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Prostate cancer can be low or high-risk to the patient’s health. Current 

screening   on the basis of prostate-specific antigen (PSA) levels has a 

tendency towards both false positives and false negatives, both of which have 

negative consequences. We obtained a dataset of   35,875 patients from the 

screening arm of the national Cancer   institute’s prostate, lung, colorectal, 

and ovarian cancer screening trial. We segmented the data into instances 

without prostate cancer, instances with low-risk prostate cancer, and   

instances with high-risk prostate cancer. We developed a pipeline to   deal 

with   imbalanced data and proposed algorithms to perform preprocessing   

on such datasets. We evaluated the accuracy of various machine learning 

algorithms   n predicting high-risk prostate cancer. We evaluated the 

contribution of rate of change of PSA, age, and BMI to this model’s accuracy. 

We   identified that   including the   rate of change of PSA and age   n our 

model   increased the area under the curve (AUC) of the model by   6.8%, 

whereas BMI had a minimal effect. 
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1.0.Introduction 

Prebiopsy screening of prostate cancer   is used because biopsies, which confirm whether 

there   is cancer present, are potentially harmful to patients who do not have prostate cancer 

since they may cause   infections   in people who have them [1–3]. One very common 

screening method   is the measurement of prostate-specific antigen (PSA), which   is a protein 

produced by cells of the prostate gland. However, it has been shown that monitoring PSA 

levels has no significant   impact on prostate cancer mortality after a median follow-up of 10 

years with those who had this monitoring [4,5]. The United States Preventative Services Task 

Force (USPSTF) originally issued a recommendation against PSA screening for all ages   in 

2012 [6], but   in 2017 revised that recommendation to say that the decision to undergo PSA 

testing   is an   individual decision for men between 55 and 69 years of age, with those over 

70 still being recommended against PSA screening [1]. “Cancer Screening: Theory and 

Applications” by Auvinen and Hakama presents a skeptical view of the efficacy of PSA 

screening, claiming that   it doesn’t save many years of life   in the long run [7]. Negoita et 

al showed that decrease in PSA screening following the aforementioned USPSTF 

recommendations has led to a flattening off of mortality, although this could be due to other 
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factors, and has also led to a higher incidence of late stage disease [8]. Martini et al see promise 

in developing “better screening tests (including free (unbound) PSA and biochemical and 

genetic markers), clear protocols for active surveillance, better focal treatments for localized 

diseases, and better treatments for advanced cancer” [5]. The defects PSA screening thus 

warrants   investigation   into new screening methods. One screening method is magnetic 

resonance imaging (MRI), which has the potential to   identify that someone with raised PSA 

levels actually has a low-risk cancer and hence does not need to have a biopsy [9–11].  Rundo 

et al. have recently suggested automating the prostate segmentation component of MRI by 

using a technique based on the fuzzy – c means clustering algorithm, which would   improve 

the time efficiency of MRI   screening [11]. several methods have also been suggested to   

improve PSA testing, such as age-specific PSA testing, factoring in the ratio of fire PSA (that 

is, PSA not bound to other proteins)  to total PSA (the total level of PSA,   including both free 

and bound PSA), and factoring the rate of change of PSA into screening, although the NCI 

reports that neither of these methods have been conclusively proven to decrease the risk of 

death [3]. 

 

We aim to test the efficacy of machine learning methods for prostate cancer screening using 

various clinical measurements. We also aim to determine the effect that variables such as BMI, 

race, rate of change, and age have on the model’s inaccuracy 

 

1.2 Literature Reviews 

 

In 2017, Shoaibi et al. Used a PSA growth curve to predict high-risk prostate cancer, training 

their model on the national cancer Institute PLCO dataset, and using a dataset of 680,390 

veterans as the validation set [12]. They performed a statistical analysis on a non-linear mixed 

regression model built with age, race, baseline PSA, and BMI as adjustment factors.    

In 2018, Roffman et al. developed an artificial neural network (ANN) to predict the risk of 

prostate cancer on the basis of “age, BMI, diabetes status, smoking status, emphysema, asthma, 

race, ethnicity, hypertension, heart disease, exercise habits, and history of stroke,” using the 

national health interview survey (NHIS) adult survey data as training and validation set [13].   

In the same year PSA was used by Wang   et al. together with age, result of digital rectal 

examination and transrectal ultrasound, and prostate volume to predict both   insignificant, 

benign, and insignificant cancer (both   insignificant vs. benign and insignificant and 

insignificant vs. benign vs. insignificant) on a dataset of 1,652 Chinese men with biopsies [2]. 

These variables were used in four algorithms (support vector machine, random forests, least 

squares support vector machine, and artificial neural network). All algorithms achieved >0.93 

accuracy for the prediction of significant versus benign and   insignificant, and >0.79 for 

prediction of benign versus insignificant versus significant prostate cancer. 

 

Many other attempts to predict the outcomes related to prostate cancer diagnosis from clinical 

data using machine learning methods are trained on severely balanced datasets   because   of   

the   rarity   of   prostate   cancer, and   do   not   use   the   rate   of   change   of   PSA   as   a   

feature [14, 15]. We   aim   to   apply   machine   learning   methods   to   predict   the   presence   

of   prostate   cancer   based   on   variables   available in clinical   data   which   may   be   

attained   without   biopsies.   Our   work   differentiates     itself   from   other   studies in   the   

following   respects.  

 



 
Omankwu, O. C. et al./ NIPES Journal of Science and Technology Research 

5(1) 2023 pp. 133-149 

135 

 

 

 

 

First, we   are   applying   a   wide   range   of   machine   learning   prediction   methods   to   

a   model   featuring   rate   of   change   of   PSA, which   Shoaibi   et   al.   did   not   do.   

Conversely, we   are   applying   the   rate   of   change   of   PSA   variable in   prediction   

using   machine   learning   methods, which   other   machine   learning   methods   for   prostate   

cancer   screening   have   not   done.  Moreover, we   apply     imbalance   correction   methods   

to   the   dataset   and   evaluate   these   methods   based   on   their     impact   on   the   

sensitivity   and   specificity   of   the   classifiers. 

 

3.   Data   Description 

 

In   this   study, we   built   machine   learning   models   on   the   screening   arm   of   the   prostate 

component   of   The   National   Cancer     institute’s (NCI’s) Prostate, Lung, Colorectal, and 

Ovarian   Cancer   Screening   Trial  (PLCO).   We   used   the   same inclusion   and   exclusion 

criteria   as   Shoaibi   et   al.   The   criteria   used   are   presented in Figure   1.   The   number   of 

patients     in   the   dataset, upon   the   different     inclusion/exclusion   criteria, is   displayed   

under the   criteria in each   box. it   should   be   noted   that   the   numbers   they   reported   having 

in   the dataset   did   not   align   with   ours, with   them   starting   with   38,340   entries in   the   

intervention on arm   and, after   applying   the     inclusion   and   exclusion   criteria, having   20,888   

entries     in   the   dataset.  Furthermore, we   could   not   find   out   how   to   determine   whether   

patients   had “suspicious screening   results   that   do   not   have   correspondent   complete   

diagnostic   procedures   and   final   results” [12]. We   have   split   this   dataset     into   three   

groups:     instances   without   prostate   cancer, instances   with   low-risk   prostate   cancer, and     

instances   with   high-risk   prostate   cancer.   High-risk   cancers   are   cancers   where   the   cancer   

cells   spread   at   a   fast   rate, leading   to   a   high   possibility   of   mortality   and   therefore   

calling   for     mediate   treatment   as   opposed   to   the   active   surveillance   that    is   often   

thought   to   be   suitable   for   low-risk   cancer [16].   The   definition   of   high-risk   prostate   

cancer   that   we   used, following   Shoaibi   et   al.   was   Gleason   score   >   7, PSA   level   ≥   

20   ng/mL, cancer     invading   the   prostate   capsule , or     involving   more   than   one   lobe   

[12].    It   should   be   noted   that   only   the   first   two   of   these   criteria   were   reported     in   

the   dataset.   The   segmentation   of   the   data     is   represented     in   Figure 2. We   developed   

two   machine   learning   models   ( i )   testing   the   presence   of   cancer   and   ( i )   testing   

presence   of   high-risk   cancer.   For   the   two   machine   learning   models   we   labelled   the   

dataset     in   two   ways.    in   the   first   model, instances   without   prostate   cancer   were   

labelled   negative   and   those   with   low-risk   or high-risk   prostate   cancer   were   labelled   

positive, and   this   labelled   dataset   was   called   presence   of   prostate   cancer   (PoPC).   In   

the   second   model, only     instances   with   high-risk   cancer   were   labelled   positive, and   

those   without   prostate   cancer   or   with   low-risk   prostate   cancer   were   labelled   negative, 

and   this   labelled   dataset   was   called   presence   of   high-risk   prostate   cancer (PoHRPC).   

As   presented     in   Figure   1, the   dataset   had   1,130   entries   diagnosed   with   PoPC, out   of   

which   only   190   met   the   criteria   of   PoHRPC, meaning   0.89%   of   our   dataset     in   

PoHRPC   was   labelled   positive, while   5.34%   of   our   dataset    in   PoPC   was   labelled   

positive. 
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Figure   1.   Population   of   National   Cancer     institute’s   Prostate,  Lung,   

Colorectal,   and   Ovarian   Screening   Trial   (NCI   PLCO)   dataset   upon   different     

inclusion/exclusion   criteria   and   the   positive     instances   been   selected   for   

analysis. 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure   2.   Segmentation   of   NCI   PLCO     into   no   cancer, low-risk   prostate   

cancer, and   high-risk   prostate   cancer. 
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4.   Method 

 

After   the     initial   preprocessing     involving   handling   of   misisng   values   and   

calculating   the   rate   of   change, we   determined   optimal   data     imbalance   methods   

and   scaling   methods   by   evaluating   their   effectiveness   on   the   PoPC-labelled   dataset.   

These   methods   were   then     implemented   on   PoHRPC-labelled   data.   The   process   

of   performing   our   analysis     is   described     in   detail   here   and     is   presented   visually    

in   Figure   3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure   3.   The   whole   process   of   the   analysis. 

 

 

4.1.   Data   Preprocessing 

 

One   component   of   preprocessing   was   the   calculation   of   Overall   ROC   and   Recent   

ROC   for   the   patients     in   the   dataset, along   with   the   handling   of   missing   values.   

The   other   step     in   preprocessing   was   running     imbalance   correction   and   scaling   

methods. 

 

4.1.1.   Handling   Missing   Values 

 

Rather   than   discard   rows   with   missing   values, we   used   the   sklearn     iterative     

imputer   class   with   a   decision   tree   regressor   to   transform   the   missing   value   for   

that   row     nto   some   value   computed   by   non-linear   regression   for   that   row [17].   

For   datasets   that   are     imbalanced   like   the   ones   we   are   using, this   method     is   

better   than   Simple     imputer,   which   assigns   missing   values   by   using   the   mean   

values   of   columns. 

 

4.1.2.   Calculation   of   Rate   of   Change 

 

There   were   six   PSA   measurements     in   the   PLCO   dataset (labelled   P1-P6).    In   addition,  

we   calculated   two   rate   of   change   features,   the   overall   rate   of   change   (Overall   ROC)   

and   the   recent   rate   of   change   (Recent   ROC).   Overall   ROC   was   calculated   by   dividing   
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the     increase     in   total   PSA   level   from   the   oldest   reading (P1)   to   the   latest   (P6)   by   

the   number   of   days   that   had   elapsed   between   them: 

 

 

   (1) 

 

Second, Recent   rate   of   change   (Recent   ROC)   was   the     increase     in   PSA   level   

from   the   second   most   recent   PSA   reading   (P5)   to   the   latest   (P6)   divided   by   

the   number   of   days   that   had   elapsed   between   them: 

 

    (2) 

 

4.1.3.   Data     imbalance   Methods 

 

As   shown     in   Figure   1, the   number   of   negative     instances     in   the   dataset     is   

much   larger   than   the   number   of   positive     instances.   Classifiers   built   on   such     

imbalanced   data   might   be   biased   towards   negative   prediction   and   therefore   have   

a   high   proportion   of   false   negative   predictions   and   are   unable   to   generalize   to   

new   data.     In   order   to   solve   this   problem, a   range   of   methods   for   handling   data     

imbalance   should   be   used.   The   main   methods   for   sampling-based     imbalance   

correction   can   be   broken     into   the   categories   of   oversampling   (where   the   smaller   

class   has   more   data   added   to     it   to   make     it   the   same   size   as   the   larger   

class,   often   by   the   data   being   created)   and   under   sampling   (where   the   larger   

dataset     is   sampled   from   to   build   a   representative   set   that     is   the   same   size   

as   the   smaller   class)   [18].    

 

We   used   a   wide   range   of   oversampling, under-sampling,  and   combination   (featuring   

elements   of   both)   methods   to   evaluate  which   would   be   the   best.   All   methods   

were     implemented   by     imbalanced-learn  [19]. 

 

The   full   list   of   methods   tested     is: 

 

No   method, Cluster   Centroids (CC),   Random   Under   Sampler   (RUS),   Near   Miss   1   

(NM1),   Near   Miss   2   (NM2),   Near   Miss3   (NM3),     instance   Hardness   Threshold   

(  HT),   Repeated   Edited   Nearest   Neighbors   (RENN),   Random   Over   Sampler   

(ROS),   SMOTE   [20],   Borderline   SMOTE   1   (BS1)   [21],   Borderline   SMOTE   2   

(BS2),   ADASYN,   SMOTEENN   [22],   SVMSMOTE   [23],   SMOTENC,   and   

SMOTETomek. 

 

 

For   each   method, we   first   generated   a   range   of   distributions   according   to   the   

scaling   methods   listed     in   4.1.4.   We   then   determined   the   optimal   scaling   method   

for   a   given   sampling   method   by   splitting   the   data     into   training   and   test   sets   
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with   test   size   0.25,   running   the   sampling   algorithm     in   question   on   the   training   

set,   running   every   classifier     in   our   suite   on     it,   and   reported   the   average   area   

under   the   curve   (AUC)   and   average   accuracy   (avg_auc   and   avg_acc)   attained   

across   all   classifiers.   Whichever   scaling   method   produced   the   highest   average   of   

avg_auc   and   avg_acc   was   deemed   the   optimal   method (opt scaling) for   this   sampling   

method, and   to   evaluate   the   sampling   methods   we   reported   the   opt_scaling   

(avg_auc)   and   opt_scaling   (avg_acc)   for     it.   These   metrics   were   reported     in   a   

table,  and   we   also   plotted,   for   each   sampling   algorithm,   the   avg_auc   against   the   

avg_acc   attained   across   classifiers   on   data   scaled   by   the   optimal   scaling   method   

for   that   sampling   algorithm,   and   then   sampled   by   that   sampling   algorithm   before   

training.   We   decided   on   which   sampling   method   to   use   from   this   plot. 

When   using   oversampling   and   under   sampling     in   cross-validation   later   on,    in   

the   evaluation,   we   performed   the   procedures   “during”   cross-validation:   for   each   

fold,   sampling   was   performed   on   the   training   data.   This     s   regarded   as   the   only   

way   to   test   the   effectiveness   of   the   algorithm   at   generalizing-   from   real-world   

data [24]. 

 

4.1.4.   Scaling/Normalization 

 

For   data   sampled   using   the   optimal   sampling   method   as   selected   by   the   procedure   

described     in   Section   4.1.3   above,   we   ran   a   suite   of   sklearn   normalization,   

scaling,   and   transformation   methods   [17]   and   compared   them   with   one   another   

by   averaging   their   accuracies   and   averaging   their   area   under   the   curve   (AUC)   

receiver   operating   curve   (ROC)   scores   from   the   machine   learning   methods   listed     

n   Section   4.2.   We   then   plotted   average   AUC   ROC   score   vs.   average   accuracy   

and   decided   which   scaling   method   to   use   from   this   plot. 

 

4.2.   Building   Classifiers 

 

Our     initial   models   were   built   using   the   features   of   the   patient’s   PSA   levels   

(note   that   these   are   total   PSA,   which     is   the   addition   of   PSA   bounded   to   other   

proteins   and   unbounded   [3])   from   multiple   screens   (every   patient   had   data   from   

between   4   and   6   screens),   Overall   ROC,   and   Recent   ROC. 

We   ran   a   suite   of   machine   learning   methods   obtained   from   scikit-learn   [17]   on   

the   dataset,   consisting   of   K-neighbors   (KN),   support   vector   machine   (SVM),   

decision   tree   (DT),   random   forest   (RF),   multi-layer   perceptron   classifier   (MLPC),   

adaptive   boosting   (ADA),   and   quadratic   discriminant   analysis   (QD).   The   support   

vector   machine   used   a   radial   basis   function   as   a   kernel   function   and   had   a   

gamma   value   of   2. 

 

4.3.   Evaluating   the   Classifiers 

 

Where   training   and   test   sets   were   from   the   same   dataset, we   evaluated   the   

classifiers   by   using   holdout   and   10-fold   cross-validation [25].   The   metrics   used   

were   accuracy,  AUC   ROC   [26],   confusion   matrices   [10],   sensitivity,   specificity,   

positive   predictive   value   (PPV),   negative   predictive   value   (NPV),   and   F1   score   

(F1).   Sensitivity   measures   the   ratio   of   correctly   predicted   positives   to   the   total   
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number   of   positives     in   the   dataset, and   the   specificity   does   the   same   for   

negatives.   Conversely, PPV   measures   the   ratio   of   those   that   were   correctly   predicted   

positive   to   those   that   were   positively   predicted   at   all.   NPV   does   the   same   for   

negatives.   F1   scores   are   correlated   with   a   low   rate   of   false   positives   and   a   low   

rate   of   false   negatives   [10]. The   ROC     is   a   plot   of   1—specificity   on   the   x-axis   

against   sensitivity   on   the   y-axis,   with   each   point   corresponding   to   a   specific   

decision   threshold.   Therefore, the   closer   the   curve     is   to   the   top   left   corner   

(100%   specificity   and   100%   sensitivity   (since   the   x-axis     is   1—sensitivity))   the   

greater   the   “overall   accuracy   of   the   test”   [26].   AUC   ROC     s   a   measurement   

of   the   area   under   that   curve,  which   means   that     it     is   directly   correlated   with   

the   overall   accuracy   of   a   given   classifier. We   measured   accuracy   and   AUC     in   

both   holdout   (0.25   test   size)   and   10-fold   cross-validation,   generated   and   displayed   

the   ROC   curve   and   confusion   matrix,   and   measured   sensitivity,   specificity,   PPV,   

NPV,   and   F1-score. 

 

4.4.   Evaluating   the   Predictability   of   Features 

 

To   evaluate   the   effect   that   Overall   ROC   and   Recent   ROC   had   on   accuracy, we   

tested   the   difference     in   holdout   AUC   for   the   optimal   classifiers     in   each   dataset   

when   each   of   the   two   ROC   features   was     individually   removed   and   when   both   

were   removed. To   test   the   effectiveness   of   age   and   BMI, we   measured   the     

increase     in   AUC   holdout   when   age   alone,  BMI   alone,   and   both   age   and   BMI   

were   added   to   the   model   so   far   developed. Since   90%   of   the   patients   are   white   

Non-Hispanic   people   [27],   we   tested   whether   filtering   by   race   would   have   an   

effect   on   the   accuracy   by   filtering   out   all   the   patients   with   races   other   than   

white   Non-Hispanic   and   seeing     if   the   models   built   on   the   remaining   data   have   

a   higher   accuracy. 

 

5.   Results 

 

5.1.   Result   for   PoPC   Training   and   Test 

 

The   first   part   of   the   pipeline, as   explained     in   Section   4.1.3,   was   to   evaluate   

the   effectiveness   of   each   sampling   method   by   running   our   suite   of   machine   

learning   methods   with   each   scaling   method   after   sampling   the   data   with   a   given   

sampling   method. From   Figure   4   and   Table   1, it     is   not   entirely   clear   which   

sampling   method     is   optimal   for   PoPC.     in   general,  SVMSMOTE   and   BS1   could   

be   the   best   options,   being   close   to   the   top   of   the   AUC   measurements   without   

sacrificing   too   much     in   terms   of   accuracy.     It   can   be   seen   from   Table   1   that   

SVMSMOTE   achieves   an   average   accuracy   0.032   higher   than   BS1′s, while   BS1′s   

AUC     s   0.019   higher   than   SVMSMOTE’s.   As   a   result,  SVMSMOTE   was   chosen   

as   the   sampling   method   to   be   used     in   the   remainder   of   this   section. 
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Table   1.   Comparison   of   data     imbalance   methods   on   presence   of   prostate   

cancer   (PoPC)   data,   evaluated   using   the   average   accuracy   (Avg   Acc)   and   

average   AUC   (avg   AUC)   across   all   classifiers   for   the   scaling   method   which   

achieved   the   highest   average   of   those   two   metrics   for   a   given   sampling   

method. 

 

 
  No   Method CC RUS NM1 NM2 NM3 

 Avg   Acc 0.947 0.747 0.780 0.558 0.288 0.841 

 Avg   AUC 0.558 0.774 0.743 0.703 0.587 0.747 

    HT RENN ROS BS1 BS2 ADASYN 

 Avg   Acc 0.417 0.905 0.818 0.823 0.822 0.794 

 Avg   AUC 0.663 0.707 0.735 0.767 0.750 0.743 

  SMOTE SVMSMOTE SMOTETomek SMOTEENN   

 Avg   Acc 0.813 0.855 0.812 0.765   

 Avg   AUC 0.742 0.748 0.743 0.765   

 

 

 

    
Figure   4.   Average   area   under   the   curve   (AUC)   vs.   average   accuracy   

across   all   classifiers   for   each   sampling   method   on   optimally   scaled   

PoPC   data. 

 

We   tested   nine   scaling   methods   and   calculated   the   average   accuracy   and   AUC   

across   all   classifiers     in   our   suite   of   machine   learning   methods  (see   Section   

4.1.4). 

It   was   observed   from   Figure   5   that   a   trade-off   exists     in   AUC   and   accuracy:   

Robust   achieves   the   highest   accuracy   with   around   0.87   while     its   AUC     is   the   

lowest   of   any   method, whereas   the   uniform   pdf   quantile   transformation   achieves   

an   AUC   of   over   0.76,   with   the   second   lowest   accuracy   of   0.844.  In   this   study,  

we   chose   standard   scaling   as   the   method   that   was   used     in   the   analysis   process,   

as   both   the   AUC   and   accuracy   achieved   by   this   method   were   acceptable. 
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The   evaluations   of   classifiers   are   presented     in   Table   2.     in   Holdout methods,  

25%   of   the   data   were   used   for   testing   and   the   rest   were   used   to   train   the  

classifiers.   The   performance   of   classifiers   varies   for   accuracy   and   AUC   score 

(Table   2).   ADABoost   was   the   best   algorithm   for   this   dataset, given   that     it   had   

the   equal   best   AUC     in   holdout   and     is   only   0.002   off   the   best     in   cross-

validation.     It’s   accuracy     in   both   was   also   no   more   than   0.076   from   the   top   

accuracy, and   was   higher   than   that   of   decision   tree,  which   was   the   only   algorithm   

with   better   AUC.   Therefore, ADABoost     is   the   machine   learning   algorithm   used   

for   this   model     in   the   remaining   predictions   on   PoPC-labelled   data. The   ROC   

curve   of   the   models   presented     in   Figure   6   and     its   confusion   matrix     s   

demonstrated     in   Table   3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure   5.   Average   AUC   for   the   ensemble   of   algorithms   on   each   scaling   method   

vs.   average   accuracy   for   the   ensemble   of   algorithms   on   each   scaling   method   on   

PoPC   data. 

 

Table   2.   Average   accuracy   and   AUC   score   for   each   machine   learning   algorithm   on   

PoPC   training/test. 

 

 
  KN SVM2 QD DT RF MLPC ADA 

 Holdout   accuracy 0.886 0.899 0.916 0.831 0.831 0.850 0.846 

 Holdout   auc-score 0.683 0.653 0.577 0.777 0.772 0.791 0.777 

 10-fold   cross 0.876 0.894 0.919 0.838 0.835 0.845 0.843 

 validation   accuracy (+/−0.009) (+/−0.013) (+/−0.009) (+/−0.023) (+/−0.024) (+/−0.015) (+/−0.014) 

 10-fold   cross 0.674 0.662 0.575 0.778 0.771 0.771 0.776 

 validation   auc (+/−0.038) (+/−0.049) (+/−0.049) (+/−0.030) (+/−0.024) (+/−0.037) (+/−0.028) 

 

 

 

 

 

 

 

 

 

 

Figure   6.      Receiver   operating   characteristic   curve   for   decision   tree   on   PoPC   data. 
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Table   3.   Confusion   matrix   for   decision   tree   on   PoPC   data   training   and   test. 

 

 

  Disease   Present Disease   Absent 

 Predicted   present 208 725 

 Predicted   absent 75 4285 

 

The   detailed   performance   of   this   model     is   shown     in   Table   4. 

 

Table   4.   Specificity, sensitivity, PPV,   and   NPV   for   decision   tree   on   PoPC   data. 

 

 
Evaluation Value 

 
Sensitivity 0.735 

Specificity 0.855 

PPV 0.223 

NPV 0.983 

F1 0.342 

 

Table   5   shows   the   performance   of   classifiers   trained   using   different   feature   sets.   

The   addition   and   exclusion   were   all   based   on   the   original   feature   set   of   6   PSA   

levels,   Overall   ROC,   and   Recent   ROC.   The   AUC   were   evaluated   by   holdout     

nstead   of   cross-validation; thus,   there   might   exist   slight   differences     n   the   resulting   

AUC. 

Table   5.   AUC   and   decrease     n   AUC   for   optimal   classifier   on   PoPC   

data   when   selected   features   are   added   or   removed. 

 

 

  AUC 

Difference     n   AUC   by   Different   Feature   
Set 

 
No   exclusion   (Same   feature   set   as   above   
model) 0.791 0 

 Recent   ROC   excluded 0.767 −0.024 

 Overall   ROC   excluded 0.787 −0.004 

 Overall   ROC   and   Recent   ROC   excluded 0.774 −0.017 

 Age   added 0.786 −0.005 

 BMI   added 0.792 +0.001 

 Age   and   BMI   added 0.786 −0.005 

 Filtered   by   race 0.785 −0.006 

 

Table   5   demonstrates   that   Overall-   ROC   and   Recent   ROC   both   make   contributions   

to   the   accuracy   of   the   model   thus   far   developed,   with   Recent   ROC   making   a   

greater   contribution.     in   fact,   when   both   of   them   are   excluded,   there     is   less   

of   a   decrease     in   accuracy   than   when   Recent   ROC   alone     s   excluded.   Age   

decreased   accuracy,   while   BMI   slightly     improved     it,   and   adding   both   together   

decreased   accuracy.   Filtering   by   race   had   a   negative   effect   on   accuracy.   Thus,   

the   evaluation   of   features   suggests   that   the   most   effective   feature   set   for   this   

model   contains   only   PSA   levels,   Recent   ROC,   and   BMI. 
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5.2.   Result   for   PoHRPC   Training   and   Test 

 

To   predict   high-risk   prostate   cancer,   we   used   the   previously   developed   pipeline     

n   the   last   section. From   Table   6,   we   observed   that   ADABoost   had   the   highest   

AUC   according   to   cross-validation   and   the   third   highest   according   to   holdout.     

in   terms   of   accuracy,     it     is   within   a   reasonable   margin   of   all   algorithms   that   

are   close   to     it     in   terms   of   AUC.   Therefore,   we   used   this   method   for   the   

rest   of   the   evaluation     in   this   section,   and     in   the   comparison   with   other   papers   

at   the   end   of   the   results   section. 

 

Table   6.   Average   accuracy   and   AUC   score   for   each   machine   learning   

algorithm   on   PoHRPC   training/test. 

 

 

  KN SVM2 QD DT RF MLPC ADA 

 Holdout 
0.979 0.926 0.930 0.906 0.930 0.905 0.929  

accuracy         

 Holdout   auc- 
0.551 0.674 0.630 0.687 0.653 0.618 0.664  

score         

 10-fold   cross 
0.979 0.925 0.941 0.927 0.915 0.909 0.894  

validation  
(+/−0.007) (+/−0.011) (+/−0.011) (+/−0.016) (+/−0.028) (+/−0.030) (+/−0.013)  

accuracy         

 10-fold   cross 0.576 0.686 0.617 0.669 0.696 0.675 0.711 

 validation   auc (+/−0.082) (+/−0.108) (+/−0.098) (+/−0.086) (+/−0.115) (+/−0.114) (+/−0.120) 

 

 

The   ROC   curve   for   this   models   presented     n   Figure   7   and     its   confusion   

matrix   achieved   by     s     n   Table   7.   Note   that   the   confusion   matrix     s   

evaluated   using   holdout     instead   of   cross-validation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure   7.   Receiver   operating   characteristic   curve   for   ADABoost   on   PoHRPC   data. 
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Table   7.   Confusion   matrix   for   ADABoost   on   PoHRPC   data   training   and   test. 

 

 

 Positive Negative 

Predicted   positive 28 457 

Predicted   negative 17 4791 

The   detailed   performance   of   this   modes   shown     in   Table   8. 

 

 

Table   8.   Specificity, sensitivity, PPV   and   NPV   for   ADABoost   on   PoHRPC   data. 

 

 
Evaluation Value 

 
Sensitivity 0.62 

Specificity 0.913 

PPV 0.057 

NPV 0.996 

F1 0.106 

 

 

Table   9   shows   the   performance   of   classifiers   trained   using   different   feature   sets.   

The   addition   and   exclusion   were   all   based   on   the   original   feature   set   of   6   PSA   

levels,   Overall   ROC,   and   Recent   ROC.   The   AUC   were   evaluated   by   holdout     

nstead   of   cross-validation;   thus,   there   might   exist   slight   differences     in   the   

resulting   AUC. 

 

Table   9.   AUC   and   decrease     n   AUC   for   optimal   classifier   on   

PoHRPC   data   when   selected   features   are   added   or   removed. 

 

 

  AUC 

Difference     n   AUC   by   Different   Feature   
Set 

 
No   exclusion   (Same   feature   set   as   above   
model) 0.673 0 

 Recent   ROC   excluded 0.651 −0.022 

 Overall   ROC   excluded 0.661 −0.012 

 Both   Overall   ROC   and   Recent   ROC   excluded 0.643 −0.03 

 Age   added 0.711 +0.038 

 BMI   added 0.688 +0.015 

 Age   and   BMI   added 0.690 +0.017 

 Filtered   by   race 0.669 −0.004 

 

 

 It   can   be   seen   that   exclusion   of   any   of   the   PSA   rate   of   change   variables   only   

decreases   the   performance   of   the   model.   Meanwhile, for   additions     involving   age   and   

BMI   ,   adding   only   the   “age”   variable   provides   the   most   substantial     increase     in   

the   performance.   Although   having   BMI   as   a   feature   can   also   provide   a   better   

performance   than   the   original   model, using   age   and   BMI   together   cannot   produce   a   
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result   that     is   comparable   to   using   only   age. Finally, filtering   by   race   decreased   the   

accuracy   by   0.004,     indicating     it   has   a   negative   effect   on   accuracy.   Therefore, the   

optimal   feature   set   for   this   model   contains   PSA   levels, Overall, ROC, Recent   ROC, and   

age.   Given   that   without   any   of   these   features, the   AUC     s   0.643   and   with   all   of   

them   the   AUC     s   0.711,   together,   they   lead   to   an     increase   of   6.8%     n   AUC. 

 

5.3.   Comparison   of   the   Results   with   Related   Work 

 

The   classifiers   discussed     in   this   section   are   the   optimal   models   for   PoPC   and   

PoHRPC   as   described   above   (both   have   SVMSMOTE   as   their   sampling   method   

and   standard   scaling   as   their   scaling   method,   with   PoHRPC   having   ADABoost   

as     ts   machine   learning   method   and   PoPC   decision   tree   as     ts   machine   learning   

method),   with   the   results   we   are   reporting   on   having   been   calculated   when   they   

predicted   using   the   standard   feature   set   of   6   PSA   levels,   Overall   ROC,   and   

Recent   ROC. As   shown     in   Table   10,  while   our   optimal   classifier   on   the   PoHRPC   

data   set   had   a   specificity   of   0.913   which   was   better   than   Shoaibi   et   al.’s   of   

0.852,   our   sensitivity   of   0.62   was   far   off   theirs   of   0.955.   Both   our   study   and   

the   study   of   Roffman   et   al.   achieved   poor   sensitivity, while   the   specificity   and   

AUC   are   decent.  Furthermore, we   attained   a   high   negative   predictive   value   of   

0.996   and   a   very   low   positive   predictive   value   of   0.057.   What     is   notable   about   

this     s   that     it     indicates, as   does   the   confusion   matrix     in   Table   8,   that   the   

major   source   of   error     in   our   predictor   was   false   positives,   with   us   having   457   

of   those   compared   to   17   false   negatives.   This     ndicates   that   our     imbalance   

correction   method   led   to   a   bias   towards   positive   entries     in   prediction   on   this   

data   set, relative   to   the   small   number   of   positive   entries     in   the   dataset. 

Nonetheless,   Figure   4     indicates   that   these   sampling   methods     increase   the   AUC,   

suggesting   we   should   hold   onto   them.   This    is     in   line   with   what   you   would   

expect   from   an     imbalance   correction   method,   but     it   does   reflect   that   further   

optimization   needs   to   be   done,   especially   as   false   positives   are   currently   a   

problem   with   PSA   tests   [5]. 

 

Table   10.   Comparison   of   our   results   with   train/test   on   the   same   dataset   and   

testing   on   a   validation   set   with   Shoaibi   et   al.,   Roffman   et   al.,   and   Wang   

et   al. 

 

 

  
PoHRPC PoPC 

Wang   et   al.   ANN   on 
Shoaibi   et   al. 

Roffman   et   al.   ANN   
on 

  
Training/Test   Set   from Training/Test   Set   from   

(ADABoost) (ADABoost) Validation   
Same   Dataset Same   Dataset      

 Sensitivity 0.62 0.735 0.9996   +/−   0.0013 0.955 0.232   (0.195–0.269) 

 Specificity 0.913 0.855 0.9035   +/−   0.0163 0.852 0.894   (0.89–0.897) 

 NPV 0.996 0.983    

 PPV 0.   057 0.223   0.265   (0.224–0.306) 

 Accuracy 0.915   (+/−0.016) 0.843   (+/−0.014) 0.9527   +/−   0.0079   

 AUC 0.711   (+/−0.120) 0.776   (+/−0.028) 0.9755   +/−   0.0073  0.72   (0.70–0.75) 

 

All   AUC   scores   for   our   data   are   the   maximum   achieved   by   any   of   the   ensemble   

of   classifiers. Training/test   accuracy   and   AUC   are   measured   by   10-fold   cross-validation. 
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Table   10   demonstrates   a   tendency   of   Roffman   et   al.’s   predictor   and   our   two   

predictors,   both   of   which   predicted   on     imbalanced   datasets,   performing   worse   

than   Wang   et   al.’s,   which   predicted   on   a   balanced   dataset.   Of   the   four   of   these   

predictors   (our   two   predictors,   Roffamn   et   al.’s,   and   Wang   et   al.’s)   Wang   et   

al.’s   dataset   had   a   positive   percentage   of   50.95%,   while   PoHRPC   had   0.89%,   

PoPC   had   5.34%,   and   Roffman   et   al.’s   had   1.67%.   Wang   et   al.’s   predictor   

performed   the   best     in   terms   of   every   metric   shared   between   all   the   predictors   

aside   from   specificity,   with     its   specificity   being   0.0095   less   than   that   of   our   

PoHRPC   predictor.   This     is   a   negligible   difference.     its   sensitivity   of   0.966   was   

0.2366   higher   than   the   next   highest   sensitivity   of   the   predictors,   which   was   our   

PoPC   predictor   with   0.735.     its   accuracy   of   0.9527   was   0.0377   higher   than   the   

next   highest,   which   was   our   PoHRPC   predictor   with   0.915.     its   AUC   was   higher   

than   the   next   highest   (our   PoPC   predictor   with   0.776)   by   0.1995. Nonetheless,   

Shoaibi   et   al.’s   study     is   a   counter-example   to   this   trend,   demonstrating   a   high   

sensitivity   despite   predicting   on     imbalanced   data   (recall   that   they   too   predicted   

high-risk   prostate   cancer     in   the   NCI   PLCO   data   set).   This   shows   that     it     is   

possible   to   predict   accurately   on     imbalanced   data,   which   Roffman   et   al.’s   and   

our   predictors   failed   to   do. 

 

6. Discussion  

 

Our   evaluation   suggests   that,   for   the   predictors   we   have,   rate   of   change   does   

have   a   positive   effect   on   accuracy,   given   that   Recent   ROC   contributed   0.024   to   

the   AUC   on   PoPC,   and   both   variables   together   contributed   0.03   to   the   AUC   

on   PoHRPC.     ncluding   age     in   the   features   set   led   to   a   further     increase   of   

0.038     in   AUC.   Therefore,   adding   rate   of   change   of   PSA   variables   and   age   to   

the   feature   set   of   a   machine   learning   predictor   for   prostate   cancer   led   to   an     

increase   of   6.8%     in   AUC   compared   to   the   AUC   generated   by   predicting   with   

PSA   levels   alone   on   PoHRPC-labelled   data. Although   there   are   certain   differences   

that   exist     in   the   performance   between   our   model   and   Shoaibi   et   al.’s   model,   

our   model   and   pipeline   can   be   built   easily   with   less   requirement   of   the     input   

data,   and   for   researchers   with   no   professional   statistical   modelling   experience,   our   

model   can   be   easier   to   understand   and     implement,   and   the   result   we   have   

achieved   can   provide   a   baseline   for   other   studies   with   similar   purpose. Furthermore, 

the   pipeline   we   have   developed   can   be   used   as   a   guide   for   future   studies   on   

the   PLCO   dataset. Our   models’   low   PPV   values     indicated   that   our   choice   of   

an     imbalance   correction   method   could   be   further     investigated.   The   effect   of     

imbalance   correction   should   be   measured   by   testing   the   variance   of   attributes   like   

sensitivity,  specificity,   NPV   and   PPV   with   changing   methods.  

Furthermore,  the   focus   should   be   on   lowering   the   rate   of   false   positives   that   

currently   occur   when   we   use     imbalance   correction   methods.   A   broad   range   of   

methods   should   be   tested,   including   those     in   the   latest   literature.   An   example   

of   such   a   method     is   Ebenuwa   et   al.’s   variance   ranking   attributes   selection   

technique [18]. 
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7.0. Conclusion 

Advanced   machine   learning   methods   coupled   with   feature   engineering   and   addition   

of   more   features     improve   prediction   models [28, 29].   A   clear   one, as   mentioned   

earlier, is   using   the   ratio   of   free: total   PSA   [3],   but   another   option     is   measurement   

of   androgen   and   estrogen   steroids,   since   the   role   of   these   hormones   are   

acknowledged     in   other   cancer-types   [30].   There     is   research   suggesting   correlations   

between   these   steroids   and   prostate   cancer, such   as   decreasing   androgens   and     

increasing   estrogen     increasing   the   likelihood   of   prostate   cancer.   When   different   

kinds   of   estrogens   are   distinguished   between,   however,   the   picture   becomes   more   

complicated   as   activation   of   the   classical   estradiol   receptors   (α   and   β)   have   

various   effects   on   prostate   cancer   progression   which,   due   to   the   sometimes   

contradictory   nature   of   the   results   and   the   present     insufficiency   of   our   models   

of   prostate   cancer   and   the   receptors     involved     in     it,   makes   the   role   of   

estrogens   (that     is,   whether   they     increase   or   decrease   the   spread   of   prostate   

cancer)   unclear   [31,32].  Machine   learning     is   therefore   an   area     in   which   the   

correlations   which   we   believe   exist   can   be   used   for   prediction     in   clinical   

practice   before   more   sophisticated   models   have   been   developed. 
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