T T
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C C
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−
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𝜈
 (Characteristic velocity), 

, and 𝐻𝑎 = 𝑎𝜇𝑒𝐻𝑜
′ [𝜎/𝜌𝜈]

1

2 (Hartmann number), we obtained the following dimensionless equations 
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
 = = = = =  

where , ,and  are constants with =0, =1, 1      = for isothermal and =1, =0, 1for iso-flux   = −

 
 

3. Method 

This study employs a methodology similar to that outlined in [18]. By applying non-dimensional boundary conditions, the 

dimensionless governing linear simultaneous ordinary differential equations are solved. The exact solutions for velocity, induced 

magnetic field, induced current density, concentration, and temperature fields are derived. Additionally, numerical values for 

skin friction, mass flux, induced current density, Sherwood number, and Nusselt number are computed to provide further insights 

into the system's behaviour. 
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3.1. Analytical solution 

Solving equations (7)-(10), the velocity, skin friction, mass flux, magnetic field,  induced current density, induced current flux, 

temperature, Nusselt number, concentration, Sherwood number were determined analytically, subject to boundary conditions 

(11) as follows: 

* *(2 ) (2 ) (2 ) (2 )

1 2 1 2 3 43( ) (12)Ha Ha i S i S i K i Ku R C R C R D R D R D R D RC− + − + −+ + ++= + +  

1 1 2 7 8Ha( ) (13)C C D D = − + +  

( )Ha 1 Ha 1

1 2 9 10 (14)Ha C C D D  − − −= − − + +
 

Ha 2 2 Ha1 2
162 ( 1) ( 1) (15)

Ha 2 2 Ha

C C
Q D  + − 
= − + − + 

+ − 
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4 3
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H R C C R R R R R R R
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1 2 24 25 (1
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2 2

2
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R
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The constants in the equations (17)-(26) are given in Appendix 1. 

4. Results 

To analyse the fluid flow characteristics, the governing equations were solved analytically, and the outcomes were illustrated 

using MATLAB-generated plots. This investigation centred on three critical parameters: heat generation parameter (S), radii 

ratio (λ), and Hartmann number (Ha). Each parameter was systematically varied while holding the others constant to examine 

its individual impact, as reflected in Figures 1 through 27. Numerical data corresponding to equations (13), (14), (15), (18), (20), 

(21), (22) and (25) are presented in Tables 4 and 5. The Hartmann number was explored across a range consistent with prior 

research, including studies by [1], [31], [18] and [23]. The observed variations in thermal, concentration, velocity, magnetic 
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field, and induced current density profiles under varying parametric conditions as depicted in Figures 1 to 27, highlight their 

dependence and the influence of key dimensionless parameters on the annular region (λ), heat generation parameter (S), chemical 

reaction parameter (K^*), Hartmann number (Ha), and buoyancy ratio (N), under both isothermal and iso-flux boundary 

conditions. 

 

Figure 1: Temperature profile for different values of λ at S=2 

 

Figure 2: Temperature profile for different values of S at λ=2 

 

Figure 3: Concentration profile for different values of λ at 

𝐾∗  = 0.5 

 

Figure 4: Concentration profile for different values of 𝐾∗ at 

𝜆 = 1. 

 

Figure 5: Concentration profile for different values of 𝐾∗at 

𝜆 = 2. 
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Figure 6: Velocity profile for different values for Ha at 𝐾∗  =

1, 𝑆 = 2, 𝑁 = 2 and 𝜆 = 2. 

 

Figure 7: Velocity profile for different values for lambda at 

𝐾∗  = 1, 𝑆 = 2, 𝑁 = 1 and 𝐻𝑎 = 2. 

 

Figure 8: Velocity profile for different values for lambda at 

𝑆 = 2, 𝑁 = 1, 𝐻𝑎 = 2 and  𝐾∗ → 0  

 

Figure 9: Velocity profile for different values for S at 𝐾∗ =

1, 𝜆 = 2, N=1 and Ha=2 

Figure 10: Velocity profile for different values for S at 𝜆 =

2, N=1, Ha=2 and  𝐾∗ → 0,  

Figure 11: Velocity profile for different values for Ha at 𝜆 =

2.71, N=0,  𝐾∗ → 0, and 𝑆 → 0, Which is similar to study of  

(Singh & Singh, [23]) 

 

Figure 12: Magnetic profile for different values of Ha at 𝜆 =

2, 𝐾∗ = 1, N=1 and S=4 

1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R

u
(R

)

 

 

 = 1.8 (Isothermal)

 = 1.8 (Iso-flux)

 = 2.0 (Isothermal)

 = 2.0 (Iso-flux)

 = 2.5 (Isothermal)

 = 2.5 (Iso-flux)

1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

R

u
(R

)

 

 

 = 1.8 (Isothermal)

 = 1.8 (Iso-flux)

 = 2.0 (Isothermal)

 = 2.0 (Iso-flux)

 = 2.5 (Isothermal)

 = 2.5 (Iso-flux)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.02

0.04

0.06

0.08

0.1

0.12

R

u
(R

)

 

 

S = 0.5 (Isothermal)

S = 0.5 (Iso-flux)

S = 1.0 (Isothermal)

S = 1.0 (Iso-flux)

S = 2.0 (Isothermal)

S = 2.0 (Iso-flux)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.01

0.02

0.03

0.04

0.05

0.06

R

u
(R

)

 

 

S = 0.5 (Isothermal)

S = 0.5 (Iso-flux)

S = 1.0 (Isothermal)

S = 1.0 (Iso-flux)

S = 2.0 (Isothermal)

S = 2.0 (Iso-flux)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R

u
(R

)

 

 

Ha = 1.0 (Isothermal)

Ha = 1.0 (Iso-flux)

Ha = 2.0 (Isothermal)

Ha = 2.0 (Iso-flux)

Ha = 5.0 (Isothermal)

Ha = 5.0 (Iso-flux)

Ha = 10.0 (Isothermal)

Ha = 10.0 (Iso-flux)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-0.015

-0.01

-0.005

0

0.005

0.01

R

H
(R

)

 

 

Ha = 1.0 (Isothermal)

Ha = 1.0 (Iso-flux)

Ha = 2.0 (Isothermal)

Ha = 2.0 (Iso-flux)

Ha = 3.0 (Isothermal)

Ha = 3.0 (Iso-flux)

Ha = 4.0 (Isothermal)

Ha = 4.0 (Iso-flux)



 
 

Muhammad Y Muhammad, et al. / NIPES Journal of Science and Technology Research 

7(1) 2025 pp. 290-310 

297 

 

 

Figure 13: Magnetic profile for different values of Ha at 𝜆 =

2, 𝐾∗ = 1, N=1 and S=0.5 

 

Figure 14: Magnetic profile for different values of Ha at 𝜆 =

2, 𝐾∗ = 1, N=1 and S=0.5 

 

Figure 15: Magnetic profile for different values of Ha at 𝜆 =

2, 𝐾∗ = 1, N=1 and S=4 

 

Figure 16: Magnetic profile for different values of Ha at 𝜆 =

2, 𝐾∗ = 1, N=1 and S=4 

 

Figure 17: Magnetic profile for different values of Ha at 𝜆 =

2, 𝐾∗ = 1, N=1 and S=0.5 

 

Figure 18: Magnetic profile for different values of Ha at 𝜆 =

2, 𝐾∗ = 1, N=1 and S=2 
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Figure 19: Magnetic profile for different values of Ha at 𝜆 =

3.5, 𝐾∗ = 1, N=1 and S=1 

 

Figure 20: Magnetic profile for different values of Ha at 𝜆 =

4, 𝐾∗ = 1, N=1 and S=1 

 

Figure 21: Magnetic profile for different values of Ha at 𝜆 =

4.5, 𝐾∗ = 1, N=1 and S=1 

 

Figure 22: Magnetic profile for different values of Ha at  𝜆 =

2.71, N=0, 𝐾∗ → 0 and 𝑆 → 0 Which is similar to the study 

of (Singh & Singh, [23]) 

 

Figure 23: Induced current density profile for different values 

of Ha at 𝜆 = 4, 𝐾∗ = 1, N=1 and S=4 

 

Figure 24: Induced current density profile for different values 

of Ha at 𝜆 = 4, 𝐾∗ = 1, N=1 and S=0.5 
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Figure 25: Induced current density profile for different values 

of Ha at 𝜆 = 4, 𝐾∗ = 1, N=1 and S=3 

Figure 26: Induced current density profile for different values 

of Ha at 𝜆 = 4, 𝐾∗ = 1, N=1 and S=4 

 

Figure 27: Induced current density profile for different values 

of Ha at 𝜆 = 2.71, N=0, 𝐾∗ =→ 0 and 𝑆 → 0 which is similar 

to the study of (Singh & Singh, [23]). 

5. Discussion 

Table 1 reveals that as Ha increases, skin friction decreases in both isothermal and iso-flux cases, indicating a reduction in shear 

stress at the cylinder wall. This is due to the stronger magnetic field suppressing fluid motion. Also, an increase in 𝜆 leads to 

higher skin friction, suggesting that a wider annular space results in greater shear stress. Additionally, a slight increase in skin 

friction is observed with rising𝑆, implying that higher heat generation enhances thermal buoyancy, thereby influencing velocity-

gradients.     

Table 2 shows that the induced current flux (𝐽), fluctuates between positive and negative

 values as Ha increases. For larger 𝜆,  induced current flux exhibits greater variability, highlighting the influence of the annular 

gap on the fluid-magnetic field interaction. Similarly, increasing 𝑆 affects the magnitude of the induced current density, further 

demonstrating the role of heat generation in altering electromagnetic properties. Table 4 presents the induced current density for 

varying 𝐾∗. Significant variations in 𝐽 with changes in 𝐾∗. suggest that the chemical reaction parameter strongly influences the 

behavior of the electrically conducting fluid. Table 5 provides Nusselt numbers for both the inner and outer cylinders. As 𝜆 

increases, Nusselt number (𝑁𝑢) decreases, indicating reduced convective heat transfer efficiency. Conversely, higher values of 

𝑆 lead to an increase in Nusselt number, confirming that heat generation enhances thermal transport. Notably, Nusselt number is 

higher under isothermal conditions than in iso-flux cases, suggesting that maintaining a fixed temperature difference improves 

heat transfer efficiency. Finally, Table 6 presents the Sherwood number (𝑆ℎ). As λ increases, 𝑆ℎ decreases, signifying reduced 
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mass transfer efficiency. Large values of 𝐾∗ result in significant changes in 𝑆ℎ, indicating that chemical reactions strongly 

influence concentration gradients and mass flux. Similar to the Nusselt number, 𝑆ℎ is higher under isothermal conditions, 

reinforcing the notion that a fixed concentration difference enhances mass transport. 

Figures 1 and 2 illustrate the temperature profile θ(R) as a function of the annular gap (𝜆) and heat generation parameter (𝑆), 

respectively. As 𝜆 increases, the temperature distribution becomes more uniform, indicating improved thermal regulation due to 

enhanced convective heat transfer The iso-flux boundary condition consistently exhibits a steeper temperature gradient than the 

isothermal case, highlighting the continuity of heat flux at the boundary. The increase in S results in a proportional rise in 

temperature, signifying stronger internal heat generation and its pronounced effect on thermal conductivity. Figures 3–5 depict 

the concentration profile θ(R)  for different values of 𝜆 and 𝐾∗. The results indicate that lower λ values correspond to steeper 

concentration gradients, which suggest a higher diffusion rate. The iso-flux condition produces a flatter concentration profile 

than the isothermal case, reinforcing the role of boundary constraints in diffusion processes. 

 

Table 1: Numerical values of skin friction for both isothermal and iso-flux condition for different values of Ha, λ, and S at 

N=0.75 and K*=1. 

      Isothermal Iso-flux 

     Λ   Ha    S 𝜏 1 𝜏 λ Q 𝜏 1 𝜏 λ Q 

1.8 0.5 0.5 0.47894 0.18146 0.28485 0.30766 0.11658 0.18300 

1.8 1 0.5 0.46963 0.17663 0.27758 0.30168 0.11348 0.17833 

1.8 1.5 0.5 0.45509 0.16911 0.26626 0.29234 0.10865 0.17106 

1.8 2 0.5 0.43650 0.15956 0.25184 0.28040 0.10251 0.16179 

2 0.5 0.5 0.60543 0.21899 0.58368 0.47680 0.17251 0.45976 

2 1 0.5 0.58882 0.21114 0.56326 0.46372 0.16633 0.44368 

2 1.5 0.5 0.56350 0.19922 0.53221 0.44377 0.15694 0.41922 

2 2 0.5 0.53218 0.18456 0.49399 0.41910 0.14539 0.38912 

3 0.5 0.5 1.29607 0.39562 5.86194 2.12774 0.65111 9.64135 

3 1 0.5 1.20310 0.36474 5.38637 1.97491 0.60031 8.85930 

3 1.5 0.5 1.07762 0.32309 4.74565 1.76866 0.53180 7.80566 

3 2 0.5 0.94454 0.27897 4.06809 1.54993 0.45923 6.69140 

1.8 0.5 1 0.48270 0.18377 0.28807 0.32165 0.12246 0.19196 

1.8 1 1 0.47329 0.17889 0.28073 0.31538 0.11920 0.18706 

1.8 1.5 1 0.45859 0.17128 0.26928 0.30559 0.11414 0.17944 

1.8 2 1 0.43981 0.16162 0.25470 0.29307 0.10769 0.16972 

2 0.5 1 0.61229 0.22297 0.59315 0.50859 0.18521 0.49270 

2 1 1 0.59543 0.21499 0.57240 0.49459 0.17858 0.47546 

2 1.5 1 0.56973 0.20287 0.54086 0.47324 0.16851 0.44926 

2 2 1 0.53795 0.18797 0.50203 0.44684 0.15613 0.41701 

3 0.5 1 1.33935 0.41549 6.13122 2.62250 0.81355 12.0051 

3 1 1 1.24246 0.38319 5.63435 2.43278 0.75030 11.0323 

3 1.5 1 1.11173 0.33961 4.96489 2.17681 0.66497 9.72142 

3 2 1 0.97315 0.29343 4.25685 1.90547 0.57454 8.33506 
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Table 2: Numerical values of induced current flux for both isothermal and iso-flux condition for different values of Ha, λ, and 

S at N=0.75 and K*=1. 

   Isothermal Iso-flux 

Ha S λ J/10−16 J/10−16 

1 0.5 1.8 5.5511 -3.3306 

1.5 0.5 1.8 -3.3306 -2.2204 

2 0.5 1.8 5.5511 1.6653 

0.5 0.5 2 -8.8817 -1.2212 

1 0.5 2 0.0000 -4.4408 

1.5 0.5 2 1.1102 -3.3306 

2 0.5 2 5.5511 1.6653 

0.5 0.5 3 -2.2204 5.1070 

1 0.5 3 3.3306 -1.1102 

1.5 0.5 3 4.4408 -6.6613 

2 0.5 3 -3.3306 -2.2204 

0.5 1 1.8 1.6653 6.6613 

1 1 1.8 -1.1102 -3.3306 

1.5 1 1.8 3.3306 0.0000 

2 1 1.8 -1.1102 -1.1102 

0.5 1 2 -7.2164 -5.5511 

1 1 2 -2.2204 2.2204 

1.5 1 2 3.3306 0.0000 

2 1 2 1.1102 1.1102 

0.5 1 3 2.2204 -3.3306 

1 1 3 5.5511 2.4424 

1.5 1 3 0.0000 -2.2204 

2 1 3 -1.1102 6.6613 

Notably, an increase in 𝐾∗ leads to more uniform concentration distributions, implying improved mass transport efficiency and 

reaction kinetics. The velocity profile 𝑢(𝑅) is analyzed in Figures 6–11 for variations in the Hartmann number (𝐻𝑎), annular 

gap (𝜆), and heat generation parameter (𝑆). As Ha increases, velocity decreases due to the Lorentz force-induced magnetic 

damping effect, which suppresses fluid motion. The iso-flux condition exhibits smoother velocity profiles, indicating a more 

controlled fluid motion. Furthermore, larger λ values enhance fluid motion by reducing flow resistance, promoting efficient 

transport. The increase in S leads to accelerated flow dynamics, as stronger thermal sources enhance convective effects and 

momentum transfer within the fluid. Figures 12–22 examine the influence of the Hartmann number (Ha) on the magnetic field 

profile 𝐻(𝑅). Increasing 𝐻𝑎 results in stronger magnetic interactions, particularly near the boundaries, due to intensified 

electromagnetic coupling. Iso-flux conditions consistently produce smoother magnetic field variations compared to isothermal 

cases, demonstrating the impact of thermal constraints. Furthermore, the heat generation parameter S plays a crucial role in 

modulating magnetic field intensity, as higher S values amplify magnetic effects and influence the stability of the MHD system. 

Induced magnetic fields generate. The secondary flow instabilities by modifying current density gradients could lead to localized 

variations in temperature and velocity, impacting the stability and efficiency of MHD systems in practical engineering 

applications such as nuclear reactor cooling and electromagnetic propulsion. Figures 23–27 present the induced current density 

profile 𝐽𝜃(𝑅) for different Ha values. The results reveal that increasing 𝐻𝑎 enhances current density near the boundaries due to 

stronger electromagnetic interactions. However, at lower 𝑆 values, the induced current density diminishes, indicating reduced 
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thermal-electromagnetic coupling. The findings align with previous studies, validating the theoretical models governing MHD 

flow and providing critical insights for optimizing electromagnetic fluid control in engineering applications. 

Table 4: Numerical values of induced current flux for both isothermal and iso-flux condition for different values of Ha, λ, and 

K* at N=0.75 and S=1. 

      Isothermal Iso-flux 

         Ha         K* Λ            J/10−16           J/10−16 

0.5 0.4 1.8 16.653 9.9926 

1 0.4 1.8 -7.7715 -4.4408 

1.5 0.4 1.8 1.1102 -0.5551 

2 0.4 1.8 0.0000 -4.4408 

0.5 1 1.8 1.6653 6.6613 

1 1 1.8 -1.1102 -3.3306 

1.5 1 1.8 3.3306 0.0000 

2 1 1.8 -1.1102 -1.1102 

0.5 0.4 2 19.984 0.0000 

1 0.4 2 -5.5511 1.6653 

1.5 0.4 2 -2.2204 0.0000 

2 0.4 2 0.0000 0.0000 

0.5 1 2 -7.2164 -5.5511 

1 1 2 -2.2204 2.2204 

1.5 1 2 3.3306 0.0000 

2 1 2 1.1102 1.1102 

0.5 0.4 3 -2.2204 -1.5543 

1 0.4 3 2.2204 4.4408 

1.5 0.4 3 -2.2204 4.4408 

2 0.4 3 0.0000 0.0000 

0.5 1 3 2.2204 -3.3306 

1 1 3 5.5511 2.4424 

1.5 1 3 0.0000 -2.2204 

2 1 3 -1.1102 6.6613 

Table 5: Numerical Dimensionless Nusselt Number for Both 

Isothermal and Iso-flux Conditions. 

    Isothermal Iso-flux 

λ S 
    

1.8 1 1.5007 1.0019 1.0000 0.6676 

2 1 1.2039 0.7825 1.0000 0.6500 

2.5 1 0.7673 0.5042 1.0000 0.6571 

1.8 2 1.2901 1.0635 1.0000 0.8243 

2 2 0.9480 0.8513 1.0000 0.8980 

2.5 2 0.3990 0.5878 1.0000 1.4732 

 

Table 6: Numerical Dimensionless Sherwood Number for 

Both Isothermal and Iso-Flux Conditions. 

    Isothermal Iso-flux 

Λ K* 
    

1.8 0.4 1.6222 0.9673 1.0000 0.5963 

2 0.4 1.3491 0.7450 1.0000 0.5522 

2.5 0.4 0.9664 0.462 1.0000 0.4781 

1.8 1 1.5007 1.0019 1.0000 0.6676 

2 1 1.2039 0.7825 1.0000 0.6500 

2.5 1 0.7673 0.5042 1.0000 0.6571 
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Table 7: Comparison of Numerical values of fluid flux for isothermal and constant heat flux cases of this study and the study of 

Singh and Singh [23] at 𝑆 → 0, 𝐾∗ = 0 and 𝑁 = 0 

    Existing study [23]  Current study 

λ M Q (isothermal) Q (iso-flux) Q (isothermal) Q (iso-flux) 

1.8 0.5 0.15943 0.09371 0.15828 0.09304 

1.8 1 0.15874 0.09331 0.15424 0.09067 

1.8 1.5 0.15761 0.09264 0.14795 0.08697 

1.8 2 0.15610 0.09174 0.13993 0.08226 

2 0.5 0.32375 0.22441 0.32050 0.22219 

2 1 0.32181 0.22306 0.30928 0.21441 

2 1.5 0.31865 0.22087 0.29222 0.20258 

2 2 0.31437 0.21790 0.27122 0.18803 

3 0.5 3.07501 3.37825 2.99970 3.29683 

3 1 3.02972 3.32849 2.75564 3.02860 

3 1.5 2.95830 3.25003 2.42690 2.66730 

3 2 2.86598 3.14860 2.07935 2.28532 

4 0.5 11.9607 16.5811 11.51038 15.96701 

4 1 11.6868 16.2013 10.1314 14.05411 

4 1.5 11.2679 15.6206 8.45293 11.72577 

4 2 10.7484 14.9005 6.86807 9.52728 
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5. 1. Comparison and Validation 

Table 8: Comparison of Numerical values of skin friction for isothermal and constant heat flux cases of this study and the study of [23] at 𝑆 → 0, 𝐾∗ = 0 and 𝑁 = 0 

  Current study  Existing study [23] 

Λ M 
𝜏1 

(isothermal) 

𝜏1           (iso-

flux) 

𝜏𝜆 

(isotherm) 

𝜏𝜆         (iso-

flux) 
 𝜏1 

(isothermal) 

𝜏1        (iso-

flux) 
𝜏𝜆 (isothermal) 

𝜏𝜆         (iso-

flux) 

1.8 0.5 0.26844 0.15781 0.10047 0.05906  0.27016 0.1588 0.10142 0.05962 

1.8 1 0.26326 0.15476 0.09779 0.05749  0.26998 0.15869 0.10152 0.05967 

1.8 1.5 0.25516 0.15000 0.09361 0.05503  0.26969 0.15852 0.10169 0.05977 

1.8 2 0.24481 0.14391 0.08831 0.05191  0.26929 0.15829 0.10191 0.05990 

2 0.5 0.33650 0.23328 0.11967 0.08296  0.33959 0.23539 0.12122 0.08402 

2 1 0.32735 0.22694 0.11536 0.07998  0.33932 0.23520 0.12135 0.08411 

2 1.5 0.31340 0.21727 0.10882 0.07544  0.33889 0.23400 0.12156 0.08426 

2 2 0.29615 0.20531 0.10078 0.06987  0.33831 0.23450 0.12186 0.08447 

3 0.5 0.68409 0.75185 0.20030 0.22014  0.70185 0.77106 0.20621 0.22655 

3 1 0.63607 0.69908 0.18450 0.20278  0.70154 0.77072 0.20631 0.22666 

3 1.5 0.57121 0.62779 0.16321 0.17937  0.70104 0.77018 0.20648 0.22684 

3 2 0.50232 0.55208 0.14068 0.15461  0.70040 0.76947 0.20669 0.22708 

4 0.5 1.04426 1.44858 0.26680 0.37010  1.09111 1.51260 0.27849 0.38606 

4 1 0.92740 1.28647 0.23687 0.32858  1.09254 1.51458 0.27813 0.38557 

4 1.5 0.78540 1.08950 0.20029 0.27784  1.09470 1.51757 0.27759 0.38482 

4 2 0.65161 0.90391 0.16552 0.22961  1.09732 1.52121 0.27693 0.38391 

 

Table 7 and 8 depict the comparison between the current study and Singh & Singh [23] for the numerical values for mass flux (𝑄), skin friction (𝜏1) and (𝜏𝜆) at the inner and outer cylinder 

surfaces, respectively, for both cases. The values for 𝜏1, and 𝜏𝜆 are generally consistent across both studies, with only minor deviations. This agreement confirms the validity of both approaches 

in evaluating the influence of the Hartmann number 𝑀 and the annular gap 𝜆 on skin friction. Small numerical differences (on the order of ~1–2%) exist between the two studies for some 

values, likely due to variations in numerical methods or precision and also, due to Slight differences in boundary condition implementations. 
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5.2. Validation of Findings: Both studies demonstrate consistent trends in the behavior of skin friction and mass flux with 

changes in 𝑀 and 𝜆, validating the results. 

 

Table 9: summarizing how the current study improves upon the existing research [23] 

Aspect Current Study Existing Study [23] Improvement/Novelty 

Problem Focus 

MHD natural convection 

flow in a vertical 

concentric annulus with 

heat and mass generation. 

MHD natural convection 

in vertical concentric 

annuli with a radial 

magnetic field. 

Incorporates heat and mass 

generation effects. 

Momentum 

Equation 
Include solutal buoyancy  No solutal buoyancy 

Making it a double-diffusive 

convection model 

Mathematical 

Approach 

Analytical solutions for 

velocity, temperature, 

concentration, and 

induced current density. 

Analytical solutions for 

velocity, induced magnetic 

field, and temperature. 

Includes additional transport 

phenomena (mass 

transport). 

Heat & Mass 

Transfer 

Includes radially varying 

heat and mass generation  

No heat generation purely 

heat conduction in the 

medium 

More realistic thermal 

modeling for industrial 

applications 

Boundary 

Conditions 

Both isothermal,  iso-flux, 

fixed concentration, and 

constant mass flux 

conditions on the inner 

cylinder. 

Isothermal and constant 

heat flux boundary 

conditions. 

More generalized thermal 

boundary conditions. 

Parametric 

Analysis 

Hartmann number (Ha), 

heat generation (S), 

chemical reaction (K*), 

annular gap (λ), and 

buoyancy ratio (N*). 

Hartmann number (M), 

annular gap (λ), and 

induced magnetic field 

effects. 

Includes chemical reaction 

and heat generation effects. 

Heat and Mass 

Transfer 

Examines Nusselt 

number, Sherwood 

number, and mass flux 

under different conditions. 

Focuses on temperature 

and velocity profiles 

without considering mass 

transfer effects. 

Extends analysis to mass 

transport. 

Numerical 

Simulations 

Graphical and tabular 

analysis of multiple 

parameters, validating 

analytical solutions. 

Graphical analysis of 

velocity and magnetic field 

effects. 

More comprehensive 

parametric study with 

additional physical 

quantities. 

Applications 

Relevant to nuclear 

reactor cooling, 

geothermal energy 

extraction, and 

electromagnetic 

propulsion. 

Heat exchangers, nuclear 

fuel processing, and MHD 

power generators. 

Expands application scope 

to include chemical and 

mass transport phenomena. 

 

This study builds upon Singh & Singh [23] by incorporating radially-varying heat and mass generation, analyzing additional 

physical effects, and providing a more detailed parametric investigation. 

 

6. Conclusion 

This study presents analysis of MHD natural convection flow in a vertical concentric annulus with radius square inverse heat 

and mass generation subjected to isothermal and iso-flux heating. The key findings are summarized as follows: 

Increasing Ha suppresses velocity due to the Lorentz force, which dampens fluid motion. The magnetic field intensity increases 

with Ha, leading to stronger electromagnetic interactions. 

Higher heat generation (S) enhances fluid velocity and temperature distribution. Increasing S improves convective heat transfer 

but also affects the stability of the system. 
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Larger annular spacing promotes fluid motion by reducing flow resistance. Temperature distribution becomes more uniform with 

increasing λ, improving thermal regulation. Chemical reaction parameter affects concentration distribution significantly, 

influencing mass transfer efficiency. Higher (𝐾∗) leads to more uniform concentration profiles, reducing diffusion gradients. 

Induced current density increases with Ha due to stronger electromagnetic interactions. Higher λ and S influence the induced 

current flux, demonstrating the role of thermal and mass transport in altering electromagnetic properties. 

Skin friction decreases with increasing Ha, indicating lower shear stress due to magnetic damping. 

Nusselt number decreases with increasing λ, showing reduced convective heat transfer. Sherwood number also decreases with 

λ, suggesting lower mass transfer efficiency at larger annular gaps. 

Results are consistent with prior research (e.g., [23]), validating the analytical findings. The study provides a more detailed 

investigation of the combined effects of radial and induced magnetic fields. Findings are relevant for optimizing MHD systems 

used in nuclear reactor cooling, geothermal energy extraction, and electromagnetic propulsion. Also, insights into heat and mass 

transport can help improve thermal management strategies in engineering applications. 

Iso-flux boundary conditions exhibit steeper temperature gradients compared to isothermal conditions. Isothermal conditions 

result in higher heat and mass transfer efficiency, as seen in the Nusselt and Sherwood number trends. 

Overall, this study significantly contributes to understanding MHD natural convection in annular geometries with heat and mass 

generation. The insights gained can be used to optimize energy transport systems and improve thermal stability in various 

industrial applications. The findings of this study suggest that optimizing Hartmann number values is essential for balancing heat 

dissipation and fluid motion control in nuclear reactor cooling systems. Additionally, integrating feedback control mechanisms 

to regulate induced current density could enhance stability and performance in practical MHD applications. Further research 

should focus on experimental validation and real-world implementation of these findings. 
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Appendix 2

 
Nomenclature 

Roman Symbols: 
Symbol Description 

𝑎 Inner cylinder radius (m) 

𝑏 Outer cylinder radius (m) 

𝑔 Gravitational acceleration (m/s²) 

𝐻𝑜
′  Applied magnetic field (A/m) 

𝐻𝑧′
′  Magnetic field induced in the z'-direction (A/m) 

𝐻 Dimensionless induced magnetic field in z-direction 

𝐶𝑃 Specific heat at constant pressure (J/(kg·K)) 

𝐽𝜃 Induced current density along h-direction (A/m²) 

𝐻𝑎 Hartmann number (dimensionless) 

r', θ', z' Cylindrical coordinates (m) 

𝑅 Dimensionless radial distance 

𝑇′ Fluid Temperature (K) 

𝜃 Dimensionless fluid temperature 

𝑇𝑎
′ Temperature of the surroundings (K) 

𝑇𝑖
′ Temperature of the inner cylinder at the surface (K) 

𝑈 Dimensionless velocity of the fluid along the axial 

direction 

𝑈′ Fluid velocity along the axial direction (m/s) 

𝑈𝑜 Characteristic fluid velocity (m/s) 

𝑁𝑢1 Nusselt number at the inner cylinder (dimensionless) 

𝑁𝑢𝜆 Outer cylinder Nusselt number (dimensionless) 

𝑄𝑜 Rate of heat generation per unit volume (W/m³) 

𝑆 Heat source/sink parameter (dimensionless) 

𝐾∗ Chemical reaction parameter 

𝑁 Buoyancy ratio parameter 

C Concentration of the fluid 

∅ Dimensionless concentration 

 
Greek Symbols 

Symbol Description 

𝛽 Thermal expansion coefficient (K⁻¹) 

K Fluid thermal conductivity (W/(m·K)) 

𝜇𝑒 Magnetic permeability (H/m) 

𝜈 Fluid kinematic viscosity (m²/s) 

  Magnetic diffusivity (m²/s) 

𝜌 Fluid Density (kg/m³) 

𝜆 Annular gap (dimensionless) 

𝜏1 Inner cylinder Skin friction coefficient 

(dimensionless) 

𝜏λ Outer cylinder Skin friction coefficient 

(dimensionless) 

 

 


