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 This study estimated the reproduction number, which was used to determine the 

rate of spread of a communicable disease at sub-national levels in Nigeria and 

thereby provides state specific information needed to plan public health 

interventions. A Susceptible-Infectious-Recovered (SIR) model was first 

formulated from the compartmentalization of the whole disease population, and 

the SIR parameters for rate of spread of coronavirus (COVID)-19 computed and 

the reproduction numbers of infection were estimated across states in Nigeria. A 

log-linear model was also formulated from an exponential growth curve of 

COVID-19 infection, and thereafter the basic reproduction numbers were as well 

determined. The SIR analysis yielded the median reproduction number of 

COVID-19 transmission rate across states in Nigeria of 0.04473, range between 

0.00082 and 1.2870, while the log-linear model yielded the median reproduction 

number of 2.003 ranges between 1.9759 and 2.0262 The results further reveals 

that there were significant disparities emerged when applying these models to 

the Nigerian context with notable under-estimation in some states perhaps due 

to under-reported cases at the early stage. The second approach, log-linear 

model with time-dependent transmission and removal rates to account for 

possible random errors across Nigeria states and estimates of reproduction 

numbers across states are greater than one ( 1tR ), may be due to the 

specified formula.  The predictive ability of the log-linear model may be more 

suitable for modeling the incidence of COVID-19 and other infectious diseases 

in both the growth and decay phases, as well as for short-term predictions of the 

growth (or decay) of the number of new cases when no intervention measures 

had been recently implemented before the advent of vaccines. The general 

findings may reflect the effectiveness of virus control strategies and non-

pharmaceutical interventions. 
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1. Introduction 

The novel coronavirus disease 2019, COVID-19, caused by the severe acute respiratory syndrome virus 2 (SARS-CoV-2), has 

had profound impacts on social and economic life worldwide. The virus outbreak was first reported in Wuhan, China, in late 

December 2019 by the World Health Organization[1]. Subsequently, WHO later declared it as a global pandemic on March 11, 

2020 [2]. As the pandemic unfolded, governments at sub-national, national, and regional levels  implemented a range of 

measures aimed at mitigating the severity of the disease and reducing its fatality rate as highlighted in [3]. These measures 

included household-based prevention models such as hand hygiene, respiratory hygiene, remote work, self-isolation, and 

adherence to standard public health safety recommendations in  WHO guidelines[1] such as reducing exposure, maintaining 

hand hygiene, using face masks, and following good food safety practices. The COVID-19 pandemic has displayed apparent 

regional variations in its case-fatality rate, as reported by WHO [1], and variations in the basic reproduction number  as 
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observed by[4,5, 6]. These variations are indicative of the spatial heterogeneity of preventive measures and their effects across 

different regions.  The timeliness in the individual country response and its effectiveness of mitigation measures have been  

emphasized in [7], and highlighted the importance of their timely implementation. Other factors, such as the proportion of 

individuals who were unable to work remotely, especially socio-economically disadvantaged individuals relying on informal 

activities, may also influence the effectiveness of these measures. 

Traditionally, epidemiological models such as the Susceptible-Infectious-Recovered (SIR) models have been extensively 

employed to explain COVID-19 transmission dynamics. Recent research has extended the use of mathematical modelling to 

understand and estimate the complex regional variations in disease propagation. For instance, Jaya et al.[8]  explored a Bayesian 

spatiotemporal method and estimated risk prediction for joint assessment of  COVID-19 patients at intensive care unit (ICU) 

admissions and deaths in Sweden. The approach offered a wide disparity estimated in COVID-19 incidence in the sub-national 

context in Sweden. Similarly, Ferrández et al. [9] employ a multi-objective optimization approach to estimate parameters of 

compartmental epidemiological models on Ebola Virus Disease epidemics, thereby demonstrating the  sophistication ability of 

a Bayesian method to understand and predict outbreaks of a highly contagious disease . Chu [10]investigated COVID-19 

infections in Italy and Spain using two epidemiological growth models, revealing that the log-linear model is more suitable for 

short-term predictions of new case growth compared to the traditional SIR model, while Al-Ani [11], on the other hand, 

employed nonlinear growth models such as Gompertz, Richards  and Weibull Probability Distributions to study the daily 

cumulative number of COVID-19 cases in Iraq. The Weibull model was adjudged to be the most effective model in describing 

the epidemic curve of COVID-19 and estimating crucial epidemiological parameters of the peak of daily cumulative cases, 

which could facilitate efficient monitoring of the epidemic's evolution in Iraq. 

The early dynamics of COVID-19 transmission and its control strategies were investigated by [12], who offer insights into the 

potential impact of interventions during the emerging stages of the pandemic, while [13]unravel the patterns that underpin its 

initial spread, while [14] estimated the extreme COVID-19 mortality risks at sub-national levels having given consideration to 

geographic disparities in mortality rates. In [15], a comprehensive mathematical modelling was undertaken to analyse and 

evaluate  the COVID-19 pandemic in Nigeria. Their research emphasizes the importance of timely intervention measures in 

shaping disease outcomes.[16]focuses on mathematical modelling of COVID-19 spread in China while estimating the number 

of undetected cases and analysing the impact of different intervention measures. Furthering the understanding of COVID-19 

transmission dynamics, [17]provide real-time forecasts of COVID-19 epidemic progression in China, providing invaluable 

insights into its potential trajectory, while in [18] a time-varying transmission dynamic method  was exploited to study the 

COVID-induced Pneumonia disease in China, and the approach provides an in-depth understanding of its evolving spread 

patterns in the country.  

Other studies have justified the incorporation of spatially structured models in COVID-19 transmission dynamics. For instance,  

Roelofs et al.,[19] investigated the intricate interplay between spatial mobility patterns and COVID-19 incidence during the 

pandemic's second wave in the Netherlands, and they found that the spatial determinants are significant confounders of  COVID-

19 transmission. Additionally, studies such as[20]highlight the significance of undocumented infections in facilitating the rapid 

dissemination of SARS-CoV-2, calling attention to the role of asymptomatic carriers in fuelling the pandemic's spread. Also in 

[21] , the basic reproduction number of COVID-19 was estimated for countries across Africa and the study provided insights 

into the disease's transmissibility at the earlier stage of the COVID-19 pandemic in the African continent.  

Despite these valuable studies at national and continental levels, there is a need to further investigate the regional variations of 

COVID-19 transmission, particularly in countries like Nigeria. Understanding these variations at sub-national levels is essential 

for tailoring targeted interventions and optimizing the allocation of resources for disease control and prevention efforts. This 

research aims to estimate the growth models of COVID-19 transmission rates at sub-national levels in Nigeria. This study 

provides valuable insights in shaping policies and strategic actions needed to be taken to effectively mitigate pandemic in 

different regions of Nigeria. The optimal applicability of infection disease modeling and model adequacy would be measured 

by its model ability in determining the transmission rates and lowering the trajectory curves.  

This paper is organized as follows: The study design and data section use detailed COVID-19 incidence data from Nigeria for 

the main analysis and provides a brief summary of the findings. This section also offers insights into the emergence and spread 

of COVID-19 in Nigeria, including geographical maps that place Nigeria in the context of its neighboring states.  The method 

section outlines the Susceptible-Infectious-Recovered model and the log-linear model used to estimate basic reproduction 

number and effective reproduction number as measures of the infectiousness of diseases an.  Section 4 presents the findings and 

discussions of the results. The final section presents the concluding remarks of the study. 

 

 

 

 

2. Study Design and Methods 
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2.1 Data Source 

The data source for this study comprises official statistics provided by the Nigeria Center for Disease Control (NCDC), located 

in Abuja, Nigeria. The first documented COVID-19 case was on February 27th, 2020 and reported by the Ministry of Health 

(MoH). Since that date, the NCDC has been delivering daily updates on the COVID-19 situation, encompassing total cases, tests 

conducted, recoveries, fatalities, and active cases. This dataset is available for download at the website of the Nigeria Centre for 

Disease Control (NCDC, 2021). The study uses daily COVID-19 case reports in Nigeria from February 27th, 2020 to January 

2nd, 2022. Weekly case aggregates were formed, excluding weeks 35-37 of 2020 and weeks 21-24, 30, and 31 of 2021. The 

study covers 232,157 reported cases sourced from the Nigeria Centre for Disease Control (NCDC, 2021) as collected from all 

36 states and FCT, Abuja with emphasis on contiguous states (37 districts) is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Map of Nigeria showing 37 districts (36 states and Federal Capital Territory, Abuja) and states grouped into six 

geo-political zones. 

 

2.2. Formulation of Susceptible-Infectious-Recovered (SIR) Model 

The compartmental models used to mathematically describe the spread of infectious diseases within populations serve as a 

valuable tool as described in [23].  The study adopts the susceptible-infectious-recovered (SIR) model initially proposed by[24] 

and  a modified version by [25]. Other applications were recently employed in several infectious disease studies COVID-19 in 

Spain and Italy [10], reproduction number of COVID-19 in different African countries [21]and spatial mobility patterns in the 

Netherlands [19]. In the traditional SIR model, the entire population was categorized into three segments which comprised those 

susceptible (S) to the disease but not yet infected, those who are infectious (I), and those who have recovered (R) and are immune 

to the disease or have passed away. 

The SIR model operates under the assumption of a fixed population size N. According to the World Health Organization (WHO) 

[2], the entire population is considered susceptible to COVID-19 infection, intensive care (IC) admission, and the potential 

outcome of death due to COVID-19 infection. For this study, the projected populations of each state (sub-nationals) for the year 

2020 serve as the susceptible population. 

Designating the variables S(t), I(t), and R(t) as the counts of individuals within the respective compartments mentioned earlier, 

as functions of time t, we adopt a SIR model as described by [22]. This SIR model was formulated as a set of three ordinary 

differential equations and associated initial values conditions given as equations (1)-(3) by   

 
𝑑𝑆

𝑑𝑡
= −

𝛽𝐼𝑆

𝑁
,               𝑆(0) = 𝑆0 ≥ 0       (1) 

𝑑𝐼

𝑑𝑡
=  

𝛽𝐼𝑆

𝑁
− 𝛾𝐼,         𝐼(0) = 𝐼0≥ 0                                                            (2)     

𝑑𝑅

𝑑𝑡
=  𝛾𝐼,             𝑅(0) = 𝑅0 ≥ 0,           (3) 
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where 



=r  is the relative removal rate. In equation (1), it indicates that 0

)(


dt

tdS , i.e., in the elapse of time, the susceptible 

population )(tS  in the compartment will be decreased. The infected population, )(tI  initially increases exponentially, and 

then moves to a plateau, and finally shrinks to zero if the disease is abolished completely after a finite time interval as 

described in [26, 27].   

At 0=t the initial conditions of the model are described in [28] as 

0)0(,0)0(,0)0( 00 === RIISS   associated with  SI  .  (4) 

According to [27], these initial conditions stated in equations (4) and it would also ensure that the condition  SI   holds.  

Furthermore, assuming )(tN  to be constant for a closed population, implies that the analyst needs to focus on S and I .  By 

adding up equations (1), (2), and (3), we obtain:  

0
)()()(
=++

dt

tdR

dt

tdI

dt

tdS
      (5) 

 

And integrating we get we get the total population size in the SIR model as 

 

)()()()( tNtRtItS =++        (6) 

The set of equations (1)-(3) encapsulate the dynamics of an infectious disease outbreak and elucidate the rates of change in the 

compartments within the population. The model assumes standard incidence, a recovery (removal) rate of    as defined in 

equation (3), and a short enough time span for analysis where )(tN  remains constant  (i.e., no births or deaths altering the 

susceptible population).  Additionally, the COVI-19 transmission processes of the SIR model are guided by the parameters, 

infection rate (  ) and recovery rate ( ), representing the transition rates from S to I (Susceptibility to Infection) and from I to 

R (Infection to Recovery or Death).  

From equation (2) above, SIR model can be formulated in terms of reproduction number 0R  as  
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Per-capita transmission is maximized when S ≈ N  

( )IR
dt

dI
10 −=                                      (8) 

The disease infection (I) increases if 10 R , decreases if 10 R .  0R  is the   basic reproductive number = β x 1/γ = β x (average 

duration of infection), which indicates that the average number of secondary infections caused by an infectious individual when 

the population is almost entirely susceptible. For further readings SIR model see [22] and [29]. 

Recently, other studies have employed multivariate Analyses of COVID-19 pandemic by investigating the socio-demographic 

factors of the population such as COVID-19-related mortality in USA [30], and spatial modeling of COVID-19 fatality in [31]. 

Other works have studies have employed different versions of mathematical models in the literature that try to describe the 

dynamics of the evolution of COVID-19. A non-linear graphical modeling of preventive actions and healthcare factors is detailed 

in [32]. Three phenomenological models are proposed by [33] for early COVID-19 pandemic in China, which were validated 

with outbreaks of other diseases different from COVID-19, which have been used to generate and assess short-term forecasts of 

the cumulative number of reported cases.  Other works such as in [34] propose SEIR-type models with little variations and some 

of them incorporate stochastic components. COVID-19 is a disease caused by a novel virus with account of its known specific 

characteristics. 
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2.3 Reproduction Number (𝐑𝟎) Estimation 

The basic reproduction number plays an important role to explain the outbreak of the epidemic disease. This number indicates 

the likelihood of recovery from the infectious disease in society. The basic reproduction number, denoted as 𝑅0, which was  

developed to study demographers  in the early 20th century, 𝑅0 found its way into the realm of infectious disease research in the 

1950s as stated in [35].  From the SIR model presented earlier, the basic reproduction number is computed as 

 

𝑅0 =
𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑡ℎ𝑒 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒
=

𝛽

𝛾
       (9) 

At the equilibrium condition stated in equation (5) holds and using the first two terms, then the basic reproduction number can 

be derived at time, 0=t . The expected number of secondary infections arising from a single individual during their entire 

infectious period in a population of susceptible individuals as described by[22], 𝑅0 has cemented its status as a traditional concept 

in epidemiological studies. In simpler terms, it quantifies the projected number of people an infected individual will go on to 

infect. 

 

The 𝑅0 value serves as a vital indicator of the severity of an infectious disease outbreak as highlighted in previous studies[35; 

36]and summarized as follows:  If 𝑅0 < 1, each infected individual is expected to transmit the disease to less than one individual 

on a weekly average, leading to the disease dying out. However, if  𝑅0 = 1 , each infected individual will infect exactly one 

person on weekly average (equivalent 7 daily rate) maintaining a stable level of spread. If 10 R ,  the infected individual would 

be expected to transmit the disease to more than one person on a daily average (7 days per week equivalent), which indicates 

that the disease will continue to spread exponentially in a pandemic. This value can be estimated by substituting the (estimated) 

optimal values of β and γ as outlined in[22,37].  In general,  the reproduction number, 𝑅0 holds in a scenario where no individual 

was already infected or immune to the disease. This assumption might hold more validity at the initial stages of an outbreak.  

However, in a real-world outbreak, an infectious disease transmission is seldom captured at the precise moment when the 

infected individual had contact with a susceptible one. Additionally, it is important to note that 𝑅0 values computations under 

different models may varying under different environments, see Heffernan et al. [35]. As such, the specific model and its 

associated parameters play a significant role in determining the 𝑅0 value. 

 

2.4 Log-linear model 

The state count data of infections constitute the response, ity assumes to be exponentially distributed over time 37,....,1=i  (36 

states and FCT-Abuja), 83.,,.........1=t  (time), for the cases of the COVID-19 pandemic time-dependent model. The log-

linear relationship of COVID-19 infection cases over time as a transformation of exponential distribution of growth curve rate 

presents a straightforward approach for capturing the incidence of infectious diseases as shown in growth curves presented in 

Figure 2. Generally, the course of infectious disease outbreaks can be divided into two phases: the growth phase and the decay 

phase. 

In this study, the initial growth rate is studied at sub-national levels (states) as presented in Figure 1. It could be observed that 

for most affected states in Nigeria, the weekly incremental incidence exhibits an approximate exponential trend at the early 

stage. The daily COVID-19 incidences were aggregated to weekly approximately follows a sigmoid curve as indicated in the 

plot. The log transform of the curves can be expressed in the form of a log linear of exponential distribution given by 

 

t + X +  = )( Log 10  i
       (10) 

By ignoring the state-effect covariates (e.g. socio-demographic factors, X ),  equation (10 ) can be simply re-written as 

separate time- dependent log linear models for confined cases, recovered and death respectively as given by  

iji,C t +  = )log( C

it

C

i         (11a) 

ijRi, t +  = )log( R

it

R

i r        (11b)        

ijiD, td +  = )log( D

it

D

i        (11c)                                                                                                                  
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Where i i denotes the overall of state-specific -risk ( intercept) COVID-19 incidence in 
thhi , state  as indicated in the set of   

equations (11a) -  (11 c) for confirmed(C), recovered (R) and death (D) respectively and  indicated in superscript , here ir

denoted the growth rate of the invectives at state, i  and  d  denoted the death rate and t  the  duration of infected population (in 

number of days or weeks)  since the first confirmed cases, and i are the intercepts respectively of 
thi state.  The linear 

relationship is frequently used in infectious disease epidemiology, with the term 1/b interpreted as mean generation interval in 

Ferguson et al.[38] or as duration of the infectious period as detailed in [39]. 

 

The log-linear model was fitted to obtain the optimal values of the parameters the incidence package[40] in   R programming 

(R Development Core Team, 2020). The estimated parameters of the fitted models were then used to compute the trajectory of 

the incidence up until the peak incidence in the growth phase.  Finally, 
0R may be determined from the intrinsic growth rate 

of the infected population The basic reproduction number 
0R value was later computed using the model parameters of the log-

linear models, which are derived from the exponentially distribution of the infections as a time –dependent transmissions.  the 

linear relationship and the growth(slope) rate ir  as defined in[41] and  
0R  is computed as 

d

r
R +=10         (12) 

where ir  is the estimated exponential growth rate for infected cases and d  is the death rate as indicated in equations (11 a, b, 

c) and d denotes the same rate as γ in equation (3). A good review of basic compartmental disease transmission models is 

provided by Hethcote [22] and a recent wider review of  
0R  as given by Heffernan et al. [35].  A number of recent studies have 

used this approach, including Pybus et al. [39] and Mills et al. [42]. 

 

3. Application to COVID-19 infection Data and Data Analysis Results 

3.1. Exploratory Data Analysis 

Table 1 presents an overview of the COVID-19 transmission dynamics across different states within Nigeria. Notably, during 

the initial surge of the virus within the country, Taraba State emerged as the epicenter, registering the highest incidence with six 

confirmed cases. Similarly, states such as Akwa-bom, Gombe, and Rivers demonstrated a notable presence in the early stages 

of the outbreak, each reporting five confirmed cases. Moreso, Abia, Kogi, Kwara, and Zamfara exhibited an initial surge 

characterized by two confirmed cases. Conversely, certain states, including Anambra, Lagos, Oyo, Osun, and Yobe, along with 

the remaining states, confronted a more contained initiation, each reporting a solitary confirmed case during the preliminary 

surge of COVID-19 transmission. As the pandemic progressed, a notable pattern emerged, with Lagos becoming the epicenter 

of the outbreak, recording the highest number of cases at 3,393. Following Lagos, the Federal Capital Territory, Abuja, ranked 

second with 734 confirmed cases. Interestingly, Kogi State was a unique case, consistently maintaining its initial count of only 

two cases throughout the pandemic. This indicates that most states in Nigeria experienced a steady increase in reported COVID-

19 cases, with Kogi State being the notable exception. 

 

 Table 1: Descriptive summary of COVID-19 transmission across states in Nigeria (first case and peak case) 

State Date of First Case 0=t  Date of Peak Case Peak Case Date Diff. (days) 

Abia 20th April, 2020 2 2nd February, 2021 103 288 

Adamawa 22nd April, 2020 1 4th March, 2021 180 316 

Akwa-Ibom 1st April, 2020 5 12th August, 2021 141 498 

Anambra 10th April, 2020 1 16th February, 2021 344 312 

Bauchi 1st April, 2020 1 10th March, 2021 75 343 

Bayelsa 26th April, 2020 1 16th June, 2020 54 51 

Benue 4th May, 2020 1 2nd January, 2022 202 608 

Borno 19th April, 2020 1 26th December, 2021 166 616 

Cross River 6th July, 2020 5 26th February, 2021 57 235 

Delta 7th April, 2020 1 25th October, 2021 508 566 
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Ebonyi 26th April, 2020 1 12th July, 2020 108 77 

Edo 23rd March, 2020 1 21st December, 2021 155 638 

Ekiti 18th March, 2020 1 21st August, 2021 49 521 

Enugu 28th April, 2020 1 2nd February, 2021 81 280 

FCT 22nd March, 2020 1 23rd December, 2021 734 641 

Gombe 20th April, 2020 5 3rd November, 2021 109 562 

Imo 25th April, 2020 1 26th September, 2021 124 519 

Jigawa 19th April, 2020 1 7th May, 2020 44 18 

Kaduna 28th March, 2020 1 22nd January,2021 545 300 

Kano 11th April, 2020 1 6th February, 2021 124 301 

Katsina 7th April, 2020 1 17th December, 2020 70 254 

Kebbi 26th April, 2020 1 9th December, 2020 45 227 

Kogi 27th May, 2020 2 27th May, 2020 2 NA 

Kwara 6th April, 2020 2 23rd December, 2020 397 261 

Lagos 16th March, 2020 1 22nd December, 2021 3,393 646 

Nasarawa 28th April, 2020 1 29th December, 2021 92 610 

Niger 10th April, 2020 1 1st February, 2021 69 297 

Ogun 27th February, 2020 1 9th June, 2020 108 103 

Ondo 3rd April, 2020 1 4th September, 2021 180 519 

Osun 25th March, 2020 1 9th February, 2021 120 321 

Oyo 22nd March, 2020 1 25th December, 2021 234 643 

Plateau 23rd April, 2020 1 15th January, 2021 273 267 

Rivers 25th March, 2020 1 30th December, 2021 420 645 

Sokoto 20th April, 2020 1 9th January, 2021 58 264 

Taraba 26th April, 2020 6 20th October, 2021 109 542 

Yobe 29th April, 2020 1 7th April, 2021 24 343 

Zamfara 24th April, 2020 2 10th January, 2021 45 261 

 

Figure 1 lots of  the weekly incremental growth trend in COVID-19 transmission across states with Lagos, FCT-Abuja, Ogun, 

Oyo, Rivers and Jos, Plateau state having the lead in the trend across states in Nigeria.  In Figure 2, the graph presents the 

plots of all cumulative incidences appears to show an exponential trend, increasing slowly for the first few weeks after the first 

confirmed cases before growing rapidly. 

Figure 2plots the weekly cumulative incidence for Nigeria and its 36 states and FUT- Abuja (37 districts) over the study period. 

The cumulative incidences appear to describe an exponential growth, which rose slowly for the first 3-5 weeks after the first 

cases were confirmed before growing rapidly. Checking through the curve plots on a log-linear scale as shown in Figure 2, it 

was found that the logarithm of COVID-19 confirmed cases for most states exhibited an approximate non-linear trend suggesting 

that cumulative incidence truly represent exponential curve. However, the majority of states (sub-nationals) and overall cases 

for the country did not demonstrate exactly linear thread, but resemble slightly exponential (or sigmoid) growth curves. 

 

3.2 Estimation SIR Model parameters of COVID-19 infections at state levels in Nigeria 

Table2 presents the results of parameter estimates of the incidence of COVID-19 infections for each state, the projected 

population size, the cumulative number of cases at 52 weeks after the first confirmed cases, and estimates for R0. The estimates 

of the parameters β and γ do not show any particular trends and this is reflected in the estimated R0 values.  

 

From Table 2, it can be seen that the estimated reproduction number R0 values for all states in Nigeria fall between 0 and 1, 

except FCT-Abuja and Lagos, which are epicenters and the entry points to many airlines. This suggests that the COVID-19 

disease infection would likely fade out in a short in Nigeria. The summary of the overall prevalence rate of COVID-19 across 

the states in Nigeria using the SIR model is presented in Figure 3. 
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The information presented in Figure 3 demonstrates that as time passes, the infection rate tends toward zero. This suggests that 

the COVID-19 will likely fade out over time. 

 

3.3. Log-Linear Model Analysis Across States in Nigeria 

Table 3 presents the estimates summary of the log-linear model for confirmed, recovery and fatalities of COVID-19 across states 

in Nigeria. From Table 3, the alpha (α) values indicate the approximate (integer) weekly averages of infection, recovery, and 

death cases. On the other hand, the slope   values represent the corresponding incidence rates. Notably, for the majority of 

states, the infection rates (confirmed cases) are below 1, which suggests that the growth curves would ultimately reach a saddle 

point in the long run.In Figure 4, the confirmed case data from Table 3 are synthesized to ascertain the statistically significant 

levels of the model parameters. The visual representation in Figure 4 displays the 95% confidence intervals (CI) of the model 

parameters concerning confirmed cases across 36 states and the Federal Capital Territory, Abuja. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                Figure 1: Weekly incremental incidences of COVID-19 confirmed cases (transmission) across some states 

in Nigeria  over the study period 
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Figure 2:  Plots the weekly cumulative incidence for Nigeria and its 36 states and FCT- Abuja (37 districts) over the study 

period. 

 

 

 

 

 

 

 

Table 2 Estimated SIR model parameters and R0 of COVID-19 cases at state levels in Nigeria  

State Population* (2020) Cumulative 

Case 
    R0 

Abia 3,841,943 103 1.34047E-05 0.003 0.0270 

Adamawa 4,536,948 180 3.96743E-05 0.003 0.0878 

Akwa-Ibom 4,780,581 141 5.89887E-06 0.002 0.0206 

Anambra 5,599,910 344 6.14296E-05 0.003 0.1342 

Bauchi 7,540,663 75 9.94608E-06 0.003 0.0239 

Bayelsa 2,394,725 54 2.25496E-05 0.020 0.0081 

Benue 5,787,706 202 3.49016E-05 0.002 0.1485 

Borno 5,751,590 166 2.88616E-05 0.002 0.1245 

Cross River 4,175,020 57 2.73053E-06 0.004 0.0045 

Delta 5,307,543 508 9.57129E-05 0.002 0.3792 

Ebonyi 3,007,155 108 3.59144E-05 0.013 0.0194 

Edo 4,461,137 155 3.47445E-05 0.002 0.1552 

Ekiti 3,350,401 49 1.46251E-05 0.002 0.0533 

Enugu 4,396,098 81 1.84254E-05 0.004 0.0361 

FCT-Abuja 2,702,443 734 0.000271606 0.002 1.2187 

Gombe 3,623,462 109 6.01635E-06 0.002 0.0237 

Imo 5,167,722 124 2.39951E-05 0.002 0.0872 

Jigawa 6,779,080 44 6.49056E-06 0.056 0.0008 

Kaduna 8,324,285 545 6.54711E-05 0.003 0.1375 

Kano 14,253,549 124 8.69959E-06 0.003 0.0183 

Katsina 9,300,382 70 7.52657E-06 0.004 0.0134 

Kebbi 5,001,610 45 8.9971E-06 0.004 0.0143 

Kogi 4,153,734 2 2.40747E-07 0.000 NA 

Kwara 3,259,613 397 6.08968E-05 0.004 0.1113 
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Lagos 12,772,884 3,393 0.000265641 0.002 1.2012 

Nasarawa 2,632,239 92 3.49512E-05 0.002 0.1492 

Niger 6,220,617 69 1.10921E-05 0.003 0.0231 

Ogun 5,945,275 108 1.81657E-05 0.010 0.0131 

Ondo 4,969,707 180 3.62194E-05 0.002 0.1316 

Osun 4,237,396 120 2.83193E-05 0.003 0.0636 

Oyo 7,512,855 234 3.11466E-05 0.002 0.1402 

Plateau 4,400,974 273 6.20317E-05 0.004 0.1159 

Rivers 7,034,973 420 5.97017E-05 0.002 0.2696 

Sokoto 5,863,187 58 9.89223E-06 0.004 0.0183 

Taraba 3,331,885 109 5.45237E-06 0.002 0.0207 

Yobe 3,398,177 24 7.06261E-06 0.003 0.0170 

Zamfara 5,317,793 45 4.23108E-06 0.004 0.0077 

Nigeria 201,135,262     
* Country Meters, C. (2020). Nigeria Population 

 

 

 

 
Figure 3: SIR Model Trend 

 

 

 

Table 3: Estimates summary of log-linear models on confirmed, recovery and Fatalities of COVID-19 across states in Nigeria 

States Confirmed  Recovered  Fatality  R0 
 

      r             d  
 

d

r
R +=10  

 

Abia 17 0.989  17 0.984 2 1.0582 1.9940  

Adamawa 9 0.989  5 0.978 2 1.1099 1.9940  

Akwa-Ibom 9 1.008  9 1.010 1 1.1120 2.0120  

Anambra 7 1.000  7 0.987 1 1.1429 2.0050  

Bauchi 17 0.989  16 0.982 1 1.0582 1.9940  

Bayelsa 9 0.996  11 0.989 1 1.1107 2.0010  

Benue 8 0.995  5 0.986 1 1.1244 2.0000  

Borno 2 1.007  12 0.972 2 1.5035 2.0121  

Cross River 4 1.006  5 0.999 1 1.2515 2.0111  

Delta 17 1.000  13 0.961 2 1.0588 2.0060  
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Ebonyi 22 0.974  20 0.961 1 1.0443 1.9789  

Edo 35 0.995  36 0.991 3 1.0284 2.0030  

Ekiti 6 1.009  6 1.007 1 1.1682 2.0131  

Enugu 14 0.997  9 0.994 1 1.0712 2.0020  

FCT 123 1.002  84 0.998 4 1.0081 2.0091  

Gombe 23 0.990  19 0.988 2 1.0430 1.9960  

Imo 12 1.000  14 0.989 2 1.0833 2.0050  

Jigawa 4 0.994  5 0.987 1 1.2485 1.9990  

Kaduna 63 0.994  79 0.988 2 1.0158 2.0000  

Kano 35 0.990  49 0.983 2 1.0283 1.9960  

Katsina 30 0.971  12 0.983 2 1.0324 1.9759  

Kebbi 4 1.011  4 0.983 1 1.2528 2.0161  

Kogi NA NA  NA NA NA NA NA  

Kwara 26 0.994  20 0.975 2 1.0382 2.0000  

Lagos 456 1.002  126 0.976 5 1.0022 2.0111  

Nasarawa 25 0.976  4 0.976 1 1.0390 1.9809  

Niger 8 0.988  6 0.980 1 1.1235 1.9920  

Ogun 33 0.992  37 0.987 2 1.0301 1.9980  

Ondo 20 1.002  11 0.991 2 1.0501 2.0080  

Osun 13 0.997  17 0.992 2 1.0767 2.0030  

Oyo 37 0.993  34 0.996 3 1.0268 2.0000  

Plateau 72 0.987  76 0.980 2 1.0137 1.9930  

Rivers 36 1.019  42 1.014 3 1.0283 2.0262  

Sokoto 5 1.007  6 0.982 1 1.2014 2.0121  

Taraba 5 1.003  4 0.998 1 1.2006 2.0080  

Yobe 3 1.010  5 0.984 1 1.3367 2.0141  

Zamfara 2 1.004   3 0.993 1 1.5020 2.0080  

 

The model parameters and their associated 95% CIs are depicted as horizontal lines. When these lines are positioned above the 

zero vertical line, it indicates a significantly higher incidence rate for the corresponding state. Conversely, if the lines fall below 

the vertical zero line, it suggests significantly lower incidence rates (lower than zero bar). By exponentiating the coefficient 

greater than zero as indicated in Figure 4. The result showed that ten 10 states (Lagos, FCT, Plateau, Kaduna, Oyo, Rivers, 

Kano, Edo, Ogun, and Katsina) exhibit significantly higher infection (transmission) rates. In contrast, approximately eleven (11) 

states (Kogi, Anambra, Ekiti, Taraba, Sokoto, Jigawa, Cross-River, Kebbi, Yobe, Zamfara, and Borno) showcase notably lower 

infection rates. 
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Figure 4: Plot of estimated weekly confirmed cases and 95% confidence intervals 

Figure 5 presents  the 95% confidence interval (CI) of  model parameters for recovery cases across 36 states and FCT- Abuja.  

Figure 5 reveals that ten (10) states (Lagos, FCT, Plateau, Kaduna, Oyo, Rivers, Kano, Edo, Ogun and Katsina) have significantly 

higher recovery rate while 11 states (Kogi, Anambra, Ekiti, Taraba, Sokoto, Jigawa, Cross-River, Kebbi, Yobe, Zamfara and 

Borno) have significantly lower rate of recovery. Interestingly, the number of states with significantly higher infection 

(transmission) rates also demonstrates significantly higher recovery rates and vice versa. 

Figure 6 presents  the 95% confidence interval (CI) of  model parameters for fatality cases across 36 states and FCT- Abuja.  

Figure 6 shows that only eight states (Lagos, the Federal Capital Territory (FCT), Edo, Oyo, Rivers, Ondo, Kano, and Delta) 

experienced significantly higher fatality rates from COVID-19. In contrast, sixteen states had significantly lower fatality rates, 

while the remaining states did not show any statistically significant differences in COVID-19 fatality rates during the study 

period. 
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Figure 5: Plot of estimated weekly recovery rates and 95% Confidence Intervals. 

 
Figure 6: Plot of estimated weekly fatality rate and 95% C.I. 

 

 

3.4. Discussion 

This study approach employed both the traditional Susceptible-Infectious-Recovered (SIR) model and a log-linear regression 

model. These models are well-established in the field of epidemiology and are utilized to elucidate trends, the incidence 

trajectory and estimate the critical basic reproduction number. A key parameter in epidemiology is that represents the initial rate 

of spread of the disease. It is a threshold parameter for the SIR model as stated in [43].  If 10 R , disease-free equilibrium of 

COVID-19 will be locally asymptotically stable, which is in agreement with the analysis of this study. The SIR model exhibited 

a commendable fit during the initial stages of the outbreak, aligning well with cumulative incidence patterns observed in Spain 

and its heavily affected regions[44;45]. 

 However, it is worth noting that significant disparities emerged when applying the model to the Nigerian context. Specifically, 

notable underestimations were detected for states such as Abia, Lagos, Enugu, Bayelsa, Kano, Ogun, Oyo, and Abuja. This 

disparity in fit could be attributed to several factors, including varying population sizes, unique contact rates, and potentially 

diverse healthcare infrastructure across these regions. Of particular interest were the basic reproduction number estimates 

obtained from the SIR model during the early outbreak phase. These estimates were comparatively lower than those reported in 

similar studies conducted in regions like Italy and Spain, as documented by [10]. The regional inequalities in the COVID-19 

spread could be attributed to the complex interplay between population dynamics and initial contact rates, underscoring the 

necessity of considering local context in epidemic modeling. Our findings indicate that the transmission dynamics of COVID-

19 across Nigerian states can be effectively controlled if strong non-pharmaceutical interventions are put in place. The 

implications of the SIR model suggest that coordinated efforts to implement these measures could successfully reduce the spread 

of the disease within the Nigerian population. 

 

Furthermore, the introduction of log-linear regression models in this study delves deeper into incidence trends and time-

dependent structure. Notably, the models indicated that the outbreak in most Nigerian states was characterized by a phase of 

relatively moderate growth, suggesting that current interventions were having a stabilizing effect. However, certain states, 

including Abia, Lagos, Enugu, Bayelsa, Kano, Ogun, Oyo, and the Federal Capital Territory (FCT) of Abuja, exhibited higher 

growth rates, which could potentially be managed through appropriate intervention strategies. 

To address the rarity of detailed clinical data at the state level, our approach has incorporated the random effect intercept and 

random slope terms to capture state-specific variation in the application of the log-linear regression models. This could enhance  

the  linear mixed models by including spatial variations  in a logarithmic scale[45]. Our study benefitted from leveraging 

established serial interval distributions of COVID-19, enhancing the predictive capabilities of the models.  

However, despite the valuable insights from the study and its reliance on historical data, it may not fully account for temporary 

short-term changes in COVID-19 infections. Therefore, the predictions should be viewed as indicative of future preparedness 

and should be adapted to evolving circumstances, including new health interventions and public policies. Further research could 

be designed to address the temporal limitations identified in this study. Given the dynamic nature of the COVID-19 pandemic 
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and the continuously changing interventions and policies, it is essential to develop methodologies that can accommodate real-

time adjustments. To overcome the reliance on historical data, other studies on COVID-19 could have incorporated advanced 

predictive modeling techniques such as dynamic Bayesian models [8, 30], temporal joint disease mapping of Covid-19 cases 

and deaths in England [46] and machine learning algorithms [47, 48]. 

In epidemiology, the quantities considered to be most important are the numbers of invectives to be produced by a primary 

infective in a fully susceptible population [49,50]. It is also worth noting that other factors such as environmental conditions and 

the behavior of the infected population play vital roles in how fast an infection spreads in the population as defined in [51], but 

it is necessarily not a biological pathogen itself. There is no general method to calculate the basic reproduction number. The 

computational approach is widely varied from region to region depending on the country, culture, calculation, and stage of the 

outbreak. In this study, two different methods were adopted to compute
0R , while the SIR method seemed to have captured the 

transmission dynamics of the epidemics, the log linear model can be effective for predicting the temporal trends. It has been 

reported that different authors take different methods to determine 
0R for controlling the disease as reported in [52]. If 10 R , 

the infection fades out in a population. If the infected individuals are present in the population, there will be an epidemic if and 

only if 0
dt

dI  as prescribed in [53]. 

4. Conclusion 

This study has discussed aspects of SIR model for the pandemic outbreak of COVID-19 and it was apparently demonstrated that 

the models were as powerful and flexible tools to understand the spread of disease and performing public health interventions. 

The SIR model provided a basic framework for computing the reproductive number of a measure of disease spread of the 

COVID-19 pandemic and structured the whole infection population in three compartments.  In other hands, the log-linear models 

were formulated from exponential distribution and later computed the reproduction number which outperformed better than the 

SIR model. Perhaps, the SIR underestimation of 0R may be due to under-reported cases of the covid-19 due to lack of awareness 

and limited testing facilities or laboratories at sub-national or local levels at the earlier stage of the pandemic.  

The proper guidance and awareness can help individuals to prevent and control of global pandemic in timely.  The findings 

underscore its significance in shedding light on the complicated epidemiological dynamics of COVID-19 across the most 

severely impacted states of Nigeria. The findings of study may appear straight forward and contribute invaluable insights into 

the disease's progression and potential containment strategies using retrospective data on COVID-19 dynamics in Nigeria. The 

log-linear regression model emerges as a promising tool for capturing both the growth and decay phases of COVID-19 and 

analogous infectious diseases. Its predictive capabilities, especially for short-term forecasting under the assumption of limited 

recent interventions, hold promise for informing policy decisions aimed at curtailing subsequent waves of the pandemic.  

In conclusion, this study contributes to the understanding of COVID-19's regional variations in Nigeria and offers actionable 

insights for policymakers. The log-linear regression model could be employed to provide valuable short-term predictions, which 

could serve a complementary role to more SIR complex models. 
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