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The effects of relativistic motion, the spin-orbit interaction and 

Zitterbewegung of an electron, which are of the same order of 

magnitude, defined the fine structure correction to hydrogen spectra. 

In this work, perturbation theory, as an approximation method is 

applied to examine the effects of finite sized of atomic nucleus on 

relativistic motion of electron in hydrogen atom. The nuclear finite 

corrections to 1s, 2s, 3s, 4s and 5s energy states in hydrogen atom due 

to the finite size of nucleus were computed and the results showed that 

the nuclear size effects, which is of order of 10-6 eV, depends on the 

size, A(N, Z) of the nucleus and energy states, n of relativistic electron. 

This suggested that the nuclear size is more effective on relativistic 

electron in the lower energy levels of heavy nuclei, as the effect varied 

directly with the nuclear size and inversely with the electron states, n. 

Thus, the finite size of atomic nucleus has an impact on relativistic 

motion of an electron. Moreover, a simple model was developed to 

predict the energy level variation as a function of the size of the 

nucleus. Therefore, this study justifies the effects of nuclear size on 

relativistic electron and the measured values are of greatest interest 

since it will reveal significant changes of the nuclear structure and 

may also improve the knowledge of fine structure correction. 
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1. Introduction 

The hydrogen atom is the fundamental two-body system and perhaps the most important tool of 

atomic physics and the challenge is to calculate its properties to the highest accuracy possible. The 

study of the hydrogen atom has been at the heart of the development of modern physics [1]. The 

hydrogen atom has been the testing ground for theoretical atomic physics for over a hundred years. 

The original quantum mechanics was motivated to model the hydrogen atom and explain its 

spectrum. In 1912, Niels Bohr proposed the first electronic hydrogen atom model which 

successfully predicted the main energy levels of the hydrogen atom in the framework of a semi-

classical theory based on Planck’s hypothesis. But the main spectral lines of hydrogen atom can be 

described by the Schrödinger equation, without using any postulates [2].  

It is well known that, when the lone orbiting electron solely subject to the electrostatic influence of 

the nucleus, the complete solution, �̂�0|𝜓𝑛〉 = 𝐸𝑛|𝜓𝑛〉, of eigenfunctions ψn and eigenvalues En of 

the Hamiltonian, �̂�0, give rise to the allowed energies of an electron, which depends exclusively on 
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the principal quantum number, n as  𝐸𝑛 = −13.6 𝑒𝑉(𝑍/𝑛)2[3-8]. It is clearly observed that these 

allowed energies of an electrondo not give an exact description of the interaction between the 

fermions and the nucleus. Schrödinger equation was derived based on the assumptions that the 

atomic nucleus has a point-like charge. The simple point-charge nucleus approximation resulting in 

a well known Z/r potential (Bohric and Schrodinger approximation) is no longer completely 

adequate as nuclear system takes into account in particular the following interactions, ordered 

according to their importance: The spin of the electron; Spin-orbit interaction; Relativistic motion 

of the electron; Hyperfine Structure Correction; Vacuum fluctuations of the electromagnetic fields; 

Vacuum polarization. These interactions which are usually incorporated via perturbation theory and 

quantum electrodynamics, lead to the energy splitting such as fine structure splitting, hyperfine 

structure splitting and the lamb shift. These splitting have been calculated in many literatures see 

for example [9 – 18]. The fine structure of hydrogen atom is interpreted as the effects of relativistic 

motion, the spin-orbit interaction and Zitterbewegung of an electron [19]. These effects, which are 

always treated together, are of the same order of magnitude when calculated based on point-charge 

nuclear assumption.  

The dependence of the corrections to discrete eigenvalues of the Z/r potential inside the nucleus 

necessitates a choice of a model for the nuclear potential that modifies its unphysical infinity at the 

origin [20-21]. The recent electron scattering experiments at Stanford University have established 

the finite size of the nucleus and Hofstadter and McAllister were first observed this effect [22,23]. 

High-energy electron-scattering measurements have demonstrated clearly the existence of 

deviations from point-nucleon scattering laws [24,25] which attributed entirely to finite structure 

effects in the nucleons. The nucleus has a finite size charge distribution due to the fact that its 

nucleons consist of the combination of u-quarks and d-quarks of charges 2e/3 and e/3 respectively. 

The quarks distributions inside nucleons make the charge distribution of nucleus to be finite over a 

range R (Figure 1).  

The early theorist uses analytical descriptions of charge distribution and potentials, which enabled 

series expansions of analytical solutions of the wavefunctions within and close to the nucleus and 

for finite nuclear distributions, the possible range exceeds much further. If the nucleus is being 

described as a finite-size source with a uniform distribution of charges of radius R, then the 

relativistic electron wave function can penetrate to r ≤ R, and thus the electron spends part of its 

time inside the nuclear charge distribution, there it feels a very different interaction. This idea is 

considered in this paper to refine the relativistic motion of an electron in finite size charge 

assumption since it is under the influence of nuclear charge. The time independent perturbation 

theory, as an approximation method will be applied to examine the effects of finite-size nuclear on 

relativistic electron of hydrogen atom and compared to the previously calculated values.   

2. Methodology 

2.1 Nuclear Potential and Wavefunction 

One of the simplest models of nucleus is the spherically symmetric charge distribution with the 

corresponding charge density. 

 𝜌(𝑟) =
3𝑍𝑒

4𝜋𝑅3
          (1) 

where Z is the nuclear charge, R = r0A
1/3, is the effective radius of nucleus. The experimental data 

indicates that r0 ≈ 1.2 fm [20,21]. This simple distribution gives a reasonable approximation for the 

homogeneous distribution and the correct analytical behavior of the electronic wavefunctions at r = 

0 and has been used in many early analyses. The effect of the nuclear distribution on atomic 

properties is proportional to the expectation values of the nuclear distribution. 
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 〈𝑟2〉 =
3

5
𝑅2 

Thus, the nuclear charge R is effective radius of nucleus, connected with root-mean-square radius 

as  

 𝑅 = √
5

3
〈𝑟2〉1/2         (2) 

The root-mean-square nuclear matter radii 〈𝑟2〉1/2 and the density distributions contain an important 

insight on nuclear potentials and nuclear wavefunctions [26-31]. However, several atomic properties 

depend directly on the wave function close to the nucleus. This gives a reasonable approximation 

for the homogeneous distribution.  

The simple distribution (1) gives the correct analytical behavior of the electronic wavefunctions at 

r = 0 and has been used in many early analyses. These expansions are also useful for a general 

understanding of the effects involved [32]. For spherically symmetric charge distribution ρ(r) inside 

the nucleus, the interaction between fermions and nucleus can best be described by the lepton-

nuclear potential energy U(r): 

𝑈(𝑟) = −𝑘𝑒 [
4𝜋

𝑟
∫ 𝜌(𝑟′)𝑟′2

𝑅

0

𝑑𝑟′ + 4𝜋 ∫
1

𝑟′
𝜌(𝑟′)𝑟′2

∞

𝑅

𝑑𝑟′]                                                    (3) 

 
Figure 1: The finite size of atomic nucleus 

 

where outside the nucleus, r > R, this expression reduces to a point charge potential 

 𝑈(𝑟) = −
𝑍𝑘𝑒2

𝑟
           (4) 

and within a nuclear radius r ≤ R, the expression is described by 

 𝑈(𝑟, 𝑅) = −
𝑍𝑘𝑒2

𝑟
(

3𝑟

2𝑅
−

𝑟3

2𝑅3)          (5) 

Thus, inside the nucleus of radius R, the lepton-nuclearpotential will not have Coulomb form. The 

constant value of the potential (5) at (r ~ 0) very close to the origin, makes the Z/r potential less 

singular at small distances and extend, the possible range, much further. The magnitude of the 

nuclear size effects on hydrogen spectra were accurately calculated by the use of first order time 

independent perturbation theory: 

 �̂�𝑛
(1)

= 𝜆 〈𝜓𝑛
(0)

| �̂�′|𝜓𝑛
(0)〉  
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which is the superposition of all unperturbed states, 𝜓𝑛
(0)

.  

The first order calculation of the effect of finite size of nucleus with potential (5) gives the energy 

shift [33]: 

λ𝐸𝑛 = ∫ 𝜓𝑛
(0)∗[𝑈(𝑟, 𝑅) − 𝑈(𝑟)]𝜓𝑛

(0)
𝑑𝜏 =

2𝑍4𝑘𝑒2𝑅2

5𝑛3𝑎0
3

= −𝐸𝑛 (
4𝑍2𝑅2

5𝑛𝑎0
2

)                               (6) 

where the use of 𝑑𝜏 = 4𝜋𝑟2𝑑𝑟 and 

 𝐸𝑛 = −
𝑍2𝑘𝑒2

2𝑛2𝑎0
          (7) 

 The Bohr radius 𝑎0 = 5.29 × 10-11 m. 

2.2 Relativistic Motion of the Electron of Finite-Size Nucleus 

In relativistic classical mechanics, the total energy of an electron is 

 𝐸 = √𝑝𝜇𝑝𝜇 = 𝑚𝑐2 +
�⃗�2

2𝑚
→ √(𝑝𝑐)2 + (𝑚𝑐2)2 

In the case where the particle is only slightly relativistic (v ≪ c) the square root can be expanded to 

obtain 

 𝐸 = 𝑚𝑐2√1 + (
�⃗�

𝑚𝑐
)

2

= 𝑚𝑐2 [1 +
1

2
(

�⃗�

𝑚𝑐
)

2

−
1

8
(

�⃗�

𝑚𝑐
)

4

+ ⋯ ]   (8) 

The first term in (8) is interpreted as the rest energy of the electron; the second term is the non-

relativistic kinetic energy. Hence, the third term is used in writing the perturbed Hamiltonian: 

 𝜆�̂�′ = −
1

2𝑚𝑐2 (
�⃗�2

2𝑚
)

2

         (9) 

The new Hamiltonian of this system in terms of finite-size charge distribution takes the form: 

 �̂� =
�⃗�2

2𝑚
−

𝑍𝑘𝑒2

𝑟
(

3𝑟

2𝑅
−

𝑟3

2𝑅3) 

And the perturbed Hamiltonian is given by 

 𝜆�̂�′ = −
1

2𝑚𝑐2 (
�⃗�2

2𝑚
)

2

= −
1

2𝑚𝑐2 [�̂�′ +
𝑍𝑘𝑒2

𝑅
(

3

2
−

1

2

𝑟2

𝑅2)]
2

    (10) 

Thus, the relativistic correction for a new state |𝜓
𝑛
〉 of relativistic electron can be expressed as: 

 ∆𝐸𝑟 = −
1

2𝑚𝑐2
⟨𝜓𝑛| [�̂�′ +

𝑍𝑘𝑒2

𝑅
(

3

2
−

1

2

𝑟2

𝑅2
)]

2

|𝜓𝑛⟩ ≈ −
9(λ𝐸𝑛)2

2𝑚𝑐2
= −

72𝐸𝑛
2

25𝑚𝑎0
4𝑐2

(
𝑍4𝑅4

𝑛2
) 

  = − (
𝑟0

𝑎0
)

4 72

25𝑚𝑐2

𝑍4𝐸𝑛
2𝐴4/3

𝑛2         (11) 

where the use of (6) and (7) have been made, m = 9.1 × 10-31kg is the electron mass andc = 3.0 × 

108ms-1is the speed of light in vacuum. The allowed energies of an electron (7) obtained by solving 
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Schrödinger equation and the calculated values of finite size nuclear effects to energies (11) obtained 

from this work are computed for the ground state and first four excited states of relativistic electron 

in hydrogen atom. Denoting  

 𝜁 =
∆𝐸𝑟

𝐸𝑛
            (12) 

as the deviation of energy ∆Er due to finite size of nucleus relative to the energy, En. 

3. Results and Discussion 

Equation (11) gives first order perturbation corrections to energy states of relativistic electron under 

the influence of finite-size nucleus. The nuclear finite corrections to 1s, 2s, 3s, 4s and 5s energy 

states in hydrogen atom due to the finite size of nucleus were computed using the results obtained 

by Equation (11) and the results obtained are presented in Table 1.  

Table 1 showed that the nuclear structure effect on relativistic electron, which is of order of 10-6eV, 

depends on the nuclear size, A(N, Z) and the energy states, n of relativistic electron. This suggested 

that the nuclear size is more effective on relativistic electron in the lower s energy levels of heavy 

nuclei, as the effect varied directly with the nuclear size and inversely with the quantum number, n.  

Table 1: The calculated values of finite size nuclear effects to energies of the ground state and first 

four excited states of relativistic electron in hydrogen atom 

State En(eV) ∆Er (10-6eV) ζ  × 10-6 

1s -13.600 -1703.5 125.25 

2s -3.4000 -26.617 7.8285 

3s -1.5111 -2.3367 1.5464 

4s -0.8500 -0.4158 0.4893 

5s -0.5440 -0.1090 0.2004 

The information represented in Table 1 is extended further by plotting a graph of log (∆Er) as a 

function of principal quantum number, n (Figure 2). 

 

Figure 2: The variation of the magnitude of nuclear finite-size effects, log (∆Er) on relativistic 

electron with principal quantum number, n. 

Figure 2 represents the variation of the magnitude of nuclear finite-size effects, log (∆Er) on 

relativistic electron calculated in Table 1, with principal quantum number, n. The figure showed that 
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the relativistic effect due to finite size of nucleus decreases with the principal quantum number, 

n.Thus, the nuclear size effect depends on the energy states, n of relativistic electron. This suggested 

that the nuclear size is more effective on relativistic electron in the lower energy levels of heavy 

nuclei.Figure 2 showed a very clear continuous curve in decreasing order which points out to be 

non-linear from the plot of relativistic effect of finite size of nucleus log[∆Er (n, j)] as a function of 

the principal quantum number, n for hydrogen atom that corresponds to those recorded in Table 1 

by the use of Equation (11). This data can be modeled and studied using the regression analysis. By 

applying the regression analysis, a simple model satisfying the relationship in Equation (13): 

 log ∆𝐸𝑟 (𝑛, 𝑗) = −2.60 ln(𝑛) + 3.231      (13) 

was developed and can predicts the nuclear size effect on relativistic electron. The simple model 

was used and predicts the energy level variation (up to n = 100) as a function of the size of the 

nucleus in Table 3 (Appendix). The energy level shifts (11) calculated due to the effect of nuclear 

size on relativistic electron is compared with the relativistic effect of an electron obtained from Ref. 

[34] based on the point-charge nucleus calculation. As can be seen from Table 2 that the finite-size 

nuclear corrections do affects the relativistic electron in any states with values 10 times larger than 

the relativistic corrections to energy levels of point-charge nucleus. 

Table 2: The calculated values of finite size nuclear effects to energies, ∆Er in the ground state and 

first four excited states of hydrogen atom obtained from the present work with from point-like 

nucleus, ∆En in 1s, 2s, 3s, 4s and 5s states obtained from Ref. [34]. 

Orbitals ∆En(eV) ∆Er × 10-6 (eV) 

1S1/2 1.8115 × 10-4 1.7035 × 10-3 

2S1/2 2.8305 × 10-6 2.6617 × 10-5 

2P1/2 2.8305 × 10-6 - 

2P3/2 8.4898 × 10-6 - 

3S1/2 2.4843 × 10-7 2.3367 × 10-6 

3P1/2 2.4843 × 10-7 - 

3P3/2 7.4543 × 10-7 - 

3D3/2 7.4543 × 10-7 - 

3D5/2 1.7393 × 10-6 - 

 

The nuclear size corrections to relativistic electron, is more effective on the lower s energy levels 

and in heavy nuclei, as the effect varied directly with the nuclear size and inversely with the principal 

quantum number, n. A large number of publications (see, for example [21,34-38] showed that the 

nuclear finite-size effects, which is largest for s levels, are more important for higher atomic nuclei 

and muonic atoms, since for muon the effects are enhanced by (me/mμ)2 ~ 10-5.  

4. Conclusion 

In this study a simple model satisfying the relationship between nuclear size correction to relativistic 

electron and electron energy state was developed to predict the energy level variation as a function 

of the size of the nucleus. This suggested application of analytical methods in solving relativistic 

equation that involved the finite-size nucleus through time independent perturbation theory. This 

study justifies the effects of nuclear size on relativistic electron and the measured values are of 

greatest interest since it will reveal significant changes of the nuclear structure and may also improve 

the knowledge of fine structure effect. The fine structure of hydrogen atom is important in atomic 

physics as it brings the idea of relativistic quantum mechanics and an important driving force in 

theoretical developments of atomic physics after it is experimentally discovered. 



 
Aliyu Adamu etal./ NIPES Journal of Science and Technology Research 

2(3) 2020 pp. 36-44 

42 

 

References 

[1] Maclay, G. J. (2019). History and Some Aspects of the Lamb Shift. Physics, Volume 2, Number 8, page 105 – 

149. 

[2] Meka, F. (2020). Investigating Muonic Hydrogen Atom Energy Spectrum Using Perturbation Theory in Lowest 

Order. Advances in Physics Theories and Applications. Volume 83, page 7 – 21. 

[3] Schrödinger, E. (1926).QuantisierungalsEigenwert-Problem.Annalen der Physik Volume 80, page 437. 

[4] Landau, L. D. and Lifshitz, E. M., (1991). Quantum Mechanics, Non-relativistic Theory, Volume 3 of Course of 

Theoretical Physics. Third edition, Pergamon Press, Oxford, England.  page 119. 

[5] Greiner, W. (2001). Quantum Mechanics: An Introduction. Fourth Edition. Springer, Berlin, Germany, page 181, 

220 – 227. 

[6] Herzberg, G. (1944). Atomic Spectra and Atomic Structure. Dover: Mineola, New York. 

[7] White, H. E. (1934). Introduction to Atomic Spectra. (McGraw-Hill Book Company, New York), Chap. 8. New 

York, 1934. 

[8] Sala, O., Araki, K. and Noda, L. K. (1999). A Procedure to Obtain the Effective Nuclear Charge from the Atomic 

Spectrum of Sodium. Journal of Chemical Education. Volume 76, Number 9, page 1269–1271. 

[9] Adamu, A., Tartius, P.and Amshi, S. A., (2016).The Spectroscopy of Single Electron and Muonic Atoms. Journal 

of Physical Science and Innovations, Vol. 8, No. 2, pp 1 – 13. 

[10] Adamu A., (2016): Corrections to the Energy Levels of Finite – Size Nuclei due to Fluctuating Electromagnetic 

Fields in Vacuum. J – NAMP. Vol. 36, (July Issue), pp 215 – 222. 

[11] Adamu, A. andNgadda, Y. H., (2015): The Nuclear Finite–Size Corrections to Energies of n = 1, n = 2 and n = 3 

States of Hydrogen Atom.J – NAMP. Vol. 30, pp 137 – 137. 

[12] Hernandez, O. J., Ji, C., Bacca, S., Dinur, N. N. andBarnea, N. (2014). Improved estimates of the nuclear structure 

corrections in μD. arXiv:1406.5230v1 [nucl-th] 19 Jun 2014. 

[13] Antognini, A., Kottmann, F., Biraben, F., Indelicato, P., Nez, F. and Pohl, R. (2013). Theory of the 2S–2P Lamb 

shift and 2S hyperfine splitting in muonic hydrogen. Annals of Physics. Volume 331, page 127–145. 

[14] Bruch, R., Heilig, K., Kaletta, D., Steudel, A. and Wendlandt, D. (1969). Nuclear Volume and Mass Effect in the 

Optical Isotope Shift of Light Elements. Journal de Physique Colloques, Volume 30 (C1), page C1-51-C1-58. 

[15] Mohammadi, S., Giv, B. N. and Shakib, N. S. (2017). Energy Levels Calculations of 24Al and 25Al Isotopes. 

Nuclear Science. Volume 2, Number 1, page 1-4. 

[16] Mohr, P. J., Taylor, B. N. and Newel, D. B. (2012). CODATA recommended values of the fundamental physical 

constants: 2010. Reviews of Modern Physics. Volume 84, page 1527 – 1605. 

[17] Galván, A. P., Zhao, Y. and Orozco, L. A. (2008). Measurement of the hyperfine splitting of the 6S½ level in 

rubidium. Physical Review A78, 012502 2008.  

[18] Das, A. and Sidharth, B. G. (2015). Revisiting the Lamb Shift.Electronic Journal of Theoretical Physics. Volume 

12, Number IYL15-34, page 139–152. 

[19] Adamu, A., Hassan, M., Dikwa, M. K. and Amshi, S. A., (2018). Determination of Nuclear Structure Effects on 

Atomic Spectra by Applying Rayleigh–Schrödinger Perturbation Theory. American Journal of Quantum 

Chemistry and Molecular Spectroscopy. Volume 2, Number 2, page 39-51. 

[20] Deck, R. T., Amar, J. G. and Fralick, G. (2005). Nuclear Size Corrections to the Energy Levels of Single-electron 

and -Muon Atoms. Journal of Physics B: Atomic Molecular and Optical Physics, Volume 38, page 2173 – 2186. 

[21] Niri, B. N. and Anjami, A. (2018). Nuclear Size Corrections to the Energy Levels of Single-Electron Atoms. 

Nuclear Science. Volume 3, Number 1, page 1 – 8. 

[22] Hofstadter, R. and McAllister, R. W. (1955). Electron Scattering from the Proton. Physical Review. Volume 98, 

page 217. 

[23] McAllister, R. W. and Hofstadter, R. (1956). Elastic Scattering of 188-Mev Electrons from the Proton and the 

Alpha Particle. Physical Review. Volume 102, page 851. 

[24] Yearian, M. R. and Hofstadter, R. (1958). Magnetic Form Factor of Neutron. Physical Review. Volume 110, page 

552. 

[25] Ohmura, T. (1959). Effect of the Finite Size of the Proton on the Coulomb Energy of He3. Progress of Theoretical 

Physics. Volume 22 Issue 1, page 148 - 150. 

[26] Adamu, A. and Ngadda, Y. H. (2017). Determination of Nuclear Potential Radii and its Parameter from Finite – 

Size Nuclear Model.International Journal of Theoretical and Mathematical Physics. Volume 7, Number 1, page 

9 – 13. 

[27] Bayram, T., Akkoyun, S., Kara, S. O. and Sinan, A. (2013). New parameters for nuclear charge radius 

formulas.ACTA PHYSICA POLONICA B. Volume 44, number 8, page 1791 – 1799. 

[28] Angeli, I. (2013). Manifestation of Non-Traditional Magic Nucleon Numbers in Nuclear Charge Radii.  ACTA 

PHYSICA DEBRECINA. Volume 47, Number 7. 

[29] Merino, C., Novikov, I. S. and ShabelskiY. M. (2009). Nuclear Radii Calculations in Various Theoretical 

Approaches for Nucleus-Nucleus Interactions. arXiv:0907.1697v1 [nucl-th] 10 Jul 2009. 



 
Aliyu Adamu etal./ NIPES Journal of Science and Technology Research 

2(3) 2020 pp. 36-44 

43 

 

[30] Patoary, A. M. and Oreshkina, N. S. (2018). Finite nuclear size effect to the fine structure of heavy muonic atoms. 

The European Physical Journal D. Volume 72, page 54. 

[31] Martensson-Pendrill, A. M. and Gustavsson, M. G. H. (2003). Handbook of Molecular Physics and Quantum 

Chemistry. John Wiley & Sons, Ltd, Chichester, Volume 1, Part 6, Chapter 30, page 477 – 484. Edited by Stephen 

Wilson.  

[32] Adamu, A. andNgadda, Y. H., (2014).The Effect of 1st Order Time Independent Perturbation on the Finite Size 

of the Nuclei of Atoms.International Journal of Theoretical and Mathematical Physics. Volume 28, Number 1, 

page 333 – 339. 

[33] Adamu A. and Ngadda Y. H., (2017): Determination of Nuclear Potential Radii and Its Parameter from Finite – 

Size Nuclear Model. International Journal of Theoretical and Mathematical Physics. Volume 7, Number 1, page 

9 – 13. 

[34] Borie, E. (2012). Lamb Shift in Light Muonic Atoms – Revisited. Annals of Physics. Volume 327, page 733 – 

763. 

[35] Godunov, S .I. and M. I. Vysotsky, (2013). The Dependence of the Atomic Energy Levels on a Super Strong 

Magnetic Field with Account of a Finite Nucleus Radius and Mass, arXiv:1304.7940v1 [hep-ph]. 

[36] El Shabshiry, M., Ismaeel, S. M. E. and Abdel-Mageed, M. M. (2015). Finite Size Uehling Corrections in Energy 

Levels of Hydrogen and Muonic Hydrogen Atom. IOSR Journal of Applied Physics (IOSR-JAP), Volume 7, Issue 

5 Ver. I, page 60 – 66. 

[37] Krane, K. S. (1988). Introductory Nuclear Physics. John Wiley and Sons Inc., New York. Page 49. 

[38] Neznamov, V. P. and Safronov, I. I. (2015). A new Method for Solving the Z > 137 Problem and for 

Determination of Energy Levels of Hydrogen-Like Atoms. arXiv: 1307.0209 V3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Aliyu Adamu etal./ NIPES Journal of Science and Technology Research 

2(3) 2020 pp. 36-44 

44 

 

Appendix 

The predicted Log[∆Er(n, j)] for n = 1, 2, …, 100 states of hydrogen

n Log ∆Er (n, j) 

001 3.2310 

002 1.4288 

003 0.3746 

004 -0.3734 

005 -0.9535 

006 -1.4276 

007 -1.8284 

008 -2.1756 

009 -2.4818 

010 -2.7557 

011 -3.0035 

012 -3.2298 

013 -3.4379 

014 -3.6306 

015 -3.8099 

016 -3.9777 

017 -4.1354 

018 -4.2840 

019 -4.4245 

020 -4.5579 

021 -4.6848 

022 -4.8057 

023 -4.9213 

024 -5.0319 

025 -5.1381 

026 -5.2401 

027 -5.3382 

028 -5.4327 

029 -5.5240 

030 -5.6121 

031 -5.6974 

032 -5.7799 

033 -5.8599 

034 -5.9375 

035 -6.0129 

036 -6.0862 

037 -6.1574 

038 -6.2267 

039 -6.2943 

040 -6.3601 

041 -6.4243 

042 -6.4869 

043 -6.5481 

044 -6.6079 

045 -6.6663 

046 -6.7235 

047 -6.7794 

048 -6.8341 

049 -6.8877 

050 -6.9403 

051 -6.9918 

052 -7.0422 

053 -7.0918 

054 -7.1404 

055 -7.1881 

056 -7.2349 

057 -7.2809 

058 -7.3262 

059 -7.3706 

060 -7.4143 

061 -7.4573 

062 -7.4996 

063 -7.5412 

064 -7.5821 

065 -7.6224 

066 -7.6621 

067 -7.7012 

068 -7.7397 

069 -7.7777 

070 -7.8151 

071 -7.8520 

072 -7.8883 

073 -7.9242 

074 -7.9596 

075 -7.9945 

076 -8.0289 

077 -8.0629 

078 -8.0964 

079 -8.1296 

080 -8.1623 

081 -8.1946 

082 -8.2265 

083 -8.2580 

084 -8.2891 

085 -8.3199 

086 -8.3503 

087 -8.3804 

088 -8.4101 

089 -8.4395 

090 -8.4685 

091 -8.4972 

092 -8.5257 

093 -8.5538 

094 -8.5816 

095 -8.6091 

096 -8.6363 

097 -8.6633 

098 -8.6899 

099 -8.7163 

100 -8.7424 

 


