
 

 
 NIPES - Journal of Science and Technology Research 7(1) 2025 pp. 46-63 eISSN-2682-5821, pISSN-2734-2352 

46 

 

 
Construction and Utilization of Orthogonal Polynomial for the Fractional Order 

Integro- Volterra-Fredholm Differential Equations 
 

 Falade Kazeem Iyanda a*, Muhammad Yusuf Muhammadb and Taiwo Omotayo Adebayo c   
a,bDepartment of Mathematics, Aliko Dangote University of Science and Technology, Wudil Kano State Nigeria. 
cDepartment of Mathematics, University of Ilorin, Ilorin Kwara State Nigeria. 

Article Info  Abstract 

 

Keywords: 

Fractional order, numerical 

examples, orthogonal polynomials, 

perturbed collocation, standard 

collocation, Volterra-Fredholm 

integro-differential equations 

(FVFIDEs) 

 
 

In this article, a novel orthogonal polynomial is introduced and it is taken 

as a basis function to solve fractional-order Volterra-Fredholm integro-

differential equations (FVFIDEs) using standard and perturbed 

collocation techniques. We then solve the FVFIDEs by approximating the 

solution with the constructed orthogonal polynomials, substituting the 

approximation into the FVFIDEs to generate collocation equations at 

uniformly spaced interior points, yielding a system of linear algebraic 

equations. Using Gaussian elimination, we solve this system of equations 

to find the unknown coefficients back into the assumed solution. To 

validate the efficiency of the proposed techniques, we present four 

numerical examples. The results indicate that proposed collocation 

methods are easy to implement, efficient, and produce results that agree 

well with existing methods in the literature. This work highlights the 

robustness and potential of these methods for solving the FVFIDEs with 

high precision, offering valuable insights into the numerical solutions of 

the fractional-order Volterra-Fredholm integrodifferential equations that 

occur in applied mathematics. 
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1.0 Introduction 

 In recent years, there has been a lot of interest in studying fractional integro-differential equations because of their applications 

in various areas, including physics, engineering, biology, and economics. In particular, it describes well-suited systems with 

intricate temporal dynamics, such as viscoelastic materials, fluid flow, and population dynamics. The fractional-order 

derivatives offer a more adaptable framework for simulating memory effects and hereditary characteristics. However, solving 

these equations analytically is challenging due to their nonlocal nature and the complexity introduced by fractional derivatives. 

These equations are relevant in various scientific areas, such as non-local phenomena in quantum, diffusion processes, and 

viscoelastic materials. The fractional derivatives account for time-dependent properties and long-range interactions, making 

them useful in modeling fluid dynamics, heat conduction, and wave propagation. In engineering sciences, FVFIDEs are 

employed in control theory to design systems with improved stability and robustness, particularly in areas like automatic control 

systems, signal processing, and robotics. They also appear in modeling electrical circuits with memory elements such as 

capacitors and inductors. In biology and medicine, FVFIDEs are used to model processes like tissue perfusion, 

pharmacokinetics, and population dynamics, where fractional calculus effectively represents the memory and hereditary 

characteristics of biological systems. In finance FVFIDEs capture long-term dependencies in asset prices and interest rates, 

making them useful in risk modeling and option pricing [1]-[5].
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We consider FVFIDEs of the form: 

∑𝑃𝑖(𝑥)𝜙
𝑖(𝑥) + 𝐷𝛼

𝑛

𝑖=0

𝜙(𝑥) + 𝜆1∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏(𝑥)

𝑎

𝑑𝑡 + 𝜆2∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏

𝑎

𝑑𝑡

= 𝑔(𝑥),                                                                                            (1) 
Subject to the conditions 

𝜙(𝑖)(𝑎𝑖) = 𝜓𝑖   ; 𝑖 = 1,2,3, … , (𝑛 − 1),                                                                       (2) 
Where 𝐷𝛼is the fractional derivatives in Caputo sense and 𝛼 (real or complex) is the order of the fractional derivative, 𝜓 is a 

constant, 𝐾(𝑥, 𝑡) is the kernel function and 𝑔(𝑥) is a continuous arbitrary smooth function. 

Solving fractional-order integro-differential equations analytically is often challenging due to their nonlocal nature and the 

complexity introduced by the fractional derivatives. Consequently, numerical methods have become essential tools for 

obtaining approximate solutions. Several authors have proposed and applied various techniques. For instance, [6] utilized the 

Adomian decomposition method for the numerical solutions, while, [7] employed a hybrid collocation method. [8] applied the 

Laplace decomposition method. The homotopy analysis method for higher-order equations was introduced by [8]. Author [9] 

used analytical methods to solve fractional-order fractional Volterra-Fredholm integro-differential equations and to 

approximate their solutions. [10] presented approximate solutions of fractional Volterra–Fredholm integro-differential 

equations by using analytical techniques and [11] used the shifted Chebyshev and least squares approach to numerically solve 

fractional integro-differential equations. [12] used effective Chebyshev spectral methods for multi-term fractional orders 

differential equations and suggested a perturbation least-squares method. At the same time [13] employed the spectral-

collocation method for the numerical solutions of fractional Fredholm integro-differential equations. [14] used Chebyshev 

cardinal functions for nonlinear fractional-order Volterra and Fredholm equations, while [15] introduced the Chebyshev 

approach for solving fractional-order integro-differential equations. [16] presented a novel integral transform, [17] employed 

the Aboodh transformation method, a numerical method for resolving nonlinear fractional-order Volterra integro-differential 

equations was presented by [18].  

This paper aims to formulate and apply the standard collocation method (SCM) and the perturbed collocation method (PCM). 

This turns the original problem into a system of algebraic equations by approximating the unknown solution using basis 

functions and requiring it to satisfy the integro-differential equation at specific collocation points. In order to show how well 

the approach works in resolving real-world issues represented by fractional-order integro-differential equations, we additionally 

provide four numerical examples. 

 

2 Definition of fractional Calculus 

The following are some fundamental definitions of fractional calculus that are provided in this section: [19]-[22] 

2.1 Definition 1. 

Fractional calculus involves differentiation and integration for both real numbers and complex values such as 𝐷
3

2, 𝐷
1

2, 𝐷
7

2 

 

2.2 Definition 2. 

Let 𝜙 ∈ 𝐿2([0, 𝑇]), the definition of the Riemann-Liouville fractional derivative (RLFD) is 

𝐷𝛼𝜙(𝑥) =
1

Γ(𝑛−𝛼)

𝑑𝑛

𝑑𝑥𝑛
∫ (𝑥 − 𝑡)𝑛−𝛼−1𝜙(𝑡)𝑑𝑡;        
𝑥

0
𝑛 − 1 < 𝛼 < 𝑛                                            (3)                                                           

 

Where n is the smallest value and an integer larger than or equal to α. 

 

2.3 Definition 3. 

Let 𝜙 ∈ 𝐻𝑛([0, 𝑇]), the Caputo fractional derivative (CFD) of 𝜙(𝑥) can be defined as 

𝐷𝛽𝜙(𝑥) =
1

Γ(𝑛−𝛽)
∫ (𝑥 − 𝑡)𝑛−𝛽−1𝜙(𝑡)(𝑛)𝑑𝑡
𝑥

0
;   𝛽 > 0                                                                   (4)   

                                                                               

Where 𝑛 = [𝛽] + 1. 
Hence, we obtain the following properties:  

                                        

{
 
 

 
 𝐽

𝛼𝑥𝛽 =
Γ(𝛽+1)

Γ(𝛼+𝛽+1)
𝑥(𝛼+𝛽),                 

𝐽𝛼𝐷𝛼𝑓(𝑥) = 𝑔(𝑥);     𝑥 > 0 

𝐷𝛼𝐶 = 0,    𝐶  is a constant 

𝐷𝛼𝑥𝛾 =
Γ(𝛾+1)

Γ(𝛾−𝛼+1)
𝑥(𝛾−𝛼),

                                                      (5)                                                              

Where [𝛼] denotes the integer greater than or equal to 𝛼 and the smallest value. 

 

3. Construction of orthogonal polynomials 

The solutions framework employed in this paper revolves around the construction of orthogonal polynomials, which serve as 

basis functions for approximating the unknown solution of the FOIDEs. Orthogonal polynomials, known for their desirable 
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properties such as minimizing approximation errors and facilitating numerical computations, were specifically selected for their 

effectiveness in this context.  

3.1   Construction of orthogonal polynomial bases: 

The orthogonal polynomials are subjected to standardization for the Legendre polynomial valid in [-1,1] as: 

 𝑄𝑛(1) = 1 ,                                                                                                                                (6) 
In particular,  𝑄0(𝑥) = 1, 
Thus,  𝑄𝑛(𝑥) is defined in power series form as 

 𝑄𝑛(𝑥) =∑𝑎0

𝑛

𝑖=0

+ 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛                                                                     (7) 

The procedure for constructing our orthogonal polynomials is as follows 

 

 𝑄𝑛(𝑥) = 1 ⇒ 𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 = 1                                                                     (8) 
 

{
 
 
 
 
 
 

 
 
 
 
 
 <  𝑄𝑛 , 1 >⇒ ∫ 𝑤(𝑥) ∗  𝑄0(𝑥) ∗  𝑄𝑁(𝑥)𝑑𝑥 = 0   

1

−1

<  𝑄𝑛 , 𝑥 >⇒ ∫ 𝑤(𝑥) ∗  𝑄1(𝑥) ∗  𝑄𝑁(𝑥)𝑑𝑥 = 0   
1

−1

<  𝑄𝑛 , 𝑥
2 >⇒ ∫ 𝑤(𝑥) ∗  𝑄2(𝑥) ∗  𝑄𝑁(𝑥)𝑑𝑥 = 0   

1

−1

<  𝑄𝑛 , 𝑥
3 >⇒ ∫ 𝑤(𝑥) ∗  𝑄3(𝑥) ∗  𝑄𝑁(𝑥)𝑑𝑥 = 0  

1

−1

⋮

<  𝑄𝑛 , 𝑥
𝑛−1 >⇒ ∫ 𝑤(𝑥) ∗  𝑄𝑁(𝑥) ∗  𝑄𝑁(𝑥)𝑑𝑥 = 0   

1

−1

                                                   (9) 

 

 

An algebraic linear system of equations with (n+1) unknown constants is obtained. To obtain the orthogonal polynomial, the 

(n+1) algebraic linear system of equations must be solved.  

                                                               𝑄0(𝑥) = 1. 
The weight function 𝑤(𝑥) of Legendre polynomial valid in [−1,1] is 1 

 

{

 𝑄0(𝑥) = 𝑎0
 𝑄1(𝑥) = 𝑎0 + 𝑎1𝑥

 𝑄2(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2

⋮

                                                                                                  (10) 

 

For 𝑄1(𝑥) from equation (9), 

 

< 𝑄1(𝑥), 1 >≡ ∫ 𝑤(𝑥) ∗  𝑄0(𝑥) ∗  𝑄1(𝑥)𝑑𝑥 = 0  
1

−1

                                                         (11) 

Recall, 𝑤(𝑥) = 1 and  𝑄0(𝑥) = 1 

 

{
 
 
 

 
 
 < 𝑄1(𝑥), 1 >≡ ∫  𝑄1(𝑥)𝑑𝑥 = 0  

1

−1

< 𝑄1(𝑥), 1 >≡ ∫ (𝑎0 + 𝑎1𝑥)𝑑𝑥 = 0  
1

−1

< 𝑄1(𝑥), 1 >≡ [𝑎0𝑥 +
𝑎1𝑥2

2
]
−1

1

= 0 ⇒ 𝑎0 = 0

< 𝑄1(𝑥), 1 >≡ 𝑎0 = 0

                                                           (12) 

Using the standardization for Legendre polynomial valid in [−1,1], to get: 

𝑄1(1) ≡ 𝑎0 + 𝑎1 = 1 ⇒ 𝑎1 = 1 

 

That is                                                      𝑄1(𝑥) = 𝑥 

For 𝑄2(𝑥) from equation (9), 
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< 𝑄2(𝑥), 1 >≡ ∫ 𝑤(𝑥) ∗  𝑄0(𝑥) ∗  𝑄2(𝑥)𝑑𝑥 = 0  
1

−1

                                                                   (13) 

Recall, 𝑤(𝑥) = 1 and  𝑄0(𝑥) = 1 

{
 
 
 
 

 
 
 
 < 𝑄2(𝑥), 1 >≡ ∫  𝑄2(𝑥)𝑑𝑥 = 0  

1

−1

< 𝑄2(𝑥), 1 >≡ ∫ (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2)𝑑𝑥 = 0  

1

−1

< 𝑄2(𝑥), 1 >≡ [𝑎0𝑥 +
𝑎1𝑥2

2
+
𝑎2𝑥3

3
]
−1

1

= 0

< 𝑄1(𝑥), 1 >≡ 2𝑎0 +
2𝑎2
3
= 0

                                                                         (14)  

2𝑎0 +
2𝑎2
3
= 0                                                                                                                                  (15) 

 

From (9), we have  

{
 
 
 
 
 

 
 
 
 
 <  𝑄2, 𝑥 >⇒ ∫ 𝑤(𝑥) ∗  𝑄1(𝑥) ∗  𝑄2(𝑥)𝑑𝑥 = 0   

1

−1

<  𝑄2, 𝑥 >⇒ ∫ 1 ∗ 𝑥 ∗ (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2)𝑑𝑥 = 0   

1

−1

<  𝑄2, 𝑥 >⇒ ∫ 𝑥(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2)𝑑𝑥 = 0   

1

−1

<  𝑄2, 𝑥 >⇒ ∫ (𝑎0𝑥 + 𝑎1𝑥
2 + 𝑎2𝑥

3)𝑑𝑥 = 0   
1

−1

𝑎1 = 0

                                                          (16) 

Using the standardization for Legendre polynomial valid in [−1,1], to get 

𝑄2(1) ≡ 𝑎0 + 𝑎1 + 𝑎2 

                                                     ⇒ 𝑎0 + 𝑎2 = 1                                                                           (17) 
Solving (15) and (17), to get 

𝑎0 =
−1

2
, 𝑎2 =

3

2
  

From equation (10), we obtain, 

𝑄2(𝑥) =
3

2
𝑥2 +

−1

2
𝑥 

Then, following the same procedure, the following orthogonal polynomials are obtained: 

 

{
 
 
 

 
 
 𝑄3(𝑥) =

5

2
𝑥3 −

3

2
𝑥

𝑄4(𝑥) =
35

8
𝑥4 −

15

4
𝑥3 +

3

8

𝑄5(𝑥) =
63

8
𝑥5 −

35

4
𝑥4 +

15

8
𝑥

⋮
⋮

                                                             (18) 

 

In this paper, the types of problems considered are defined on the interval [0,1]. To address this, we need to convert the 

orthogonal polynomials from the interval [-1,1] to [0,1]. Therefore, we first carry out the conversion of orthogonal polynomials 

from the interval [-1,1] to a general interval [a, b], and then specialize to the interval [0,1]. 

In this case, the linear transformation    𝑥∗ = 𝑎1𝑥 + 𝑏1                                             (19)                                                                          
Here, from [-1,1] to [a,b]. Suppose 𝑥 = −1  𝑎𝑛𝑑 𝑥∗ = 𝑎,               𝑥 = 1 𝑎𝑛𝑑 𝑥∗ = 𝑏, 

These resulted in the following system of equations 

                                                       {
𝑎 = −𝑎1 + 𝑏1
𝑏 = 𝑎1 + 𝑏1

                                                                  (20)                                                                                                       

Solving (20) yield 

                                                       {
𝑎1 =

(𝑏−𝑎)

2

𝑏1 =
(𝑎+𝑏)

2

                                                                        (21)                                                      
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Substituting (21) into (19) we have,   𝑥∗ =
(𝑏−𝑎)

2
𝑥 +

(𝑎+𝑏)

2
                                                   (22)                                                                          

And simplifying (22) give  𝑥∗ =
2𝑥−(𝑏+𝑎)

(𝑏−𝑎)
                                                                                 (23)                                                                                                   

Also, to convert from [-1,1] to [0,1], Here a=0, b=1. Hence (23) becomes 

 

                                                             𝑥∗ = 2𝑥 − 1                                                                 (24)                                                                                    
Substituting 𝑥∗ = 2𝑥 − 1 into the constructed orthogonal polynomial (18) yields the orthogonal polynomials on the intervals 

of [0,1]. 

{
 
 
 

 
 
 

𝑄0(𝑥) = 1

𝑄1(𝑥) = 2𝑥 − 1

𝑄2(𝑥) = 6𝑥
2 − 6𝑥 + 1

𝑄3(𝑥) = 20𝑥
3 − 30𝑥2 + 20𝑥 − 1

𝑄4(𝑥) = 70𝑥
4 − 140𝑥3 + 90𝑥2 − 20𝑥 + 1

⋮
⋮

          (25) 

 

4. Description of proposed methods 

In this paper, we propose two types of collocation methods: the SCM and the PCM. These methods are demonstrated on the 

FVFIDEs (1) and (2) as follows: 

 

4.1 Standard collocation method (SCM) for FVFIDEs  

We consider the FVFIDEs of the form: 

∑𝑃𝑖(𝑥)𝜙
𝑖(𝑥) + 𝐷𝛼

𝑛

𝑖=0

𝜙(𝑥) + 𝜆1∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏(𝑥)

𝑎

𝑑𝑡 + 𝜆2∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏

𝑎

𝑑𝑡

= 𝑔(𝑥),                                                                                      (26) 
Subject to the conditions 

𝜙(𝑖)(𝑎𝑖) = 𝜓𝑖; 𝑖 = 1,2,3, … , (𝑛 − 1),                                                                  (27) 
Equation (26) can be expanded as 

{

𝑃0(𝑥)𝜙(𝑥) + 𝑃1(𝑥)𝜙
/(𝑥) + 𝑃2(𝑥)𝜙

//(𝑥) +⋯+ 𝑃𝑛(𝑥)𝜙
𝑛(𝑥) + 𝐷𝛼𝜙(𝑥) +

𝜆1∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏(𝑥)

𝑎

𝑑𝑡 + 𝜆2∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏

𝑎

𝑑𝑡 = 𝑔(𝑥)
         (28) 

Let's assume an approximate solution of the form: 

                                                𝜙𝑁(𝑥) = ∑ 𝑐𝑖𝑄𝑖(𝑥)
𝑁
𝑖=0                                                                                           (29)                                                                                             

Where N is the computational length and substitute (29) into (28) to get 

{

𝑃0(𝑥)𝜙𝑁(𝑥) + 𝑃1(𝑥)𝜙𝑁
/(𝑥) + ⋯+ 𝑃𝑛(𝑥)𝑢𝑁

𝑛(𝑥) + 𝐷𝛼𝜙𝑁(𝑥) +

𝜆1∫ 𝐾(𝑥, 𝑡)𝜙𝑁(𝑡)
𝑏(𝑥)

𝑎

𝑑𝑡 + 𝜆2∫ 𝐾(𝑥, 𝑡)𝜙𝑁(𝑡)
𝑏

𝑎

𝑑𝑡 = 𝑔(𝑥)
                               (30) 

(30) can be expanded as  

 

                                     𝜙𝑁𝑁(𝑥) = 𝑐0𝑄0(𝑥) + 𝑐1𝑄1(𝑥) + 𝑐2𝑄2(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁(𝑥)                                      (31)                                             

Substitute (31) into (30) to get 

                         

{
 
 
 
 
 

 
 
 
 
 

𝑃0(𝑥)(𝑐0𝑄0(𝑥) + 𝑐1𝑄1(𝑥) + 𝑐2𝑄2(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁(𝑥)) +

𝑃1(𝑥)(𝑐0𝑄0
/(𝑥) + 𝑐1𝑄1

/(𝑥) + 𝑐2𝑄2
/(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁

/(𝑥)) +

𝑃2(𝑥)(𝑐0𝑄0
//(𝑥) + 𝑐1𝑄1

//(𝑥) + 𝑐2𝑄2
//(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁

//(𝑥)) +

⋮                                              ⋮                                               ⋮
𝑃𝑛(𝑥)(𝑐0𝑄0

𝑛(𝑥) + 𝑐1𝑄1
𝑛(𝑥) + 𝑐2𝑄2

𝑛(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁
𝑛(𝑥)) +

𝐷𝛼(𝑐0𝑄0(𝑥) + 𝑐1𝑄1(𝑥) + 𝑐2𝑄2(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁(𝑥)) +

𝜆1 ∫ 𝐾(𝑥, 𝑡)
𝑏(𝑥)

𝑎
(𝑐0𝑄0(𝑡) + 𝑐1𝑄1(𝑡) + 𝑐2𝑄2(𝑡) + ⋯+ 𝑐𝑁𝑄𝑁(𝑡))𝑑𝑡 +

𝜆2 ∫ 𝐾(𝑥, 𝑡)(𝑐0𝑄0(𝑡) + 𝑐1𝑄1(𝑡) + 𝑐2𝑄2(𝑡) + ⋯+ 𝑐𝑁𝑄𝑁(𝑡))
𝑏

𝑎
𝑑𝑡 = 𝑔(𝑥)

                       (32)            

   

Hence, by collecting the like terms in (32), we have  



 

 Falade Kazeem Iyanda et al. / NIPES Journal of Science and Technology Research 

7(1) 2025 pp. 46-63 

51 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑐0 (

𝑃0(𝑥)𝑄0(𝑥) + 𝑃1(𝑥)𝑄0
/(𝑥) + 𝑃2(𝑥)𝑄0

//(𝑥) +⋯+ 𝑃𝑛(𝑥)𝑄0
(𝑛)(𝑥) + 𝐷𝛼𝑄0(𝑥)

−𝜆1∫ 𝐾(𝑥, 𝑡)𝑄0(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥, 𝑡)𝑄0(𝑡)
𝑏

𝑎

)

𝑐1(

𝑃0(𝑥)𝑄1(𝑥) + 𝑃1(𝑥)𝑄1
/(𝑥) + 𝑃2(𝑥)𝑄1

//(𝑥) + ⋯+ 𝑃𝑛(𝑥)𝑄1
(𝑛)(𝑥) + 𝐷𝛼𝑄1(𝑥)

−𝜆1∫ 𝐾(𝑥, 𝑡)𝑄1(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥, 𝑡)𝑄1(𝑡)
𝑏

𝑎

)

𝑐2 (

𝑃0(𝑥)𝑄2(𝑥) + 𝑃1(𝑥)𝑄2
/(𝑥) + 𝑃2(𝑥)𝑄2

//(𝑥) +⋯+ 𝑃𝑛(𝑥)𝑄2
(𝑛)(𝑥) + 𝐷𝛼𝑄2(𝑥)

−𝜆1∫ 𝐾(𝑥, 𝑡)𝑄2(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥, 𝑡)𝑄2(𝑡)
𝑏

𝑎

)

⋮

𝑐𝑁 (

𝑃0(𝑥)𝑄𝑁(𝑥) + 𝑃1(𝑥)𝑄𝑁
/(𝑥) + 𝑃2(𝑥)𝑄𝑁

//(𝑥) + ⋯+ 𝑃𝑛(𝑥)𝑄𝑁
(𝑛)(𝑥) + 𝐷𝛼𝑄𝑁(𝑥)

−𝜆1∫ 𝐾(𝑥, 𝑡)𝑄𝑁(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥, 𝑡)𝑄𝑁(𝑡)
𝑏

𝑎

) = 𝑔(𝑥)

  (33) 

 

Thus (33) gives (N+1) unknown constants (𝑐𝑖; 𝑖 ≥ 0) to be determined. Consider the initial conditions given in equation (27), 

we obtain, 

{
 
 

 
 

𝜙𝑁(𝑎1) = 𝜓0 ⇒ 𝑐0𝑄0(𝑎1) + 𝑐1𝑄1(𝑎1) + 𝑐2𝑄2(𝑎1) + ⋯+ 𝑐𝑁𝑄𝑁(𝑎1) = 𝜓0                                                       

𝜙/
𝑁
(𝑎1) = 𝜓1 ⇒ 𝑐0𝑄

/
0
(𝑎1) + 𝑐1𝑄

/
1
(𝑎1) + 𝑐2𝑄

/
2
(𝑎1) + ⋯+ 𝑐𝑁𝑄

/
𝑁
(𝑎1) = 𝜓1             

𝜙//
𝑁
(𝑎1) = 𝜓2 ⇒ 𝑐0𝑄

//
0
(𝑎1) + 𝑐1𝑄

//
1
(𝑎1) + 𝑐2𝑄

//
2
(𝑎1) + ⋯+ 𝑐𝑁𝑄

//
𝑁
(𝑎1) = 𝜓2                          (34)  

⋮                                                                            ⋮                                                                       
𝜙(𝑛−1)

𝑁
(𝑎1) = 𝜓(𝑛−1) ⇒ 𝑐0𝑄

(𝑛−1)
0
(𝑎1) + 𝑐1𝑄

(𝑛−1)
1
(𝑎1) + 𝑐2𝑄

(𝑛−1)
2
(𝑎1) + ⋯+ 𝑐𝑁𝑄

(𝑛−1)
𝑁
(𝑎1) = 𝜓(𝑛−1)  

 

 

Thus, equation (34) is then collocated at point 𝑥 = 𝑥𝑘 to get, 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑐0(

𝑃0(𝑥𝑘)𝑄0(𝑥𝑘) + 𝑃1(𝑥𝑘)𝑄0
/(𝑥𝑘) + 𝑃2(𝑥𝑘)𝑄0

//(𝑥) +⋯+ 𝑃𝑛(𝑥𝑘)𝑄0
(𝑛)(𝑥) + 𝐷𝛼𝑄0(𝑥𝑘)

−𝜆1∫ 𝐾(𝑥𝑘 , 𝑡)𝑄0(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥𝑘 , 𝑡)𝑄0(𝑡)
𝑏

𝑎

)

𝑐1 (

𝑃0(𝑥𝑘)𝑄1(𝑥𝑘) + 𝑃1(𝑥)𝑄1
/(𝑥𝑘) + 𝑃2(𝑥𝑘)𝑄1

//(𝑥) + ⋯+ 𝑃𝑛(𝑥𝑘)𝑄1
(𝑛)(𝑥𝑘) + 𝐷

𝛼𝑄1(𝑥𝑘)

−𝜆1∫ 𝐾(𝑥𝑘 , 𝑡)𝑄1(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥𝑘 , 𝑡)𝑄1(𝑡)
𝑏

𝑎

)

𝑐2(

𝑃0(𝑥𝑘)𝑄2(𝑥𝑘) + 𝑃1(𝑥𝑘)𝑄2
/(𝑥𝑘) + 𝑃2(𝑥𝑘)𝑄2

//(𝑥) +⋯+ 𝑃𝑛(𝑥𝑘)𝑄2
(𝑛)(𝑥) + 𝐷𝛼𝑄2(𝑥𝑘)

−𝜆1∫ 𝐾(𝑥𝑘 , 𝑡)𝑄2(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥𝑘 , 𝑡)𝑄2(𝑡)
𝑏

𝑎

)

⋮

𝑐𝑁 (

𝑃0(𝑥)𝑄𝑁(𝑥𝑘) + 𝑃1(𝑥𝑘)𝑄𝑁
/(𝑥) + 𝑃2(𝑥𝑘)𝑄𝑁

//(𝑥𝑘) + ⋯+ 𝑃𝑛(𝑥𝑘)𝑄𝑁
(𝑛)(𝑥𝑘) + 𝐷

𝛼𝑄𝑁(𝑥𝑘)

−𝜆1∫ 𝐾(𝑥𝑘 , 𝑡)𝑄𝑁(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥𝑘 , 𝑡)𝑄𝑁(𝑡)
𝑏

𝑎

) = 𝑔(𝑥𝑘)

(35) 

 

 

                                    Where,  𝑥𝑘 = 𝑎 +
(𝑏−𝑎)𝑘

(𝑁−𝑛+2)
;   𝑘 = 1,2,3, … , (𝑁 − 𝑛 + 1), 

An algebraic linear system with equations involving (N+1) unknown constants is thus formed by equation (35) as (N-n+1). We 

get a total of (N+1) algebraic equations with (N+1) unknowns by deriving an extra n equation from (34). To find the 

approximate answer, these equations are solved to identify the unknown constants, which are then substituted into equation 

(29) 

.  

4.2 Perturbed collocation method (PCM) for FVFIDEs 

 

 Slightly perturbed (30) from the previous sub-section 4.1 and get, 
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{
 

 𝑃0(𝑥)𝜙𝑁(𝑥) + 𝑃1(𝑥)𝜙𝑁
/(𝑥) + ⋯+ 𝑃𝑛(𝑥)𝑢𝑁

𝑛(𝑥) + 𝐷𝛼𝜙𝑁(𝑥) +

𝜆1∫ 𝐾(𝑥, 𝑡)𝜙𝑁(𝑡)
𝑏(𝑥)

𝑎

𝑑𝑡 + 𝜆2∫ 𝐾(𝑥, 𝑡)𝜙𝑁(𝑡)
𝑏

𝑎

𝑑𝑡 = 𝑔(𝑥) +∑𝜏𝑗𝑄𝑁−𝑛+𝑗(𝑥)

𝑛

𝑗=1

                        (36) 

Substitute (31) into (36) to get     

                     

{
 
 
 
 
 

 
 
 
 
 

𝑃0(𝑥)(𝑐0𝑄0(𝑥) + 𝑐1𝑄1(𝑥) + 𝑐2𝑄2(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁(𝑥)) +

𝑃1(𝑥)(𝑐0𝑄0
/(𝑥) + 𝑐1𝑄1

/(𝑥) + 𝑐2𝑄2
/(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁

/(𝑥)) +

𝑃2(𝑥)(𝑐0𝑄0
//(𝑥) + 𝑐1𝑄1

//(𝑥) + 𝑐2𝑄2
//(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁

//(𝑥)) +

⋮                                              ⋮                                               ⋮
𝑃𝑛(𝑥)(𝑐0𝑄0

𝑛(𝑥) + 𝑐1𝑄1
𝑛(𝑥) + 𝑐2𝑄2

𝑛(𝑥) +⋯+ 𝑐𝑁𝑄𝑁
𝑛(𝑥)) +

𝐷𝛼(𝑐0𝑄0(𝑥) + 𝑐1𝑄1(𝑥) + 𝑐2𝑄2(𝑥) + ⋯+ 𝑐𝑁𝑄𝑁(𝑥)) +

𝜆1 ∫ 𝐾(𝑥, 𝑡)
𝑏(𝑥)

𝑎
(𝑐0𝑄0(𝑡) + 𝑐1𝑄1(𝑡) + 𝑐2𝑄2(𝑡) + ⋯+ 𝑐𝑁𝑄𝑁(𝑡))𝑑𝑡 +

𝜆2 ∫ 𝐾(𝑥, 𝑡)(𝑐0𝑄0(𝑡) + 𝑐1𝑄1(𝑡) + 𝑐2𝑄2(𝑡) + ⋯+ 𝑐𝑁𝑄𝑁(𝑡))
𝑏

𝑎
𝑑𝑡 = 𝑔(𝑥) + ∑ 𝜏𝑗𝑄𝑁−𝑛+𝑗(𝑥)

𝑛
𝑗=1

(37)            

   

Hence, collecting like terms in (37), we have  

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑐0(

𝑃0(𝑥)𝑄0(𝑥) + 𝑃1(𝑥)𝑄0
/(𝑥) + 𝑃2(𝑥)𝑄0

//(𝑥) + ⋯+ 𝑃𝑛(𝑥)𝑄0
(𝑛)(𝑥) + 𝐷𝛼𝑄0(𝑥)

−𝜆1∫ 𝐾(𝑥, 𝑡)𝑄0(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥, 𝑡)𝑄0(𝑡)
𝑏

𝑎

)

𝑐1 (

𝑃0(𝑥)𝑄1(𝑥) + 𝑃1(𝑥)𝑄1
/(𝑥) + 𝑃2(𝑥)𝑄1

//(𝑥) + ⋯+ 𝑃𝑛(𝑥)𝑄1
(𝑛)(𝑥) + 𝐷𝛼𝑄1(𝑥)

−𝜆1∫ 𝐾(𝑥, 𝑡)𝑄1(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥, 𝑡)𝑄1(𝑡)
𝑏

𝑎

)

𝑐2(

𝑃0(𝑥)𝑄2(𝑥) + 𝑃1(𝑥)𝑄2
/(𝑥) + 𝑃2(𝑥)𝑄2

//(𝑥) + ⋯+ 𝑃𝑛(𝑥)𝑄2
(𝑛)(𝑥) + 𝐷𝛼𝑄2(𝑥)

−𝜆1∫ 𝐾(𝑥, 𝑡)𝑄2(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥, 𝑡)𝑄2(𝑡)
𝑏

𝑎

)

⋮

𝑐𝑁 (

𝑃0(𝑥)𝑄𝑁(𝑥) + 𝑃1(𝑥)𝑄𝑁
/(𝑥) + 𝑃2(𝑥)𝑄𝑁

//(𝑥) + ⋯+ 𝑃𝑛(𝑥)𝑄𝑁
(𝑛)(𝑥) + 𝐷𝛼𝑄𝑁(𝑥)

−𝜆1∫ 𝐾(𝑥, 𝑡)𝑄𝑁(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥, 𝑡)𝑄𝑁(𝑡)
𝑏

𝑎

) =

𝑔(𝑥) +∑𝜏𝑗𝑄𝑁−𝑛+𝑗(𝑥)

𝑛

𝑗=1

(38) 

 

Thus (38) gives (N+n+1) unknown constants (𝑐𝑖 ; 𝑖 ≥ 0) to be determined. We considered the initial conditions given in 

equation (27), and we obtained, 

{
 
 

 
 

𝜙𝑁(𝑎1) = 𝜓0 ⇒ 𝑐0𝑄0(𝑎1) + 𝑐1𝑄1(𝑎1) + 𝑐2𝑄2(𝑎1) + ⋯+ 𝑐𝑁𝑄𝑁(𝑎1) = 𝜓0                                                       

𝜙/
𝑁
(𝑎1) = 𝜓1 ⇒ 𝑐0𝑄

/
0
(𝑎1) + 𝑐1𝑄

/
1
(𝑎1) + 𝑐2𝑄

/
2
(𝑎1) + ⋯+ 𝑐𝑁𝑄

/
𝑁
(𝑎1) = 𝜓1                                              

𝜙//
𝑁
(𝑎1) = 𝜓2 ⇒ 𝑐0𝑄

//
0
(𝑎1) + 𝑐1𝑄

//
1
(𝑎1) + 𝑐2𝑄

//
2
(𝑎1) + ⋯+ 𝑐𝑁𝑄

//
𝑁
(𝑎1) = 𝜓2          (39) 

⋮                                                                            ⋮                                                                       
𝜙(𝑛−1)

𝑁
(𝑎1) = 𝜓(𝑛−1) ⇒ 𝑐0𝑄

(𝑛−1)
0
(𝑎1) + 𝑐1𝑄

(𝑛−1)
1
(𝑎1) + 𝑐2𝑄

(𝑛−1)
2
(𝑎1) + ⋯+ 𝑐𝑁𝑄

(𝑛−1)
𝑁
(𝑎1) = 𝜓(𝑛−1)  

 

 

Thus, equation (38) is then collocated at point 𝑥 = 𝑥𝑘 to get, 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑐0 (

𝑃0(𝑥𝑘)𝑄0(𝑥𝑘) + 𝑃1(𝑥𝑘)𝑄0
/(𝑥𝑘) + 𝑃2(𝑥𝑘)𝑄0

//(𝑥) + ⋯+ 𝑃𝑛(𝑥𝑘)𝑄0
(𝑛)(𝑥) + 𝐷𝛼𝑄0(𝑥𝑘)

−𝜆1∫ 𝐾(𝑥𝑘 , 𝑡)𝑄0(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥𝑘 , 𝑡)𝑄0(𝑡)
𝑏

𝑎

)                      

𝑐1(

𝑃0(𝑥𝑘)𝑄1(𝑥𝑘) + 𝑃1(𝑥)𝑄1
/(𝑥𝑘) + 𝑃2(𝑥𝑘)𝑄1

//(𝑥) + ⋯+ 𝑃𝑛(𝑥𝑘)𝑄1
(𝑛)(𝑥𝑘) + 𝐷

𝛼𝑄1(𝑥𝑘)

−𝜆1∫ 𝐾(𝑥𝑘 , 𝑡)𝑄1(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥𝑘 , 𝑡)𝑄1(𝑡)
𝑏

𝑎

)                       

𝑐2 (

𝑃0(𝑥𝑘)𝑄2(𝑥𝑘) + 𝑃1(𝑥𝑘)𝑄2
/(𝑥𝑘) + 𝑃2(𝑥𝑘)𝑄2

//(𝑥) + ⋯+ 𝑃𝑛(𝑥𝑘)𝑄2
(𝑛)(𝑥) + 𝐷𝛼𝑄2(𝑥𝑘)

−𝜆1∫ 𝐾(𝑥𝑘 , 𝑡)𝑄2(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥𝑘 , 𝑡)𝑄2(𝑡)
𝑏

𝑎

)       (40)

⋮

𝑐𝑁 (

𝑃0(𝑥)𝑄𝑁(𝑥𝑘) + 𝑃1(𝑥𝑘)𝑄𝑁
/(𝑥) + 𝑃2(𝑥𝑘)𝑄𝑁

//(𝑥𝑘) + ⋯+ 𝑃𝑛(𝑥𝑘)𝑄𝑁
(𝑛)(𝑥𝑘) + 𝐷

𝛼𝑄𝑁(𝑥𝑘)

−𝜆1∫ 𝐾(𝑥𝑘 , 𝑡)𝑄𝑁(𝑡)
𝑏(𝑥)

𝑎

− 𝜆2∫ 𝐾(𝑥𝑘 , 𝑡)𝑄𝑁(𝑡)
𝑏

𝑎

) =

𝑔(𝑥𝑘) +∑𝜏𝑗𝑄𝑁−𝑛+𝑗(𝑥𝑘)

𝑛

𝑗=1

 

 

  where 𝑥𝑘 = 𝑎 +
(𝑏−𝑎)𝑘

(𝑁+2)
;   𝑘 = 1,2,3, … , (𝑁 + 1). 

An algebraic linear system with equations involving (N+3) unknown constants is thus formed by equation (40). We get a total 

of (N+3) algebraic equations with (N+3) unknowns by deriving an extra n equation from (39). The unknown constants are 

found by solving these equations, and the approximate answers are then obtained by substituting them into equation (29).  

4.3   Convergence and Error analysis 

This section discusses the convergence and error analysis of the proposed SCM and PCM applied to fractional-order integral-

Volterra-Fredholm differential equations. The analysis highlights their performance and accuracy in solving these complex 

equations, evaluating their effectiveness in terms of convergence rates and error bounds. 

4.3.1 Consistency: Define the residual 𝑅𝑁(𝑥) as: 

       

{
 
 

 
 𝑅𝑁(𝑥) =∑𝑃𝑖(𝑥)𝜙

𝑖(𝑥) + 𝐷𝛼
𝑛

𝑖=0

𝜙(𝑥) + 𝜆1∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏(𝑥)

𝑎

𝑑𝑡 +

𝜆2∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏

𝑎

𝑑𝑡 − 𝑔(𝑥)

              (41) 

If 𝜙(𝑥) is the exact solution, then. 

   

{
 
 

 
 𝑅𝑁(𝑥) =∑𝑃𝑖(𝑥)𝜙

𝑖(𝑥) + 𝐷𝛼
𝑛

𝑖=0

𝜙(𝑥) + 𝜆1∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏(𝑥)

𝑎

𝑑𝑡 +

𝜆2∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏

𝑎

𝑑𝑡 − 𝑔(𝑥) = 0

                                              (42) 

 

For 𝜙𝑁(𝑥) to converge to 𝜙(𝑥) as  𝑁 → ∞ 

𝑅𝑁(𝑥) converge to 0 uniformly on [𝑎, 𝑏]: ‖𝑅𝑁(𝑥)‖ → 0 as  𝑁 → ∞ 

 

      4.3.2   Stability: Stability is determined by the properties of the matrix of the linear system obtained from collocation 

                                          𝐴𝑐 = 𝑏                                                                                                                                         (43) 
Where A is the matrix formed by evaluating the derivatives of basis functions and the fractional derivative term at the 

collocation points, c is the vector of coefficients {𝑐𝑘}, and b is the vector of 𝑓(𝑥𝑘).  Stability is ensured if the condition number 

of A remains bounded as 𝑁 → ∞. 
 

      4.3.3   Uniqueness: The linear system 𝐴𝑐 = 𝑏 has a unique solution if A is invertible. The invertibility of A is guaranteed 

if the basis functions 𝑄𝑖(𝑥) and the collocation points 𝑥𝑘  are chosen appropriately. 
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       4.3.4   Error Analysis:  

                                 The error     EN(x) = 𝜙𝑁(𝑥) − 𝜙𝑖(𝑥)                   𝑖 ≥ 0                                                                  (44)  
 

Depends on the smoothness of the exact solution 𝜙(𝑥) and the completeness of the basis functions 

‖𝑅𝑁(𝑥)‖ = ‖

‖
∑𝑃𝑖(𝑥)𝜙

𝑖(𝑥) + 𝐷𝛼𝜙(𝑥) + 𝜆1∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏(𝑥)

𝑎

𝑑𝑡 +

𝑛

𝑖=0

𝜆2∫ 𝐾(𝑥, 𝑡)𝜙(𝑡)
𝑏

𝑎

𝑑𝑡 − 𝑔(𝑥)
‖

‖
                                                (45) 

The error is bounded by 

                                           ‖𝐸𝑁(𝑥)‖ ≤ 𝐶𝑚𝑎𝑥𝑥∈[𝑎,𝑏]‖𝑅𝑁(𝑥)‖                                                                                          (46) 

 

Where C is a constant dependent on the matrix properties and the problem domain. 

 

 

5. Computational Application 

We present four numerical examples to demonstrate the effectiveness of the proposed techniques as follows: 

Example 1. Consider the FVFIDE of the form [6] 

{
 
 

 
 

    

         𝐷𝛼𝜙(𝑥) =
𝑥𝛼

Γ(1.5)
−
𝑥2

2
−
𝑥2𝑒𝑥

3
𝜙(𝑥) + ∫ 𝑒𝑥𝑡𝜙(𝑡)

𝑥

0

𝑑𝑡 + ∫ 𝑥2𝜙(𝑡)
1

0

𝑑𝑡,     (47) 

initial condition:            𝜙(0) = 0                                                                                   (48) 

The exact solution of equations (47)and (48) is 𝜙(𝑥) = 𝑥                                  (49)

for 𝛼 = 0.5                                                                                                                                                                                

 

 

Example 2. Consider the FVFIDE of the form [23] 

{
 
 
 

 
 
 

    

         𝐷𝛼𝜙(𝑥) + 𝜙(𝑥)// = 𝑔(𝑥) − 2∫ (𝑥 − 𝑡)
𝑥

0

𝑑𝑡 + ∫ (𝑥2 − 𝑡)𝜙(𝑡)
1

0

𝑑𝑡 ,                                   (49)  

boundary conditions:  𝜙(0) = 0 , 𝜙(1) = 0                                                                              (50) 

where 𝑔(𝑥) = −
1

30
− 6𝑥 +

181𝑥2

20
+ 4𝑥3  −

𝑥5

10
+
6

16
                                     

The exact solution of equations (49) and (50) is 𝜙(𝑥) = 𝑥3(𝑥 − 1)                                        (51)

for 𝛼 = 1.0                                                                                                                                                                                

 

 

 

Example 3. Consider the FVFIDE of the form [24] 

{
 
 
 
 

 
 
 
 

    

         𝐷𝛼𝜙(𝑥) = 𝑔(𝑥) +
1

2
∫

𝜙(𝑡)

(𝑥 − 𝑡)
1
2

𝑥

0

𝑑𝑡 +
1

3
∫ (𝑥 − 𝑡)𝜙(𝑡)
1

0

𝑑𝑡                                                   (52)  

initial condition:  𝜙(0) = 0                                                                                                                    (53) 

where 𝑔(𝑥) =
Γ(3)𝑥1.75

Γ(2.75)
+
Γ(4)𝑥2.75

Γ(3.75)
−
√𝜋Γ(3)𝑥

5
2

2Γ (
7
2
)

−
√𝜋Γ(4)𝑥

7
2

2Γ (
9
2
)

−
7𝑥

36
+
3

20
                                           

The exact solution of equations (52) and (53) is 𝜙(𝑥) = 𝑥2 + 𝑥3                                           (54)

for 𝛼 = 0.25                                                                                                                                                                                

 

 

Example 4. Consider the FVFIDE of the form [24]  

{
 
 
 
 

 
 
 
 

    

         𝐷𝛼𝜙(𝑥) = 𝑔(𝑥) +
1

4
∫

𝜙(𝑡)

(𝑥 − 𝑡)
1
2

𝑥

0

𝑑𝑡 +
1

7
∫ 𝑒𝑥+𝑡𝜙(𝑡)
1

0

𝑑𝑡                                                      (55)  

initial condition:  𝜙(0) = 0                                                                                                                  (56) 

where 𝑔(𝑥) =
Γ(3)𝑥1.85

Γ(2.85)
−
Γ(2)𝑥0.85

Γ(1.85)
−
√𝜋Γ(3)𝑥

5
2

4Γ (
7
2
)

+
√𝜋Γ(2)𝑥

3
2

4Γ (
5
2
)

−
𝑒𝑥+1 − 3𝑒𝑥

7
                                           

The exact solution of equations (55) and (56) is 𝜙(𝑥) = 𝑥(𝑥 − 1)                                          (57)

for 𝛼 = 0.15                                                                                                                                                                                
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5.1 Numerical results and graphs representation 

We applied the proposed methods (SCM and PCM) for the different computational lengths and the approximate results from 

the SCM and PCM are compared with the method available in the literature and presented as follow: 

Example 1.    

{
𝜙(𝑥𝛼=0.5)𝑆𝐶𝑀 ≅ 0.9999999𝑥 − 2.6395136𝑥2𝑒 − 9 + 5.3492991𝑥3𝑒 − 9 − 2.5222864𝑥4𝑒 − 9

𝜙(𝑥𝛼=0.5)𝑃𝐶𝑀 ≅ 1.00000002𝑥 − 9.65002896𝑥2𝑒 − 9 + 1.486998𝑥3𝑒 − 8 − 6.9573838𝑥4𝑒 − 9
      (58) 

        

                     Table 1. Numerical solutions for Example 1 at the 𝜶 = 𝟎. 𝟓 and 𝑵 = 𝟒     

𝑥 Exact solution SCM PCM         [6] 

0.0 0.000000000000 0.000000000000 0.000000000000 0.000000000000 

0.1 0.100000000000 0.100000000000 0.100000000000 0.100000000000 

0.2 0.200000000000 0.200000000000 0.200000000000 0.200000000000 

0.3 0.300000000000 0.300000000000 0.300000000000 0.300000000000 

0.4 0.400000000000 0.400000000000 0.400000000000 0.400000000000 

0.5 0.500000000000 0.500000000000 0.500000000000 0.500000000000 

0.6 0.600000000000 0.600000000000 0.600000000000 0.600000000000 

0.7 0.700000000000 0.700000000000 0.700000000000 0.700000000000 

0.8 0.800000000000 0.800000000000 0.800000000000 0.800000000000 

0.9 0.900000000000 0.900000000000 0.900000000000 0.900000000000 

1.0 1.000000000000 1.000000000000 1.000000000000 1.000000000000 

 

Example 2.    

{
𝜙(𝑥𝛼=1.0)𝑆𝐶𝑀 ≅ 1.000𝑒 − 11 − 3.8𝑥𝑒 − 10 − 3.00𝑥

2𝑒 − 10 − 0.999001𝑥3 + 0.99999𝑥4

𝜙(𝑥𝛼=1.0)𝑃𝐶𝑀 ≅ −1.38𝑥𝑒 − 9 + 7.000𝑥2𝑒 − 9 − 1.0000𝑥3 + 1.000000004𝑥4
             (59) 

                          Table 2.  Absolute errors for Example 2 at the 𝛼 = 1.0 and 𝑁 = 4 

𝑥 SCM PCM [23] 

    

0.1 3.02E-11 3.02E-11 3.395E-3 

0.2 7.30E-11 7.30E-11 6.465E-3 

0.3 1.00E-10 1.00E-10 8.649E-3 

0.4 1.50E-10 1.50E-10 9.362E-3 

0.5 1.80E-10 1.80E-10 8.227E-3 

0.6 2.30E-10 2.30E-10 5.285E-3 

0.7 2.10E-10 2.10E-10 1.175E-3 

0.8 3.10E-10 3.10E-10 2.719E-3 

0.9 2.70E-10 2.70E-10 4.167E-3 

 

Example 3.    

{
𝜙(𝑥𝛼=0.25)𝑆𝐶𝑀 ≅ −5.00𝑥𝑒 − 9 + 1.0000000𝑥2 + 0.999999999𝑥3 + 4.694697𝑥4𝑒 − 8

𝜙(𝑥𝛼=0.25)𝑃𝐶𝑀 ≅ 1.000000𝑥𝑒 − 9 + 1.000000𝑥
2 + 0.9999999𝑥3 + 1.649235𝑥4𝑒 − 8

                 (60) 

                 Table 3. Numerical solutions for Example 3 at the 𝛼 = 0.25 and 𝑁 = 4   

𝑥 Exact solution SCM PCM 

0.0 0.000000000000 0.00000000000 0.00000000000 

0.1 0.011000000000 0.01099999975 0.01099999975 

0.2 0.048000000000 0.04799999977 0.04799999977 

0.3 0.117000000000 0.11699999980 0.11699999980 

0.4 0.224000000000 0.22399999980 0.22399999980 

0.5 0.375000000000 0.37499999970 0.37499999970 

0.6 0.57600000000 0.5759999996 0.5759999996 

0.7 0.83300000000 0.8329999997 0.8329999997 

0.8 1.15200000000 1.1520000000 1.1520000000 

0.9 1.53900000000 1.5390000020 1.5390000020 

1.0 2.000000000 2.0000000050 2.0000000050 
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Example 4.    

{
𝜙(𝑥𝛼=0.15)𝑆𝐶𝑀 ≅ 1.0000𝑒 − 10 − 1.0000𝑥 + 0.999999𝑥2 + 1.442766𝑥3𝑒 − 9 − 6.1588616𝑥4𝑒 − 8

𝜙(𝑥𝛼=0.15)𝑃𝐶𝑀 ≅ −1.000𝑒 − 10 − 1.0000022𝑥 + 1.00000𝑥
2 − 1.558914𝑥3𝑒 − 7 + 6.96522𝑥4𝑒 − 8

 (61 

              Table 4. Numerical solutions for Example 4 at the 𝛼 = 0.15 and 𝑁 = 4     

𝑥 Exact solution SCM PCM [24] 

0.0 0.00000000000 0.00000000000 0.00000000000 0.00000000000 

1/8 -0.1093750000 -0.1093749999 -0.1093750015 -0.1088000000 

2/8 -0.1875000000 -0.1874999999 -0.1875000011 -0.1861000000 

3/8 -0.2343750000 -0.2343750000 -0.2343750002 -0.2320000000 

4/8 -0.2500000000 -0.2500000001 -0.2499999997 -0.2497000000 

5/8 -0.2343750000 -0.2343750000 -0.2343749999 -0.2332000000 

6/8 -0.1875000000 -0.1875000001 -0.1875000007 -0.1862000000 

7/8 -0.1093750000 -0.1093750000 -0.1093750017 -0.1081000000 

 

 

 

 

 

 

 

 
Figure. 1. Depict numerical solutions for example 1 

 

 
Figure. 2. Depict numerical solutions for example 2 
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Figure 3. Depict numerical solutions for example 3 

 

 

 
Figure 4. Depict numerical solutions for example 4 

 

 

 

5.2 Discussion 

FVFIDEs have numerous applications in disciplines including physics, engineering, and biology. The significance of FVFIDEs 

is an important subject of study and their fractional derivatives and integrals, which stand for non-local interactions and memory 

effects, these equations combine aspects of the Volterra and Fredholm equations which poses challenges of obtaining the 

analytical solutions or unattainable in most situations. Therefore, we considered four examples from the available literature and 
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the results demonstrated a good agreement with the exact solutions and the existing methods in which the results are presented 

in Tables 1,2,3, and 4 and Figures1,2,3 and 4.  

 

6.0 Conclusion 

Solving FVFIDEs is a complex yet essential task due to their extensive applications in modelling systems with memory, 

nonlocal interactions, and hereditary properties. The two proposed techniques (SCM and PCM) have proven effective for 

FVFIDEs considered in this paper. The results presented in the tables and graphs demonstrate the efficacy of these methods in 

solving FVFIDEs, yielding solutions with remarkable accuracy. The comparison with existing methods available in the 

literature, the SCM and PCM tend to be less computational steps length N for high accuracy and convergence (see Tables 1, 2, 

3, and 4). However, PCM’s reduction in the number of collocation points can make it more efficient than SCM and other 

traditional methods, especially for problems where high accuracy with fewer points is desired. Although both methods exhibit 

comparable accuracy, making it challenging to identify a single superior approach, we conclude that both techniques are 

effective and viable options for solving similar problems in applied sciences and computational engineering. All simplifications, 

computations, and plots were performed using the Maple 18 software package (see appendix).  
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Step 4 
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