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 Scorch is a common occurrence in the production of flexible 

polyurethane with significant negative impacts on its resilience, 

compactness, and integrity. With the increased likelihood of the scorch 

menace on foam production – conventional remedies have become of 

great concern due to the increased emission of these chemical 

constituents against an eco-friendly environment, and the consequent 

rise in operational costs to provide such remedies. Tackling scorch 

occurrence requires skilled professionals to efficiently navigate the 

flexible proportioning of chemical additives, which can also be achieved 

via the utilization of a cost-effective machine learning scheme that also 

provisions early warning to predict the occurrence of scorch prior the 

physical processing via the thermodynamic profile of polyurethane 

foam. Previous works observe the impact of an imbalanced dataset. Our 

study investigates the impact of the data balancing scheme and feature 

selection via the utilization of a SMOTE-Tomek-based chi-squared 

fused BiLSTM model for a scorch dataset, recorded during the 

production of the polyurethane foam. The result shows the BiLSTM 

outperformed benchmark models yielding an Accuracy of 0.9895, F1 of 

0.9892, Precision of 0.9817, Recall of 0.9901, AUC of 0.98, and a 

smooth, monotonic decrease without fluctuations in model loss 

respectively. Thus, implies that the proposed BiLSTM accurately 

handles the minority class without the instability due to the vanishing 

gradients problem. In addition, its benchmark models (i.e. Decision 

Tree, Logistic Regression, Random Forest, and XGBoost) yield F1 of 

[0.8145, 0.9105, 0.9210, and 0.9125] with Accuracy of [0.8032, 0.9105, 

0.9228, and 0.9574] respectively. Results show the proposed BiLSTM 

accurately predicts 2-distinct cases of non(occurrence) of scorch. The 

model demonstrates its capability to effectively predict the occurrence 

of scorch.  
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1.  Introduction 

Polyurethane foam is a porous structured, synthetic created with a mixture of diisocyanates and polyols [1], 

[2]. It consists of blowing agents (gases) mixed with polyurethane elastomer material [3] – and its use is attributed to 

its beneficial physical characteristics. Their low density [4], [5] and thermal conductivity [6] allow their flexible use in 

applications such as thermal/sound insulation, bedding, furniture, encapsulating components, underlays, and other 

packaging forms [7], [8]. Water as a replacement for chlorofluorocarbons [9], tends to increase the occurrence of scorch 
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in polyurethane foam due to high exothermic reaction that ripples across the constituents. This temperature 

rise often requires fire retardants as formulating ingredients [10], [11]. However, some fire retardants have also been 

known to introduce scorch [12]; while others during the interaction with the constituents formulation dissipate aniline 

from ammonia (-NH2) found to be present in water-blown polyurethane foam [13]. This interaction as in have 

necessitated the experts’ quest to mitigate scorch occurrence via the addition of antioxidants [14], [15] to lessen the 

effects of fire retardants. However, reports have introduced the use of secondary antioxidants [16] in extreme conditions 

for low-density foam productions with constituents that yield high moisture content. Nabata et al. [17] studied heating 

polyurethane foam to observe its cure using diisocyanates. Its drawbacks include longer train time [18], more resources 

and energy with unsustainable laborious production process as convention. Thus, experts explore the utilization of 

simulation models to predict ahead with the same variables and chemical constituents – and was found to yield improved 

result at shorter time [19], [20]. These, use evolutionary modeling approaches, and contributes to searched (domain) 

target-class amongst others underlying features via its utilization of the trial-n-error approach [21], with several trial 

iterations in its quest to yield the desired result. This, has been found by many researchers and experts – to be quite cost-

effective with reduced waste of resources [22], [23]. 

With chlorofluorocarbons previously used – scorch was greatly reduced [24]. However, its consequent 

emissions of harmful materials [25] into the environment led to its ban with water reinvented as its substitute [26]. With 

experts seeking to evaluate the right proportion of constituents to prevent scorching via the use of forecast knowledge 

models [27] – scorch has become a menace in polyurethane foam production. Scorch can be visually recognized during 

the cure stage with the foam’s exposure to air [28] to cool. Scorch is a slight yellowish-brown coloration found in the 

foam slab during its cure stage [29]. When fully formed – scorching reduces a foam's degree of compactness to yield 

decreased durability, so that such scorched foams quickly suppress [30]. Major causes of scorch include the oxidation 

of phenols and amines [31], and the use of non-polymeric components as responsible for discoloration [32]. Thus, 

scorching can be explained as heat-induced changes in the polyurethane foam production process, due to inadequate 

exposure that prevents proper dissipation of trapped heat at its cure phase [33]. Known impact of scorching includes 

[34]: (a) porous cellular structure, (b) low load-carrying capacity, (c) low resilience and elasticity, (d) reduced life span 

with foam’s durability, (d) high-volume wastage, (e) poor utility of resources, and (f) reduced profitability.  

Conventional remedies include: (a) the use of temperature suppressants, (b) antioxidants as additives with salts 

as anti-scorch essence, (c) the addition of free isocyanate to moderate the fast exothermic reaction that reduces 

temperature rise, (d) use of scorch inhibitors like halogenated phosphate ester additives in its proper ratio with 

diphenylamine derivative and hydroquinone [35]. While these yield their benefits [36], the increased concern of 

chemical emissions and the required high operational cost of environmental clean-up – renders such solutions 

unsuitable; And the use of inhibitors has been found to exert morphological and chemical changes to the foam [37]. 

While scorch inhibitors are known to contribute to foam discoloration (not necessarily from scorch) – they can yield 

such discoloration arising from foam slab’s exposure to sunlight and warehousing fumes [38]. Thus, it is evident that 

an available option to tackle scorch requires expert skillsets to properly navigate [39] via careful proportions of materials 

using cost-efficient solution(s) that simulate the process, as it responds to scorch occurrence before the physical 

manufacturing. In the quest for ground truth [40], performance generalization must adequately account for various 

specifications in the polyurethane materials including (a) diisocyanates and polyols materials, and (b) environmental 

conditions within production plants and scenarios where scorch is typically promoted as a result of mechanical defects 

[41]. While these adjustments if made during production are not a smart choice and decision – experts can only make 

adjustments before scorch occurrence. There is also the issue with the difficulty of generalizing these recommendations 

for all production processes as they may not adequately account for various specifications of the supplied (raw) 

polyurethane materials from a variety of suppliers. This case is especially true for polyols, and diisocyanates vis-à-vis 

other conditions inherent in the production plants (in the case where scorch is typically promoted as a result of 

mechanical defects) [42], [43]. 

We model these dynamics and complex production processes as variables using machine learning (ML) 

schemes – so as to provision adequate insight with trial-and-error simulations for a variety of scenarios in the chemical 

manufacturing phases. Learning aggregates the learned intrinsic feats using a classifier. Many ML schemes utilize the 

recursive top-down mode that partitions its dataset via binary approach resulting in a k-fold split for its predictors with 

a distribution of dependent variable 𝑦 that are successively homogeneous [44]. Each scheme is constructed and trained 

to aggregate their results into a stronger classifier. This is achieved via: (a) bagging which recursively generates a train-

set that sums results to reduce variance and bias via voting, and (b) boost reduces bias by sequentially pooling together 

the performance of many weak learners into a stronger learner to yield enhanced accuracy by correcting previous 

mistakes. Both approaches enhance accuracy by mitigating bias that reduce errors in misclassified outcomes. A variety 

of ML schemes successfully implemented includes: Genetic Algorithm [45], SVM [46], Deep Learning [47], Random 

Forest [48], etc. While these MLs have their inherent drawbacks – the use of feature selection and data balancing in 

their quest for prediction accuracy has remained a crucial feature.  
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Existing knowledge gaps that have motivated this study include:  

1. Performance Generalization with Previous Models: Each classification of scorch from previous studies has 

explored varying classification cum identification methods developed specifically for the scenario used. This 

complexity in design has also responded with a set of performance generalizations for each dataset as explored. 

Thus, the accuracies of previous works ranged from 0.69-to-0.858 respectively. This study hopes to reach improved 

performance accuracies and generalization [49], [50]. 

2. Imbalanced Dataset – Many domain studies explore datasets which by nature at the collection and cursory look – 

are imbalanced with scorched (minority-class) records often found to lag during the production of the polyurethane 

foam production. ML approaches have been known to classify effectively records cum data labels for the majority 

class; And are often poised to ignore data labels in the minority class. Thus, the study seeks to assess the impact of 

data balancing using the SMOTE-Tomek links scheme [51], [52]. 

3. Greater Dynamics Complexity in Adopted Heuristics: Many studies have shown that complex models – though 

quite intricate to understand – have often proffered improved optimal fit solutions [53], [54]. While some models 

such as Random Forest, XGB, and Logistic Regression are easier to implement with robust classification accuracies 

[55], [56]; their inherent performance also suffers setback with complex datasets (as in scorch occurrence 

classification), especially for its utilization of non-linear boundaries. Thus, deep learning models are best suited in 

this guise [57]. 

4. Increased Dimensionality with Vanishing Gradient Problems: While Deep learning models are based on 

recurrent and convolution neural networks – their utilization in identification and classification is often hampered 

by: (a) their requirement for a larger dataset, (b) their inability to effectively handle categorical dataset, and (c) their 

requisition of longer training time. However, RNN methods are well-suited for tasks with temporal data such as 

scorch occurrence – save for its vanishing gradient problem. To the rescue thus, is the exploration of the Long-

Short Term Memory (LSTM), which is more sophisticated in structure as well as computationally more efficient at 

learning long-term dependencies within domain datasets [58]. 

 

Thus, we adopt a deep learning Bi-directional Long-Short Term Memory (BiLSTM) learning scheme as studies 

have shown that deep learning schemes outperform traditional ML approaches. A major issue with the adoption of deep 

learning schemes based on recurrent neural networks (RNN) such as the LSTM includes: (a) the gradient vanishing 

problem since data flow is single-direction based, (b) their requirement of longer training time, and (c) their requisition 

of larger dataset. Thus, we adopt the BiLSTM as a method to curb and address the issue in LSTM, especially with data 

flow in both directions [59]. Our choice of the SMOTE-Tomek to handle the imbalanced dataset is based on its approach 

as a hybrid (SMOTE) oversampler + (Tomek-links)-under-sampler technique. We used the SMOTE-Tomek-based 

BiLSTM deep learning scheme on the scorch dataset from Winco Foam company in Benin City Nigeria for this study. 

Our choice is hinged on its capability to greatly improve performance generalization, reduce model overfit, explore the 

SMOTE-Tomek approach to address the imbalanced dataset and yield enhanced prediction accuracy.  

 
2.0. Materials and Methods 

2.1.  Proposed Methodology and Framework  

Our proposed methodology is as thus: 

 

 
Figure 1. Proposed BiLSTM Deep Learning with SMOTE-Tomek balancing for Scorch Prediction 

 

1. Step 1 – Data Collection: Dataset was retrieved from Winco Foams in Edo State. It consists 8540-records with 

15-feats: poly_truPut, calc_truPut, TDI_truPut, water_truPut, cal_dialSet, poly_dialSet, TDI_dialSet, 

water_dialSet, qnty_cal, qnty_poly, qnty_TDI, qnty_water, poly_water_content, prod_time, and scorch as in Table 

1 with heatmap as in Figure 2. The dataset was retrieved via the Google Play Scrapper Library. Figure 3a shows 

the class distribution for the scorched (minority) and unscorched (majority) classes. 
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Figure 2. Heatmap plot for the Winco Foam Limited Dataset 

 

Table 1. The Winco Foam Company Dataset Description 

Items Poly 

thru 

Calc 

thru 

TDI 

thru 

Water 

thru 

Poly 

dial 

Calc 

dial 

TDI 

dial 

Water 

dial 

Qnty 

Poly 

Qnty 

Calc 

Qnty 

TDI 

Qnty 

Water 

Prod 

Time 

Scorch 

Mean 71.996 13.142 54.643 4.4988 13.469 18.280 68.111 278.28 1485.5 293.86 1141.5 96.276 0.0800 20.908 
Std 9.3113 1.9250 1.4917 0.0865 3.6109 2.1598 0.8544 10.053 729.86 175.89 573.91 46.816 0.0004 10.501 

25% 75.000 11.250 54.903 4.4010 11.300 16.100 68.000 270.00 1042.4 194.06 756.23 65.965 0.0008 14.690 
50% 75.000 14.005 55.420 4.5600 14.050 18.800 68.000 280.00 1350.0 262.02 1042.5 89.645 0.0008 20.002 
75% 75.000 15.000 55.462 4.5640 14.950 20.500 68.000 280.00 1989.0 383.43 1470.3 125.25 0.0008 28.193 
Max 80.000 16.000 55.610 4.7000 23.610 20.800 71.000 318.00 3000.0 923.85 2625.0 228.40 0.0008 50.000 

 

2. Step 2 – Preprocessing cleans up the dataset by removing duplicates to improve data quality, and remove missing 

values to avoid redundancy. We utilize the one-hot encoding [60] method that converts categorical values into a 

suitable form for the ML models; Since ML schemes cannot handle category data directly, it creates a binary 

equivalence of the dataset by converting categorical variables into their binary form. 

 

3. Step 3 – Recursive Elimination Feature Selection: Feature selection selects and extracts what data is input (X), 

and determines what label will yield ensemble output (Y). It removes all irrelevant features with no importance to 

the quest for ground truth. This, in turn, reduces the dimensionality of the chosen dataset [61] and fastens the 

model’s construction for improved performance [62], especially in cases where cost is a critical factor. The 

efficiency of a selected feature is evaluated on how well the model fits to ground truth (i.e. target class). We use 

the wrapper-based recursive feat elimination [63] mode to unveil how relevant, and ascertain how its occurrence 

fits with the target class. With the original dataset consisting of 13 features, we categorized the correlation of 

parameters to the (scorch) target class. With a computed threshold of 9.32 – a total of seven (7) parameters were 

selected: (a) polyurethane throughput, (b) calcium throughput, (c) water throughput, (d) quantity of water, (e) 

production time, (f) quantity of polyurethane, and (g) scorch as in Table 2 as examined concerning their correlated 

contribution to ground truth. 

 

Table 2. Ranking of Attributes score using the Chi-Square 

Features Selected 

(Yes/No) 

X2-Value 

Polyurethane_throughput Yes 13.364 

calcium_throughput Yes 15.419 

TDI_throughput No 0.9562 

Water_throughput Yes 20.012 

Polyurethane_dial No 0.2489 

calcium_dial No 2.4701 

TDI_dial No 8.4920 

water_dial No 8.3721 
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quantity_of_polyurethane Yes 88.222 

quantity_of_calcium No 0.2589 

quantity_of_TDI No 3.0298 

quantity_of_water Yes 18.006 

production_time Yes 23.092 

Scorch Yes 16.0929 

 

4. Step 4 – Data Balancing seeks to redistribute the data points to ensure an almost equitable distribution between 

major and minor classes. Here, we adopt SMOTE-Tomek [53]: (a) identifies the majority class, (b) interpolates to 

create synthetic data points via Tomek-link undersample for the majority class, (c) adjusts data points to those of 

its closest neighbors so that new points overlaps, and (d) adds generated synthetic data to the original dataset to 

yield a balanced dataset as in Figure 3a and Figure 3b. Afterward, the dataset is split into 75% for the training 

dataset and 25% remainder for the test dataset [64].  

 

                                      
                     Figure 3a. Original Dataset plot                        Figure 3b. SMOTE-Tomek Links applied 

 

5. Step 5 – ML Initialization: This is further explained as thus: 

The Bidirectional Long Short-Term Memory (BiLSTM) based on the RNN, is useful in handling large datasets 

[50]. The RNN yields a gradient vanishing problem such that its gradient for the learning process becomes quite 

small. This slows down or eventually stops all forms of learning within the model. LSTM overcomes this challenge 

via the utilization of (input, forget, and output) gates that effectively allow the network to learn when to ‘recall’, 

and ‘forget’ irrelevant knowledge. In addition, its cell state update function (Ct) maintains all important knowledge 

over the period and is not impaired or degraded by the vanishing gradient problem. The gates are constructed using 

the Equation (1)-(3) respectively as [65], [66]: 

 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (1𝑎) 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (1𝑏) 

𝑜𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)   (1𝑐) 

𝐶�̅� = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)   (2𝑎) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡                (2𝑏) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)                      (3) 

 

With 𝑖𝑡 as activation of the input gate, 𝑜𝑡 is the activation of the output gate, 𝜎 is the sigmoid function, 𝑊𝑓 is the 

weight of the forget gate, ℎ𝑡−1 is hidden state of the previous timestamp, xt is input at t, bf is bias for forget gate, 𝐶�̅� 

is candidate value for the memory cell, and ℎ𝑡−1 is the hidden state at t. BiLSTM as a variant of LSTM can process 

data via forward/backward formations. Its first layer allows data flow in a direction (source to destination); while, 

the second layer reverses data flow (destination to source) so that the network possesses the past and future context 

of the dataset [67], [68]. BiLSTM offers greater flexibility via the fusion of knowledge from both directions. It 

carefully utilizes hyperparameters that tune the model to avoid slow convergence, model overfit, memory 

efficiency, and task distribution as seen in Table 3. 

 

Table 3. BiLSTM Design and Model configuration with Hyper-predictor tuning 

Predictor Settings Value(s) Description 

RNN_layer Bidirectional 

(LSTM(64)) 

Bidirectional RNN: 64 LSTM (first layer) and 32 LSTM 

(second layer) 

retun_sequence True (for the first layer) Returns the entire output sequence for the first layer 

input_shape x_train_scaled.shape[1], 

1 

Same length as the number of predictors in x_train_scaled, one 

feat per timestep 
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dense_layer y_train_resampled_max(

) + 1 

Layer has the same units as classes in y_train_resampled / 

output_layer 

activation_dense_l

ayer 

Softmax Activation function used in the output for multi-class 

classification 

optimizer Adam learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon-1e-07 

loss_function categorical_crossentry The loss function for multi-class classification 

metrics accuracy Metrics upon which the model is evaluated during training and 

retraining 

 

6. Step 6 – Training as applied estimates learned skills on unseen data. It evaluates the model's performance about 

its accuracy on how well it has learned the feats of interest via the resampling method. We use a stratified k-fold 

that rearranges the data to ensure that each fold is a good representation of the dataset. Our ensemble learns from 

scratch via a pre-designated training dataset and iteratively constructs the decision trees for the RF model [69]. 

Each tree is trained via bootstrap resampling on the enhanced train dataset; And each tree's collective knowledge 

is enhanced by this, to identify intricate patterns present in each dataset. Training dataset blends actual examples 

that guarantee the tree’s comprehensive learning experience; And thus, improve its flexibility to the various settings 

inside the dataset [70]–[72].   

 

3.0. Findings and Discussion 

3.1.    Training Evaluation and Hyper-Parameters Tuning 

Table 4 shows the proposed BiLSTM and benchmark models with hyper-parameters tuned [73], [74]. 

 

Table 4. Performance with and without hyper-parameter tuning 

 

Ensembles 

Without Hyper-parameter Tuning  With Hyper-parameter Tuning 

F1 Accurac

y 

Precision Recall  F1 Accurac

y 

Precision Recall 

Decision Tree 0.5263 0.5193 0.5036 0.5199  0.5583 0.5520 0.5501 0.5503 

Logistic Regression 0.5361 0.5278 0.5304 0.5301  0.5596 0.5601 0.5589 0.5582 

Random Forest 0.5819 0.5738 0.5729 0.5775  0.5987 0.5948 0.5898 0.5899 

XGBoost 0.5898 0.5810 0.5801 0.5829  0.5998 0.5985 0.5978 0.5972 

BiLSTM 0.6081 0.6090 0.6001 0.6092  0.6285 0.6249 0.6293 0.6292 

 

The result shows that without hyper-parameter tuning – the proposed BiLSTM model yields F1 of 0.6081 with 

an Accuracy of 0.6090, Precision of 0.6001, and Recall of 0.6092 respectively; While, the benchmark models (i.e. 

Decision Tree, Logistic Regression, Random Forest and XGBoost) yield as F1 of [0.5263, 0.5361, 0.5819 and 0.5898] 

with Accuracy of [0.5193, 0.5278, 0.5738 and 0.5810] respectively. Their corresponding Recall and Precision value 

ranges are seen in Table 4. Conversely, with the tuning application of the hyper-parameters – the proposed BiLSTM 

proffered F1 of 0.6285 with Accuracy of 0.6249, Precision of 0.6293, and Recall of 0.6292 respectively; while the 

benchmark models (i.e. Decision Tree, Logistic Regression, Random Forest and XGBoost) yield as F1 of [0.5583, 

0.5596, 0.5987 and 0.5998] with Accuracy of [0.5520, 0.5601, 0.5948 and 0.5998] respectively. Their corresponding 

Recall and Precision values are as in Table 4, and the result affirms that the BiLSTM model outperforms all the 

benchmarked models explored [75]. 

Table 5 shows the evaluation report for the proposed and benchmark models with(out) the chi-square feature 

selection technique explored [76] on the outlier effects of data not previously present from the outset as contained in 

the domain task dataset. 

 

Table 5. Performance with and without the chi-square feature selection technique applied 

 

Ensembles 

Hyper-parameter tuned without 

chi-square. 

 Hyper-parameter tuned with chi-

square. 

F1 Accurac

y 

Precision Recall  F1 Accurac

y 

Precision Recall 

Decision Tree 0.5583 0.5520 0.5501 0.5503  0.7208 0.7100 0.7457 0.7398 

Logistic Regression 0.5596 0.5601 0.5589 0.5582  0.8219 0.7747 0.7747 0.7506 

Random Forest 0.5987 0.5948 0.5898 0.5899  0.8435 0.8318 0.8357 0.8245 

XGBoost 0.5998 0.5985 0.5978 0.5972  0.8508 0.8403 0.8562 0.8582 

BiLSTM 0.6285 0.6249 0.6293 0.6292  0.8832 0.8502 0.8689 0.8901 
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The result shows a hyperparameter-tuned proposed BiLSTM model with chi-square feature selection applied 

yields F1 of 0.8832 with Accuracy of 0.8502, Precision of 0.8689, and Recall of 0.8901 respectively; While, the 

benchmark models (i.e. Decision Tree, Logistic Regression, Random Forest and XGBoost) yield as F1 of [0.7208, 

0.8219, 0.8435 and 0.8508] with Accuracy of [0.71, 0.7747, 0.8318 and 0.8403] respectively. Again, their corresponding 

Recall and Precision values are as in Table 5 – wherein the results further affirm that the proposed BiLSTM model 

outperforms all the benchmarked models explored [77], [78]. 

Table 6 shows the utilization of the SMOTE-Tomek data balancing scheme on the hyperparameter-tuned with 

chi-square feature selection for both, the proposed and benchmark models on the explored dataset. The result shows 

that the proposed BiLSTM outperformed benchmark models with an Accuracy of 0.9895 with F1 of 0.9892, Precision 

of 0.9817, and Recall of 0.9901 respectively; While, the benchmark models (i.e. Decision Tree, Logistic Regression, 

Random Forest and XGBoost) yield as F1 of [0.8145, 0.9105, 0.9210 and 0.9125] with Accuracy of [0.8032, 0.9105, 

0.9228, and 0.9574] respectively [79], [80]. Their corresponding Precision and Recall values are as in Table 6.  

 

Table 6. Performance with and without the SMOTE-Tomek Data Balancing Approach 

 

Ensembles 

Hyper-parameter tuned without 

chi-square. 

 Hyper-parameter tuned with chi-

square. 

F1 Accurac

y 

Precision Recall  F1 Accurac

y 

Precision Recall 

Decision Tree 0.7208 0.7100 0.7457 0.7398  0.8145 0.8032 0.8541 0.8528 

Logistic Regression 0.8219 0.7747 0.7747 0.7506  0.9105 0.9105 0.9105 0.9114 

Random Forest 0.8435 0.8318 0.8357 0.8245  0.9210 0.9228 0.9480 0.9500 

XGBoost 0.8508 0.8403 0.8562 0.8582  0.9125 0.9574 0.9616 0.9609 

BiLSTM 0.8832 0.8502 0.8689 0.8901  0.9892 0.9895 0.9817 0.9901 

 

Figure 4a shows the training-and-validation accuracy with a consistent rise from 0.69 in the second epoch to 

0.98 by the tenth epoch. This implies the BiLSTM minimizes errors, and that it does not overfit; Rather, it captures the 

intricate features in the dataset and generalizes well with new data. Its trend demonstrates healthy learning to reliably 

predict scorch occurrence with increased accuracy. In addition, Figure 4b shows a smooth, monotonic decrease in loss 

without a sudden burst. It implies the BiLSTM learns well even with the instability pg the vanishing gradients, to 

accurately and consistently handle the minority class with balancing. 

 

        
        Figure 4a. Training and Validation Accuracy  Figure 4b. Training and Validation Loss 

 

The proposed model accurately identifies scorch in the adopted dataset, and has proven to efficiently reduce 

bias and variance indicative as in Figure 5 [81] to yield a robust model for new data or hidden underlying parameters of 

interest within a domain’s training dataset being considered. The proposed model with an accuracy of 98.95% accurately 

classified 2475 instances with only 15 incorrectly classified instances to yield 2-distinct predictions for scorch 

occurrence as in Table 7. Our model successfully predicts the occurrence of the scorch, And its practical implementation 

saw a significant prediction of scorch occurrence bin before the mixture that unveils a variety of intertwined relations 

between its constituent features and water as in Table 7. 

 
Figure 4. Confusion Matrix for the Proposed Ensemble 
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Table 7. Predicted Values with the value ‘1’ indicate the presence of scorch  

Poly 

thru 

Calc 

thru 

TDI 

thru 

Water 

thru 

Poly 

dial 

Calc 

dial 

TDI 

dial 

Water 

dial 

Qnty 

Poly 

Qnty 

Calc 

Qnty 

TDI 

Qnty 

Water 

Prod 

Time 

Scorch 

75 11.25 55.50 4.564 11.3 75 68 280 1500 225 91.28 1110 20 0(No) 

75 11.25 55.42 4.564 11.3 75 68 280 478.5 71.77 101.1 353.58 6.38 1(Yes) 

 

Our study supports the evidence that SMOTE-Tomek data balancing improves the quest for ground truth and 

overall performance [82]. It also enhanced model efficiency between true-positives-and-negative vis-à-vis false-

positive-and-negative [34], [83] to successfully yield a resultant prediction on the presence of scorch. Data access was 

severely constrained as facilities yield large amounts of production data daily [84]. Its documentation is rather antiquated 

and quickly lost if not properly used. The dataset used was retrieved and restricted to only a short duration [85], [86]. 

The plot in Figure 2 ascertains the skewness of the most important column head ‘scorch’ about density [87], [88]. Its 

data is fairly distributed across the upper quartiles from the mean. Minimizing the outlier effects as agreed by [89], [90]. 

The addition of water as a universal solvent has consequently yielded a correlation therein, which is already known feat. 

It further suggests that water unveils a variety of intertwined relationships between other features, the polyurethane, and 

water in the dataset. All negative values on the correlation also yield a corresponding negative relationship between 

both variables and vice versa. And is visually confirmed from the pair plots that agree with [58], [91]. 

 

3.2.    Comparison/Benchmark 

Table 8 yields a benchmark against previous methods that have utilized the same dataset: 

 

Table 8. Benchmarking and Comparative Testing of Proposed Stacking Ensemble 

Methods F1 Accuracy Precision Recall 

Ref [56] 0.7902 0.7815 0.7372 0.7025 

Ref [92] 0.9881 0,9968 0.9848 0.9318 

Ref [93] 0.9831 0.9881 0.9783 0.9326 

Our Method (SMOTE-Tomek 

BiLSTM) 

0.9892 0.9885 0.9689 0.9901 

 

Results show model by [93] utilized a tree-based XGB ensemble with performance generalization that can also be 

found to almost be as good as the SMOTE-Tomek-based BiLSTM. This can also be attributed to their utilization of the 

chi-square feature selection approach and a normalization scaler to ensure a more balanced dataset. However, some 

task(s) require that the explored ensemble design metric is strongly impacted by the consequence of errors within the 

captured dataset. Thus, the measure of both specificity and sensitivity becomes 2 critical feats to be evaluated since they 

are directly related to the patient clinical outcomes. 

 

4.0 Conclusion 

Advances in technological development and the widespread adoption of technology-driven business strategies, 

businesses to operate more efficiently, productively, and profitably. Despite the enormous amount of data generated 

daily, the polyurethane foam production industry still lags in developing data analytics tools. This study is a positive 

step and should be improved upon. With the dataset used, NaN (not a number) values imply no relationship; As such, a 

preprocessing scheme should be adopted to prevent model overfitting, and column flattening prior to the deployment of 

the ML scheme, which agrees with. These correlation numbers are illogical at first glance. But ML can successfully 

glean insightful knowledge therein. These algorithms can trace the entangled connections and interpret how each 

variable interacts with the others and influences the column (variable) that we want to predict. 
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