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Diabetes is a prevalent chronic disorder, which has contributed to many 

underlying health challenges – as the World Health Organization has 

dubbed it the world’s deadliest disease and a silent killer. As a non-

communicable disease – it is difficult to diagnose at an early stage due 

to its types (that morph through many stages) that is broadly classified 

into type-I, type-II, gestational and pre-diabetes. Diabetes account for 

over 2-million deaths annually due to failed internal organs, high-blood 

pressure, etc. Thus, immediate action has become imperative for early 

detection and warning to (pre)carrier patients. There is also the problem 

inherent in real-world datasets due to imbalanced class(es) distributions 

rippling across poor generalization, high misclassification rates and low 

accuracy. Our study posits the utilization of data balancing techniques 

using the PIMA Indian Diabetes (PID) dataset to ascertain the impact of 

data balancing. We use 6-known schemes (RUS, UPS, SMOTE, ADASyn, 

SMOTE-Tomek and SMOTEEN) to resolve dataset imbalance in PID 

and evaluate how well these schemes fit with improved performance. The 

study explores tree-based XGBoost and Random Forest ensemble in 

identifying diabetes. The empirical (comparative) results from balancing 

approaches show that XGBoost performed best with SMOTE-Tomek; 

while the Random Forest model performed best with SMOTEEN. 
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1. Introduction 

Diabetes Mellitus is a metabolic chronic disorder characterized by the presence of hyperglycemia or high blood 

sugar [1], which results in a body’s inability to adequately break-down sugar [2] or secrete enough insulin as required 

to process glucose, and aid  the normal functioning of the body. This, results in the critical failure of other body organs 

as is most prevalent in the elderly of the society. Diabetes also refer to a disease condition for which the body generates 

insufficient insulin or cannot properly utilize the insulin produced, and ripples across the organs, a range of underlying 

complications such as heart or kidney failure, risk of blindness, blood pressure, and nerve damage, etc [3]. World Health 

Organization (WHO) has tagged it a silent killer due to its difficulty in early detection. Even as a non-communicable 

disease, diabetes recorded over 7-million death in 2021 – making it the 7th-leader in cause-of-death globally [4], with 
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1-case every 5-seconds. Health expenditure on diabetes recorded USD966-billion dollars in 2021 with a projected rise 

of 316-percent over the next 15-years [5]. Diabetes is responsible for over 1.6million deaths directly [6], at 20.9 deaths 

per 100,000 population for which, about 47% of all deaths caused by diabetes occurred before the age of 70years [7]. 

While, its early detection is extremely tedious [8] – there is now the continued quest for effective schemes to accurately 

classify the disorder [9] and help manage teeming patients living with diabetes vis-à-vis reduce advances in carrier 

patients from serious cardiovascular, retinopathy, and nephropathy disorders/complications [10]. 

Diabetes is grouped into: (a) type-I is a chronic state in a patient where the patient’s pancreas secretes little(no) 

insulin so that as sugar builds up in the bloodstream – it triggers life-threatening complications. With no available cure 

near in sight, its causes remain unknown [11], but have also been traced to life-style cum risk factors such as family 

genes [12], age, early ingestion of cow milk, exposure to Epstein-Barr virus [13], vitamin D deficiency, early introduction 

of infants to gluten diet, intake of nitrate-contaminated water [14], pregnant mothers with preeclampsia [15], infant jaundice 

[16]. While, it is insulin-dependent, its major symptoms are blurred vision, extreme hunger and thirst, fatigue, irritability, 

incessant urination, unintended weight loss, vaginal yeast infection, etc [17], and (b) type II is a chronic state that affect 

how a body metabolizes sugar [18]. Its slow development is triggered by a body’s inability to produce enough insulin 

for metabolism to maintain normal glucose level, or for a body that resists its produced insulin’s impact. Thus, while 

this stage is insulin non-dependent, it is commonly found in elderlies and obese persons; And, can be properly managed 

via proper eating habits, exercises, maintain a healthy weight and (extreme cases) administer insulin therapy. Its symptoms 

include weight loss, frequent urination, fatigue, blurred vision, acanthosis nigricans (darkened skin) [19] etc. Type-II 

has asymptomatic preclinical phase, which is not benign, and underscores the need for primary prevention and 

population screening in order to achieve early diagnosis and treatment. 

Medical practitioners can manually diagnose diabetes – and previous studies have shown that patients with 

type II are more susceptible to a diverse range of both short/long-term consequences/complications that frequently lead 

to a rise in early mortality [20]. With diabetes as a cardiovascular ailment, it has become crucial and imperative to seek 

a more effective method to manage, diagnosis and early detect the diabetes disease – as previous studies have proven 

that drug-use can only be exercised as regulatory model [21], [22]. Related studies in health information management 

systems [23] – have proven a necessity to efficiently manage the veracity, value, and volume of healthcare patient data 

generated by healthcare facilities, especially with the provision of frontier healthcare to patients [24], [25]. Machine 

learning approaches have thus, become the much-needed and requisite tools via predictive models to glean insightful 

knowledge from such a volume of patient medical records [26]. Thus, the need to harness the predictive prowess of ML 

approaches to serve as decision support to clinicians and health experts in the early diagnosis and management of 

diabetes as the use of traditional approach are found to not yield cost-effective optimal solutions and alternatives [27]. 

 

1.1. Challenges with Imbalanced Dataset as Resolved with Data Balancing 

ML schemes effectively improves predictions by reducing the overall variance and bias inherent in a dataset, 

whilst enhancing generalization [28]. Balancing allows prediction to benefits from the comprehensive knowledge of the 

explored model while focusing on error reduction to proffer a powerful model that exploits the learning depth of its base 

models. Also, performance of a scheme is often degraded by imbalanced nature of dataset  [29]. By nature, datasets 

gathered using primary data collection techniques are unstructured in the naturalistic form, design and patterned 

labelling [30]. Thus, they yield unequal distribution in their major-and-minor classes, which pose challenges to the ML, 

if not adequately handled via data balancing [31]. With the obvious feat that many dataset(s) in their simplistic forms 

are rippled with imbalanced nature and schema [32]: (a) there exists the bias towards the major-class and the explored 

ML scheme or technique will end up ignoring the minor-class distribution as insignificant [33], (b) ML classifiers have 

been found and proven overtime to perform better for the major-class and worse for the minor-class, (c) the minor class 

if poorly classified yields high rate of misclassification even in a high-performing ML scheme [34], and (d) this 

imbalanced have proven to yield misleading accuracy with degraded model performance [35]. 

Furthermore, a critical factor that improves performance is the utilization of a rightly-formatted dataset so that 

the model can lean on: (a) its flexibility to appropriately encode the un(structured) dataset [36], (b) robust reuse of model 

for chosen or related task(s), and (c) yield cost-effective, optimal solution even with ambiguity, noise, and partial truth 

as contained in its (input) dataset [37]. Where a model does not learn the features of interest in an (un)structured, 

imbalanced dataset – this, leads to poor generalization and biased learning [38]. An imbalanced dataset overwhelms the 

chosen model – yielding poor generalization; while, a balanced dataset is a panacea for enhanced learning and the right 

recipe for improved generalization [39]. 

 

1.2. Learning Schemes: Literature Review 

ML approaches have proven to be useful in the identification of intrusive anomalies. They achieve such a feat 

by learning the intrinsic patterns inherent in domain task (intrusion) predictor features as contained within the 

(un)structured dataset [40]. Identification tasks are grouped into [41]: machine learning (ML), deep learning (DL), and 

ensemble learning (EL). ML models as used in high-dimension tasks – are trained to identify hidden relations of interest 

in (un)structured dataset to support decision in the quest for truth (i.e. target class) [42]. Their robustness, reusability 

and flexibility lets them quickly learn such relations as changes occurs via feature engineering to eases outlier 
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identification in the functioning of a system [43], [44]. Thus, it determines crucial predictors selected for model 

construction as input; And in turn – recognize those to aggregate as output. Common traditional ML models include 

Random Forest [45], SVM [46], Naïve Bayes [47], etc. Conversely, DL are networks tailored [48] to capture underlying 

relations of interest in a dataset. Its vanishing gradient challenge impedes performance and hinders the widespread use 

of RNN. Its variant, the Long-Short-Term Memory (LSTM) resolves this challenge exploring input-gates that 

effectively manage how quickly and easily the model adapts to changes observed in the dataset [49]. A major hinderance 

to the LSTM is its requisition for longer training time and its inability to handle categorical large datasets [50].  

To combat the challenges in both ML and DL – EL fuses both ML and DL using ML to overcome the issues 

in DL and vice-versa. Thus, the EL yields a single and stronger optimal fit classifier. This feat is achieved via: (a) vote, 

(b) bagging, (c) boost, and (d) stacked schemes [51]. In vote mode, classifier(s) are independently aggregated to yield 

a final output with enhanced performance. While, it does rely on their fused predictive relations – this unexplored fusion 

degrades performance if more diversity and outliers exists in the dataset [52]. Bagging (like vote) trains similar decision-

trees with equal vote weight(s) [52]. It minimizes the variance and bias in a dataset by randomly training its tree with 

k-fold train-data so that model aggregates all trees predictions to yield greater accuracy with reduced errors [53]. With 

boost, it sequentially trains independent decision trees so that each iteration yields a learner/classifier that corrects the 

mistakes of its base (previous) learners in the output [54]. Thus, with each iteration – the ensemble learn and amends 

its predecessors incorrectly predicted data [55] to yield enhanced performance with ADAboost as an example [56]. 

Lastly, the stacked mode explores transfer-learning approach, which trains its (meta) classifier(s) to efficiently fuse the 

predictive outcome of its many base-classifiers to improve on the generalization performance of its (meta)classifier. 

This flexibility yields enhanced outcome with lesser convergence time and iterations [57], [58]. 

 

1.3. Challenges in Diabetes Detection 

The study is motivated thus: 

1. Traditional Modes of Detection via diabetes lipids screening and detection can be often cumbersome. Hence, the 

advent of wearable robotics to aid the efficient early detection and warning via sensor-based observations and alert 

units. Many patients do not experience its many symptoms early enough until the disease has long progressed with 

degenerated health conditions, and its limited awareness as a silent killer alongside the scarcity of clinical 

experiences to provision the necessary requisite skillset to diagnose the disease [59] compels its urgent attention. It 

has become imperative to deploy ML algorithms, embedded as wearable(s) sensor-based observation devices to aid 

early identification; And in turn, reduce its range of risks/complications; And ultimately enhance the survival rate 

and chances of prospective patients [60]. 

2. Diabetes Detection: The convention for identifying diabetes requires the plasma glucose criteria during a 75-g oral 

glucose tolerance test (OGTT) or A1C criteria as: (a) fasting plasma glucose (FPG) ≥ 126 mg/dL on 7.0 mmol/L 

(no calories intake for at least 8hrs), (b) 2-h plasma glucose (2-hPG) ≥ 200 mg/dL on 11.1 mmol/L during OGTT, 

(c) A1C ≥ 6.5% on a 48 mmol/mol using the NGSP certified/standardized to D method, and (d) in patients with 

classic symptoms of hyperglycemia crisis, a random glucose ≥ 200 mg/dL on 11.1 mmol/L during OGTT. These 

tested (at FGP, 2-hPG with 75-g OGTT, and A1C) are appropriate; And while these screening do not necessarily 

detect the disorder amongst same individuals, their efficacy for the primary prevention of the diabetes type-II have 

been demonstrated with patients who have impaired glucose tolerance with(out) elevated fasting glucose [61], [62]. 

3. Limited Availability of Dataset: The formal construction of machine learning models for their utilization in the 

identification and early prognosis of diseases/disorders requires access to right-quality datasets, which in turn will 

aid and fasten model construction as required for training and evaluation [63],  

4. Imbalanced Nature of Diabetes Dataset: This is often experienced in many datasets for which the minor class 

records lag behind normal (major-class) records [64]. Previous studies posits: (a) detection models perform better 

if target class is in the major-class distribution, and perform worse for the minor class [65], [66], (b) complexity in 

the dataset with bias and variance inherent towards its major-class ensures that the models in some sense, is found 

to ignore the minor-class [67], (c) this yields poor performance with the minor-class poorly classified [68] – leading 

to high misclassification rates, and (d) such misleading results will yield sub-optimal performance [69], [70]. 

 

Thus, we seek to capture dynamic parameters to yield optimal fit solution that satisfies target class with 

improved generalization via proposing a variety of data balancing schemes to ascertain their impact on the chosen 

models. The study contributes thus: (a) demonstrates the utilization of data balancing technique on the chosen dataset 

to yield improved data quality and distribution for both class(es), (b) develop a variety of ML schemes to ascertain the 

flexibility and robustness with the chosen heuristics, and (c) evaluate the impact of the data balancing schemes on the 

chosen datasets. 
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2.0. Materials and Methods 

Our proposed method as shown in Figure 1 – adopts the stacked learning mode with the following steps: 

 

 
Figure 1. Proposed Methodology with Data Balancing/Resampling Approach(es) 

 

1. Step 1 – Dataset was retrieved from https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database. The 

PIMA Indian Diabetes (PID) dataset consists 768-records from high prevalence of type-II diabetes with 9-attributes 

and all female patients of 21years and above. Dataset grouped its risk factors by association and yields a distribution 

of 500-records (major) no_diabetes, and 268-records (minor) diabetes class. No missing data – PID has duplicate 

records with plot in Figure 2a 0 read in input on to the Python DataFrame. 

2. Step 2 – Preprocessing rids the dataset of discrepancies such as: (a) missing values, resolved by ignoring tuple or 

inserting missing values, (b) duplicates are resolved by removing redundant records, and (c) noisy (meaningless to 

interpret) are removed [71]. These, ensure data quality, improve data integrity, and yield an optimized, restructured 

dataset whilst retaining the labeled-classes. We use one-hot technique to encode and transform the categorical data 

into their binary equivalence for effective use by the model [72]. 

3. Step 3 – Feature Selection seeks to extracts and utilize for model construction – those data points that will form 

and be encoded as input (x), while – determining also the data-points that the model will predict as target class 

output (y) in its quest for ground-truth. The model evaluates how efficient the explored selection technique is – by 

how well and easily the model fits to the target-class. But, the PID is quite difficult to predict due to its homogeneity 

feature and limited predictor variables (i.e. 9-attributes). As thus, we utilize all the predictors therein for the model. 

4. Step 4 – Dataset Balance resamples data-labels in a domain dataset to ensure an almost equal distribution of both 

the major-and-minor class(es) [73]. Our study seeks to evaluate the impact of a variety of balancing schemes [74] 

as explored in classification tasks to address the imbalanced nature of datasets as in Figure 2. These include: 

 

 

Figure 2. Data Balancing / Resampling techniques as explored in detection-based tasks 
 

a. Random Under-sampling (RUS) randomly selects data points of interest, eliminates such instance(s) that are not 

closest neighbors to identified samples from the major-class [75], [76] in its bid to address inherent oversampling 

issue with the major-class distribution [77]. Figure 2b show its distribution plot. 

b. Upscaling (UPs) approach is an over-sampling mode that randomly selects data-points of interest from the minor-

class(es), interpolates to create synthetic points as closest neighbor(s) to samples from the minor-class(es), and 
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redistributes the synthetic point(s) onto the feature space – provisioning new, additional knowledge to the dataset 

to yield a more balanced distribution of the inherent classes. UPS mode yields the algorithm listing 3.1 with Figure 

2c showing the distribution plot. 
 

Algorithm Listing 3.1 

Input: The original train data 

1. choose an instance (xi) from the minor-class of the original dataset 
2. interpolate to create a new instance at random in the minor-class 

3. add newly created instance(s) into pool to yield new knowledge   

4. repeat this procedure till the required threshold is attained: end  
Output: Balanced version of the dataset 

 

   
Figure 2a. Original Dataset Figure 2b. RUS Balanced plot Figure 2c. UPs balanced dataset plot 

 

c. The Synthetic Oversampling Technique (SMOTE) is an over-sampling technique, which seeks to balance the 

dataset class distribution via: (a) identifying minority class, (b) adjusting points to those of its closest neighbors, 

(c) interpolating points between the minor class instances and to its closest neighbors to create synthetic data, and 

(d) add the synthetic instances to original dataset to yield an oversampled, balanced dataset of both classes [78]. It 

yields the algorithm listing 3.2 with Figure 2d showing the distribution plot. 
 

Algorithm Listing 3.2 

Input: M(minor_class_sample); N(synthetic_sample); number_k_nearest_neighbor for i in range(N); 

1. x = random_gen_sample(M) //generate random samples of the minor class 
2. neighbors = k_nearest_neighbor(x) 

3. y = random_gen_sample(neighbors) 

4. sample = x + (y – x) * random_uniform(0,1) to create new_sample 
5. T.add(sample): end  

Output: Minor-class (newly created) samples added to yield balanced version of the dataset 

 

d. Adaptive Synthetic Sampling (ADASyn) – extends the SMOTE approach using the nearest k-neighbour mode to 

generate more samples of the minor-class (which is often ignored and yields poor generalization); Thus, using the 

linear interpolation – it generates more synthetic instances between existing minor-class samples to yield that 

almost equals those of the majority-class. Figure 2e showing the distribution plot. 

 

  
Figure 2d. SMOTE balanced distribution plot Figure 2e. ADASyn balanced distribution plot 

 

e. SMOTE-Tomek links is a hybrid of SMOTE (over-sampler) and Tomek-links (under-sampler), which seeks to 

create synthetic samples for the minor-class with removal (under-sampling) of labels from major-class (closest to 

minor class) to yield a balanced distribution. With algorithm listing 3.3, Figure 2f showing the distribution plot. 

 
Algorithm Listing 3.3 

Input: M(minor_class_sample); N(synthetic_sample); number_k_nearest_neighbor for i in range(N); 

1. from minor_class, choose random data-point //start SMOTE_mode 
2. compute: relative_distance from randomly_selected_data and k_nearest_neighbor 

3. choose rnd_val = random_value(0,1): rnd_val * relative_distance; 

4. if simulated_samples = obtained then minor_class_new = minor_class + simulated_samples 
5. repeat steps 2-to-4 until threshold_minor_class_new = reached; 

6. select rnd_minor_class(data) //start Tomek_Links (under-sampler) approach 
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7. find k_nearest_neighbor(randomized_data) 

8. if k_nearest_neighbor.selected = minor_class_new then TomekLink created  

9. stop TomekLink procedure: end 
Output: Balanced version of the dataset created 

 

f. SMOTEEN fuses SMOTE (oversampler) and Edited nearest neighbour (under-sampler) by identifying and linking 

data points to its closest neighbor(s) to address both issues of over/under-sampling via data clean [79]. It 

resamples/creates synthetic instances for a minor-class, and randomly removes from a major-class to resolve the 

dataset imbalance via the closest neighbor approach. It generates new instances via the sampling ranges to its closest 

neighbor, balancing class distributions. It yields the algorithm listing 3.4 with Figure 2g showing distribution plot. 

 
Algorithm Listing 3.4 

Input: M(minor_class_sample); N(synthetic_sample); number_k_nearest_neighbor for i in range(N); 

1. From minor_class, choose random data-point //start SMOTE_mode 

2. compute: relative_distance from randomly_selected_data and k_nearest_neighbor 
3. choose rnd_val = random_value(0,1): rnd_val * relative_distance; 

4. if simulated_samples = obtained then minor_class_new = minor_class + simulated_samples 

5. repeat steps 2-to-4 until threshold_minor_class_new = reached; 
6. default number_clostest_neighbor = 3    //start Edited nearest neighbor (ENN) under-sampler approach 

7. find k_nearest_neighbor(randomized_data) 
8. if k_nearest_neighbor.selected = manor_class_new then TomekLink created  

9. stop TomekLink procedure: end 

Output: Balanced version of the dataset created 

 

  
Figure 2f. SMOTE-Tomek Links balanced plot Figure 2g. SMOTEEN balanced plot 

 
Merits of data balancing schemes includes that: (a) it prevents the skewed variance and bias inherent in real-

world dataset, which often degrades performance, (b) it ensures that the model adequately learns hidden patterns 

to yield improved model generalization, (c) it helps the model to acknowledge the minor-class(es), which is often 

ignored and in turn, lessens the integrity of the entire dataset, and (d) it binds the majority-class to the impact of 

the minority-class, which in turn, helps the model to better understand the feature/predictor significance of each 

class to yield insightful evidence. Dataset is split using a 70% train-dataset and 30% test-dataset for all schemes. 

 
5. Step 5 – Model Construction and Train: Quest for deploy of medical apps for early diabetes detection explores 

a variety of heuristics poised to improve its generalization using dataset such as PID [80], Iraqi Society Diabetes 

(ISD) [3], and Nigerian Diabetes Dataset [81], etc. While, the ISD is not as popular and as challenging as the PID 

– previous identification have results in Accuracy range between 0.69-to-0.89 [82]. While, [3] achieved a perfect 

score of 1.0000 – two (2) critical factor that hinder performance are: (a) imbalanced dataset that yield homogeneity 

complexity [83], and (b) explored must become more sensitive to identify the hidden patterns and become adaptive 

to capture predictor bias and variations. To study the impact of data balancing schemes – we will explore the 

performance of some traditional models (i.e. XGB and RF) evaluated with metrics such as Accuracy, Precision, 

Recall, F1, and Specificity [84]. Our traditional models are: 

✓ XGBoost is a traditional tree-based leaner algorithm that explores the boost approach to yield a stronger learner 

that aggregates the output of its base (weaker) decision trees by correcting its predictor mistake to improve the 

learning outcome in the ensemble. It uses the majority voting over a set of iterations to yield optimal fit solution, 

and expands its goal function by minimizing its loss function [85] to manage its trees’ complexities. It leans on the 

predictive power of weak learners, and each tree is trained to help it expands the objective function using 

regularization term Ω(𝑓𝑡) and loss function l( 𝑌𝑖
𝑡 , �̂�𝑖

𝑡) to ensure improved generalization that fits the re-calibrated 

solution so that the data-points remain within set bounds to enable its loss function and hyper-predictors to be tuned 

for higher accuracy as in Table 1. 
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Table 1. XGBoost Parameter Design and Configuration 
Features Configuration 

n_estimators 250 

learning_rate 0.25 
random_state 42 

max_depth Auto 

 

✓ Random Forest is a tree-based, bagging scheme that aggregates its independent trees via the bootstrap construct 

to train its trees for prediction using majority vote. Its extra layer extends how random the trees are constructed 

with each node split via binary-tree predictor. The best split node(s) are then randomly selected using a recursive 

structure to help the trees capture interactions between the various predictors [86]. With increased diversity and 

complexity in the dataset [87] – it outputs poor performance. For this, the RF tunes its hyper-parameter to reduce 

overfit, address imbalanced datasets, and enhance accuracy as in Table 2, which shows its design and configuration. 
 

Table 2. Random Forest Parameter Design and Configuration 
Features Configuration 

n_estimators 150 

learning_rate 0.25 
random_state 42 

max_depth auto 

 
3.0.  Results and Discussion  

3.1.  Result Findings 

Table 3 shows performance evaluation metrics for the explored XGBoost explored traditional model. 
 

Table 3. XGBoost Performance Evaluation 
Data Balancing F1 Accuracy Precision Recall Specificity Confusion Matrix 

Default 
 

0.5602 

 

0.5419 
 

0.5401 
 

0.5399 
 

0.5325 
TP (93) FN (19) 

FP (14) TN (104) 
        

RUS 
 

0.6305 

 

0.6423 
 

0.6320 
 

0.6128 
 

0.6370 
TP (36) FN (17) 

FP (16) TN (98) 
        

UPS 
 

0.7025 

 

0.7181 
 

0.7241 
 

0.7381 
 

0.7026 
TP (77) FN (09) 
FP (07) TN (184) 

        

SMOTE 
 

0.7881 

 

0.7883 
 

0.7665 
 

0.7890 
 

0.7790 
TP (98) FN (12) 

FP (04) TN (164) 
        

ADASyn 
 

0.7875 

 

0.7879 
 

0.7705 
 

0.7886 
 

0.7784 
TP (97) FN (12) 

FP (04) TN (165) 
        

SMOTE-Tomek 
 

0.8189 

 

0.8182 
 

0.8028 
 

0.8048 
 

0.8200 
TP (99) FN (09) 

FP (03) TN (168) 
 

SMOTEEN 
 

0.8178 

 

0.8179 
 

0.8026 
 

0.8049 
 

0.8189 
TP (98) FN (12) 

FP (04) TN (164) 

 

Table 3 shows result of XGBoost on a variety of balancing schemes on PID dataset. Feature selection was 

undone due to the heterogeneity and limited predictor-set of the dataset. So, we used all predictors on the XGBoost with 

metric scores that show SMOTE-Tomek links data balancing approach yielded best result with harmonic mean (F1-

score) of 0.8189 and an Accuracy of 0.8182 with Recall, Precision and Specificity values of 0.8028, 0.8048 and 0.8200 

respectively to correctly classify 267-instances with 12-incorrectly classified instances [88]. Other balancing approaches 

as in Table 3 yields F1 range between 0.5602 to 0.8178, Accuracy range of 0.5419 to 0.8179, Recall range of 0.5399 to 

0.8049, Precision range of 0.5401 to 0.8026, and Specificity range of 0.5325 to 0.8189 respectively, which indicates 

XGBoost can predict diabetes with high accuracy. With default values (i.e no data balancing) – we acknowledge that 

SMOTE-Tomek-based XGBoost influences ground-truth and impacted the overall performance prediction. Table 4 

yields performance evaluation metrics for the Random Forest model. 
 

Table 4. Random Forest Performance Evaluation 
Data Balancing F1 Accuracy Precision Recall Specificity Confusion Matrix 

Default 
 

0.5562 

 

0.5413 
 

0.5391 
 

0.5394 
 

0.5354 
TP (91) FN (21) 

FP (16) TN (102) 
        

RUS 
 

0.6298 

 

0.6253 
 

0.6298 
 

0.6282 
 

0.6297 
TP (32) FN (27) 

FP (14) TN (94) 
        

UPS 
 

0.7022 

 

0.7180 
 

0.7248 
 

0.7240 
 

0.7161 
TP (72) FN (21) 
FP (19) TN (162) 

        

SMOTE 
 

0.7881 

 

0.7883 
 

0.7665 
 

0.7890 
 

0.7790 
TP (98) FN (12) 

FP (04) TN (164) 
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ADASyn 
 

0.7875 

 

0.7879 
 

0.7705 
 

0.7886 
 

0.7784 
TP (97) FN (12) 
FP (04) TN (165) 

        

SMOTE-Tomek 
 

0.8168 

 

0.8183 
 

0.8120 
 

0.8146 
 

0.8190 
TP (99) FN (09) 

FP (03) TN (168) 
 

SMOTEEN 
 

0.8178 

 

0.8199 
 

0.8206 
 

0.8149 
 

0.8239 
TP (99) FN (07) 

FP (02) TN (170) 

 

Table 4 shows that for the RF model indicates that the SMOTEEN balancing approach yielded best result with 

F1-score of 0.8179 and Accuracy of 0.8199 with Precision, Recall, and Specificity values of 0.8206, 0.8149 and 0.8239 

respectively to efficiently (and correctly) identify a total of 269-instances with an incorrect classification of only 9-

instances. This does not suggest that Random Forest outperforms XGBoost – as we only seek to espouse the impact of 

explored balancing approach. Other balancing modes are as in Table 4 with F1 ranges between 0.5562 to 0.8178, 

Accuracy range of 0.5419 to 0.8199, Recall range of 0.5394 to 0.8149, Precision range of 0.5391 to 0.8206, and 

Specificity 0.5354 to 0.8239 respectively. These ranges also indicates that the Random Forest model is able to correctly 

predict diabetes with a high(er) accuracy if other components are to explored such as feature selection. The RF model 

supported by SMOTEEN proffered greater influence in the quest for ground-truth and impacted the overall performance 

prediction [89]. 

 
3.2.  Validity Threat 

All studies have expressed that there exist validity threats to a variety of degrees as thus: 

a. Imbalanced Dataset: The imbalanced nature of the chosen dataset shows that only 268-instances of the recordset 

(i.e. 35percent) of the data records belongs to the minor (diabetes) class. This may/can be a threat against validity 

since the major-class instances often yields dominance effect on the model; whereas, the minor class (where not 

balanced) will yield poor generalization and in extreme cases, are ignored – as this will also negatively impact 

model performance [90]. However, our results reveals that balancing aids improved generalization as agreed.  

b. Bias Introduced: Bias can also be introduced by the researcher in lieu of how the data is extracted from the original 

dataset. This can birth validity threat to the process therein. We can avert this by via a fully understanding of the 

dataset cum feature of interest. This is because, external threats to validity seek to evaluate whether or not we 

achieved improved generalization with the proposed model(s). This is not the case, as we sought to assess the 

impact of data balancing on imbalanced nature of the dataset as explored by traditional model(s) [91]. However, it 

is hoped that other researchers wishing to explore data-centric designs and model configuration with dataset for 

machine learning tailored approach can leverage and lean on the insights as provisioned therein this study. 

c. Specificity: Some task datasets have proven easy to identify; while, others have proven more painstaking especially 

with medical dataset, where the chosen model/heuristics must infuse within its design [92] – the capability to 

measure specificity. This is because the specificity metric is strong correlates to the impact on diagnostic errors 

within the captured dataset as its relates to how sensitive the model is to minor shocks vis-à-vis its evaluation as 

directly related to the patient clinical outcomes [93]. 

 
4.Conclusion  

The utilization of data balancing like SMOTE-Tomek [94] and SMOTEEN – alongside with feature selection 

technique, have improved performance generalization, which agrees with [95]. The use of tree-based ensemble have 

also shown that the heuristics can perfectly and correctly classified all test dataset with perfect accuracy. The use of 

feature selection technique helps the research to focus on critical feats for model construction to successfully detected 

spoofed sites with reduced errors that will secure user resources and provision enhanced user experience. Despite the 

enormous amount of data generated daily, diabetes class in the dataset – will always be found to lag behind in the quest 

for ground-truth. While, this study is a positive step in the right direction, we explored for our target delivery system 

and tested the ensemble as an embedded application program interface (API) in a standalone web app using flask API 

(a lightweight Python that enables us to easily integrate as embedded app for the targeted system), and Streamlit 

framework that provides the necessary platform to transform phishing detection ensemble into an accessible API [96]. 

Our Fast-API is deployed as a 3-phase system as thus: (a) the initialize function specifies communication routes required 

for the API, (b) its integrate function helps to connects API that allows for processing of incoming traffic requests [97], 

and (c) interoperability processes http requests from/to all the connected devices [98]. 
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