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In this paper, MAPLE 18 codes are used to utilize Variational 

Iteration method for the numerical solution of two species Lotka-

Volterra prey-predator interaction species which are governed by a 

system of nonlinear differential equations. Two examples are 

provided to show the ability and reliability of the method. The 

obtained approximate solution shows that Variational Iteration 

Method (VIM) is powerful numerical technique for solving a system 

of nonlinear differential equation, which can be easily applied to 

other nonlinear problems in biomathematics. This technique has 

shown to be very effective and yields accurate results. 
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1. Introduction 

System of differential equation has a wide field in pure and applied mathematics such as 

transportation problem, economics mathematics, meteorology, biomathematics and engineering. All 

of these disciplines are concerned with the properties of differential equations of various types which 

emphasizes the rigorous justification and interpretation of natural phenomena. It plays an important 

role in modelling virtually every physical, technical, or biological process, from celestial motion, to 

bridge design, to interactions between neurons. Nonlinear differential equations are used for 

describing many phenomena in the real world as prey predator interactions. Prey predator models 

are classified as one of the most important applications in applied mathematics, thus many numerical 

and semi-analytical methods are developed for finding the solution of these problems by many 

researchers [1, 2, 3]. 

Relevant biological models may involve interactions (from the biochemical to the ecosystem level). 

One of the first interactions model in population dynamics was introduced in the beginning of the 

20th century by Alfred Lotka, an American biophysicist (1925) and Vito Volterra, an Italian 

mathematician (1926) models interactions between preys and predators. The population sizes are 

denoted by 𝑥(𝑡) preys and 𝑦(𝑡) predators at time𝑡 ≥ 0. He assumed that population change of one 
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specie depends on its current population, reproduction rate and interactions with other species 

(predator and prey) [4]. 

In recent years, research on Lotka-Volttera system of nonlinear differential equations have been 

extensively investigated in the literature. [5] proposed a new method for the explicit integration of 

Lotka-Volterra equations, the authors in [6] solved stochastic Lotka-Volterra equations via 

operational matrices, a study on competitive Lotka-Volterra model in random environments was 

examined and studied by [7]. [8] studied and observed the population dynamics of a three-species 

Lotka-Volterra model of two predators and their prey, [9] applied differential transformation method 

for solving prey predator model with holling type I. [10] studied a series solutions of two species 

Lotka-Volterra Equations by Adomian Decomposition and Homotopy Perturbation Methods and 

[11] studied Predator-Prey system in a polluted envıronment. 

 

1.1  Lotka–Voltarra Model 

Lotka-Volterra model also known as the predator-prey equations, in deterministic subclasses, are 

well-known and have been an active area of research concerning ecological population modeling 

and economic modeling. These type of equations is so attractive in the terms of population dynamics 

of species competing (conflict) and the logistic population model. Thus, the Lotka–Volterra model 

in case of two species is a prey predator equation which is defined as follows: 

{

𝑑𝑥

𝑑𝑡
= 𝛼𝑥(𝑡) − 𝛽𝑥(𝑡)𝑦(𝑡)

𝑑𝑦

𝑑𝑡
= −𝜔𝑦(𝑡) + 𝜏𝑥(𝑡)𝑦(𝑡)

                                          (1) 

subject to initial conditions 

                                   {
𝑥(𝑡0) = 𝐴

𝑦(𝑡0) = 𝐵
                                                                        (2) 

where the function 𝑥(𝑡) represents the populations of prey  at  time  t,  and  also  the  function 𝑦(𝑡) 
represents the  populations  of  predator  at  time  t.  All of the parameters 𝛼, 𝛽, 𝜔, 𝜏  are non-negative 

constants. The parameter 𝛼 represents the per capita reduction in prey per predator. The parameter 

𝛽 represents death rate per encounter of prey due to predation. Moreover if 𝛽 is the only decreasing 

factor for the prey population, then prey will be eaten by predators. The parameter 𝜔 represents the 

per capita increase in predator per prey, moreover if 𝜔 is the only increasing factor for the predator 

population, then the population growth is proportional to the food available. The parameter 𝜏 
represents mortality rate of predator and A, B are constants. 

In reality, if the prey population is large, the predators will have more food to support a larger 

population. However, when the predator population grows too large, the prey begins to die off. This 

will result in a decrease in the predators.  This  trend  continues  as  time  goes on,  implying  a  

stable  coexistence  of  the  two populations. 

The main objectives of this paper is to present and employ a MAPLE 18 software codes for 

variational iteration method proposed in [12] and to overcome the mathematical stress of integral 

involve in implementation of VIM. 

This paper is organized as follows. In section 1, we introduced briefly the Lotka-Volterra model and 

their parameters notation related to Predator-prey interaction behaviors. Moreover, stability and 

equilibrium of the model are discussed. In section 2, we discussed and formulate MAPLE 18 

Variation iteration scheme. Section 3, the variational iterative method was applied to solve predator-

prey Equation (1) while in section 4, the numerical results table and graphs are reported. Finally, 

section 5 provides the discussion and conclusion. 
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1.2 The Dynamic Behavior of the Lotka-Volterra Model 

One of the main properties of dynamic systems is stability. The stability is studied to determine 

some properties of solutions or system of differential equations. Consequently the dynamic behavior 

of the model will be discussed. For the model equilibrium points, we set the right hand side of (1) 

to zero. 

 
(𝛼 − 𝛽𝑦(𝑡))𝑥(𝑡) = 0

  (−𝜔 + 𝜏𝑥(𝑡))𝑦(𝑡) = 0
                                       (3) 

to obtain 𝑥 = 0, 𝑦 = 0 or 𝑥 =
𝜔

𝜏
, 𝑦 =

𝛼

𝛽
. Then system (1) has 

i. the trivial equilibrium,  𝐸0(𝑥0, 𝑦0) = (0, 0),  

ii. the non-trivial equilibrium point, 𝐸∗(𝑥∗, 𝑦∗) = (
𝜔

𝜏
,
𝛼

𝛽
). 

To investigate the stability of each equilibrium point, we evaluate the Jacobian matrix of (1) at each 

of these equilibrium. The Jacobian matrix of system (1) is given by 

                                      𝐽(𝑥, 𝑦) = (
𝛼 − 𝛽𝑦 −𝛽𝑥
𝜏𝑦 −𝜔 + 𝜏𝑥

).                         (4) 

 

1.3 At the Trivial Equilibrium 

We obtain from (4) that 

                                                        𝐽(𝐸0) = (
𝛼 0
0 −𝜔

).                            (5) 

Thus the two eigenvalues of 𝐽(𝐸0) are 𝜆1 = 𝛼 and 𝜆2 = −𝜔. Therefore, 𝐸0 is a saddle point since 

one of the eigenvalues is positive and the other is negative. 

The corresponding eigenvectors are the two axes 𝑥 and 𝑦. Then using the standard computation of 

eigenvectors, we have for the eigenvector associated with 𝜆1 = 𝛼 

                                                      (
𝛼 0
0 −𝜔

)(
𝑥
𝑦) = 𝛼 (

𝑥
𝑦)                         (6) 

so that (𝛼 + 𝜔)𝑦 = 0 and so, 𝑦 = 0 which is the 𝑥 −axis. Therefore, the 𝑥 component of a 

perturbation away from but still near the 𝐸0 will grow exponentially at a rate 𝛼.  

Similarly, 𝑥 =  0, which is the 𝑦 − axis, is the eigenvector associated with 𝜆2 = −𝜔. Therefore, 

the 𝑦 component of a perturbation away from but still near the 𝐸0 will shrink exponentially at a rate 

–𝜔. 

 

1.4 At the non-trivial equilibrium (Coexistence Equilibrium) 

The Jacobian matrix in (4) becomes: 

                             𝐽(𝐸∗) = (
0 −𝛽

𝜔

𝜏

𝜏
𝛼

𝛽
0
)                             (7) 

The eigenvalues of 𝐽(𝐸∗) are𝜆1,2 = ±𝑖√𝛼𝜔. This show that the trace of this matrix is zero and the 

determinant is𝛼𝜔 > 0. Thus 𝐸∗ is a centre and is balanced at the knife-edge between stable and 

unstable oscillations. Therefore system (1) is structurally unstable since any slight change to the 

structure of the equations, especially changing the nonlinear terms, could tip the balance between 

stability or instability, depending on how changes to the structure of the equations affects the real 

part of the eigenvalues. In a structurally unstable system, slight modifications to the form of the 

equations alter the stability.  

The counterclockwise circulation of vectors near the coexistence equilibrium 𝐸∗ is as a result of the 

purely imaginary eigenvalues of (𝐸∗). Any perturbation near this equilibrium causes the system to 

oscillate around it infinitely in a closed orbit, neither growing away from the equilibrium nor 

returning to it. The larger the perturbation, the greater the amplitude of the circulation, see Figures 

4 and 6 for example. 
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2. Description of the Variation Iteration Method (VIM) and Solution Approach 

The basic idea of the variational iteration method is to construct an iteration procedures based on 

correction functional that include a generalized Lagrange multiplier [13-14]. The VIM was 

proposed where the value of the multiplier was chosen using variational theory so that each 

improves the accuracy of the solution [15].The initial approximation i.e. trial function usually 

includes unknown coefficient which can be determined to satisfy any boundary and initial 

conditions. VIM  does  not  require  specific  transformation for  nonlinear  terms  as required by 

other techniques and is  now widely used by many researchers to  study autonomous  ordinary  

differential  equation,  Integro-differential systems,  Linear  Helmholtz  partial  differential 

equation  and  other  fields [16-21]. In this method the solution is given in an infinite series usually 

convergent to an accurate solution. According to the variational iteration method we consider the 

following general differential equation of the form: 

                    𝐿𝑝 + 𝑁𝑝 = 𝑔(𝑡)                                                      (8) 
where L is a linear operator N is a nonlinear operator and 𝑔(𝑡) is an inhomogeneous term. We can 

construct a correctional function as follows 

𝑥𝑛+1 = 𝑥𝑛(𝑡) ∫ 𝜆{𝐿𝑥𝑛(𝑠) + 𝑁𝑥�̆�(𝑠) − 𝑔(𝑠)}
𝑡

0
𝑑𝑠                        (9) 

Where 𝜆 is a Lagrangian multiplier which can be identified optimally via variational theory [22]. 

The subscript 𝑛 denotes the 𝑛th approximation Consider the stationary condition of the above 

correction functional then the Lagrange multiplier can be expressed as 

                   𝜆𝑖(𝑤) =
(−1)𝑞

(𝑞−1)!
(𝑞 − 𝑡)𝑞−1                                         (10) 

Where q is the highest order of the differential equation. 

 

2.1 Maple 18 Coded Variational Iteration Method 

In order to formulate the general variational iteration approach on MAPLE 18 software, we 

consider Equations (1) and (2) and develop the VIM schemes as follows: 

𝐌𝐀𝐏𝐋𝐄 𝟏𝟖 𝐂𝐨𝐝𝐞𝐝 𝐕𝐚𝐫𝐢𝐚𝐭𝐢𝐨𝐧𝐚𝐥 𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐒𝐜𝐡𝐞𝐦𝐞 



 
 Falade, K. I et al./ NIPES Journal of Science and Technology Research 

2(2) 2020 pp. 166 - 177 

170 

 

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑟𝑒𝑠𝑡𝑎𝑟𝑡:
𝛼 ≔ 𝑅1;   𝛽 ≔ 𝑅2;  𝜔 ≔ 𝑅3;  𝜏 ≔ 𝑅4; 𝜆 ≔ (−1);

𝑥0 ≔ 𝐴;  𝑦0 ≔ 𝐵; 𝑎0 ≔ 𝑑𝑖𝑓𝑓(𝑥0, 𝑡);  𝑎1 ≔ 𝑑𝑖𝑓𝑓(𝑦0, 𝑡);

𝑥1 ≔ 𝑥0 + (𝜆) ∗ 𝑖𝑛𝑡{(𝑎0 − (𝛼 ∗ 𝑥0) + (𝛽 ∗ 𝑥0 ∗ 𝑦0)), 𝑡 = 0… 𝑡};

𝑥11 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑥1); 𝑏0 ≔ 𝑑𝑖𝑓𝑓(𝑥11, 𝑡);

𝑦1 ≔ 𝑦0 + (𝜆) ∗ 𝑖𝑛𝑡{(𝑎1 + (𝜔 ∗ 𝑦0) − (𝜏 ∗ 𝑥0 ∗ 𝑦0)), 𝑡 = 0… 𝑡};

𝑦11 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑦1); 𝑏1 ≔ 𝑑𝑖𝑓𝑓(𝑦11, 𝑡);

𝑥2 ≔ 𝑥11 + (𝜆) ∗ 𝑖𝑛𝑡{(𝑏0 − (𝛼 ∗ 𝑥11) + (𝛽 ∗ 𝑥11 ∗ 𝑦11)), 𝑡 = 0… 𝑡};

𝑥12 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑥2); 𝑐0 ≔ 𝑑𝑖𝑓𝑓(𝑥12, 𝑡);

𝑦2 ≔ 𝑦11 + (𝜆) ∗ 𝑖𝑛𝑡{(𝑏1 + (𝜔 ∗ 𝑦11) − (𝜏 ∗ 𝑥11 ∗ 𝑦11)), 𝑡 = 0… 𝑡};

𝑦12 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑦2); 𝑐1 ≔ 𝑑𝑖𝑓𝑓(𝑦12, 𝑡);

𝑥3 ≔ 𝑥12 + (𝜆) ∗ 𝑖𝑛𝑡{(𝑐0 − (𝛼 ∗ 𝑥12) + (𝛽 ∗ 𝑥12 ∗ 𝑦12)), 𝑡 = 0… 𝑡};

𝑥13 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑥3); 𝑑0 ≔ 𝑑𝑖𝑓𝑓(𝑥13, 𝑡);

𝑦3 ≔ 𝑦12 + (𝜆) ∗ 𝑖𝑛𝑡{(𝑐1 + (𝜔 ∗ 𝑦12) − (𝜏 ∗ 𝑥11 ∗ 𝑦12)), 𝑡 = 0… 𝑡};

𝑦13 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑦3); 𝑑1 ≔ 𝑑𝑖𝑓𝑓(𝑦13, 𝑡);
⋮
⋮
⋮

𝑥𝑚 ≔ 𝑥1𝑚−1 + (𝜆) ∗ 𝑖𝑛𝑡{(𝑠0 − (𝛼 ∗ 𝑥1𝑚−1) + (𝛽 ∗ 𝑥1𝑚−1 ∗ 𝑦1𝑚−1)), 𝑡 = 0… 𝑡};

𝑥1𝑚 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑥𝑚); 𝑧0 ≔ 𝑑𝑖𝑓𝑓(𝑥1𝑚, 𝑡);

𝑦𝑚 ≔ 𝑦1𝑚−1 + (𝜆) ∗ 𝑖𝑛𝑡{(𝑠1 + (𝜔 ∗ 𝑦1𝑚−1) − (𝜏 ∗ 𝑥1𝑚−1 ∗ 𝑦1𝑚−1)), 𝑡 = 0… 𝑡};

𝑦1𝑚 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑦𝑚); 𝑧1 ≔ 𝑑𝑖𝑓𝑓(𝑦1𝑚, 𝑡);

𝑥(𝑡) ≔ 𝑒𝑣𝑎𝑙𝑓(𝑥1𝑚);

𝑦(𝑡) ≔ 𝑒𝑣𝑎𝑙𝑓(𝑦1𝑚);

 (11) 

where 𝑚 is the number of iterations, 𝑅1,  𝑅2, 𝑅3, 𝑅4 are parameter constants and 𝐴, 𝐵 are constants. 

Thus, 𝑥(𝑡)and 𝑦(𝑡) are the series solutions at 𝑚𝑡ℎ iteration. 

 

3. Numerical Experiment 

In this section, we examine the predator and prey growth/decay of the two species (self-interaction) 

as well as their interaction. We investigate bahaviours of the parameters α, β, ω and τ which play a 

key role in determining the system behaviours. Two examples are considered subject to specific 

initial condition of the model. Using the MAPLE 18 coded Variation Iteration scheme, we obtained 

the numerical solution for Equation (1) and initial condition (2) at iteration step 𝑚 = 10  as shown 

in Tables 1 to 6. 

Example 1 Suppose 𝛼 is the per capita reduction in prey per predator and 𝛽 is the death rate per 

encounter of prey due to predation [23]. 

{
 
 
 

 
 
 
 when  (𝛼 < 𝛽)
𝛼 = 3.029850
𝛽 = 4.094132
𝜔 = 1.967217
𝜏 = 2.295942
𝜆 = −1.00000
𝑥0 = 1.187100
𝑦0 = 0.740047

     

{
 
 
 

 
 
 
 when  (𝛼 > 𝛽)
𝛼 = 4.094132
𝛽 = 3.029850
𝜔 = 1.967217
𝜏 = 2.295942
𝜆 = −1.00000
𝑥0 = 1.187100
𝑦0 = 0.740047

      

{
 
 
 

 
 
 
 when  (𝛼 = 𝛽)
𝛼 = 3.029850
𝛽 = 3.029850
𝜔 = 1.967217
𝜏 = 2.295942
𝜆 = −1.00000
𝑥0 = 1.187100
𝑦0 = 0.740047

 

      Substitute the above parameters into algorithm (11), we have the following solutions:    
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      Table 1:  (𝛼 < 𝛽) 
t Analytical 

Solution 𝑥(𝑡) 
VIM 

Solution 𝑥(𝑡) 
Analytical 

Solution 𝑦(𝑡) 
VIM 

Solution 𝑦(𝑡) 
0.0 1.187100000000 1.187100000000 0.7400470000000 0.7400470000000 

0.1 1.173293314174 1.173293331000 0.7975048380086 0.7975047610000 

0.2 1.132681174388 1.132681233000 0.8540331977419 0.8540330912000 

0.3 1.069749554336 1.069749539000 0.9036493434085 0.9036492527000 

0.4 0.992376686741 0.992376610300 0.9407098212139 0.9407097698000 

0.5 0.909715706923 0.909715551500 0.9612974253317 0.9612976897000 

0.6 0.829963573965 0.829961925000 0.9640576734517 0.9640598752000 

0.7 0.758989599935 0.758979098800 0.9501583685533 0.9501676352000 

0.8 0.700090581059 0.700045711900 0.9225636508131 0.9225907487000 

0.9 0.654510497041 0.654363278700 0.8850829288848 0.8851423567000 

1.0 0.622205729269 0.621805168400 0.8415741110666 0.8416743875000 

 

    Table 2:  (𝛼 > 𝛽) 
t Analytical 

Solution 𝑥(𝑡) 
VIM 

Solution 𝑥(𝑡) 
Analytical 

Solution 𝑦(𝑡) 
VIM 

Solution 𝑦(𝑡) 
0.0 1.187100000000 1.187100000000 0.7400470000000 0.740047000000 

0.1 1.413308431481 1.413308491000 0.8192192423347 0.819219212200 

0.2 1.629422801606 1.629422522000 0.9548299457312 0.954830107800 

0.3 1.783965142331 1.783964837000 1.1626432476204 1.162643502000 

0.4 1.812364112012 1.812363259000 1.4474459753223 1.447445942000 

0.5 1.674587231402 1.674575344000 2.0850176428230 2.085017642720 

0.6 1.401596690416 1.401562584000 2.0850176428292 2.085017641320 

0.7 1.085902388192 1.086180815000 2.2783956366840 2.278395618000 

0.8 0.811351279883 0.811351460690 2.3239540305871 2.323951416000 

0.9 0.610020458917 0.610020361200 2.2440744293156 2.244074124000 

1.0 0.476079350030 0.476079236100 2.0857367907384 2.085736623000 

 

 

     Table 3:   (𝛼 = 𝛽) 
t Analytical 

Solution 𝑥(𝑡) 
VIM 

Solution 𝑥(𝑡) 
Analytical 

Solution 𝑦(𝑡) 
VIM 

Solution 𝑦(𝑡) 
0.0 1.187100000000 1.187100000000 0.740047000000 0.740047000000 

0.1 1.272187665251 1.272187275000 0.806474171253 0.806474407600 

0.2 1.331974163143 1.331973873000 0.893823428997 0.893823624800 

0.3 1.354102768524 1.354102583000 1.000208677394 1.000208771000 

0.4 1.330095316143 1.330095126000 1.119123022586 1.119122920000 

0.5 1.259716623148 1.259716980000 1.238564988790 1.238564225000 

0.6 1.152840256063 1.152845461000 1.342772096989 1.342768205000 

0.7 1.026594271894 1.026627603000 1.416793455406 1.416793581000 

0.8 0.899120517439 0.899244376100 1.451520906161 1.451521131000 

0.9 0.784059292436 0.784362541500 1.445978046355 1.445913412000 

1.0 0.688601146327 0.688090398100 1.405950208844 1.405941241000 
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Example 2    Suppose 𝛼 is the per capita reduction in prey per predator and 𝛽 is the death rate per 

encounter of prey due to predation [24]. 

{
 
 
 

 
 
 
 𝐰𝐡𝐞𝐧  (𝛼 > 𝛽)
𝛼 = 0.100
𝛽 = 0.0014
𝜔 = 0.080
𝜏 = 0.0012
𝜆 = −1.000
𝑥0 = 4.000
𝑦0 = 9.000

         

{
 
 
 

 
 
 
 𝐰𝐡𝐞𝐧  (𝛼 < 𝛽)
𝛼 = 0.0014
𝛽 = 0.100
𝜔 = 0.080
𝜏 = 0.0012
𝜆 = −1.000
𝑥0 = 4.000
𝑦0 = 9.000

            

{
 
 
 

 
 
 
 𝐰𝐡𝐞𝐧  (𝛼 = 𝛽)
𝛼 = 0.100
𝛽 = 0.100
𝜔 = 0.080
𝜏 = 0.0012
𝜆 = −1.000
𝑥0 = 4.000
𝑦0 = 9.000

    

  Substitute the above parameters into algorithm (11), we have the following solutions:    

  Table 4: (𝛼 > 𝛽) 
t Analytical 

Solution 𝑥(𝑡) 
VIM 

Solution 𝑥(𝑡) 
Analytical 

Solution 𝑦(𝑡) 
VIM 

Solution 𝑦(𝑡) 
0.0 4.000000000000 4.000000000000 9.000000000000 9.000000000000 

0.1 4.035132287030 4.035132286000 8.932592638256 8.932592638000 

0.2 4.070611403006 4.070611402000 8.865727698739 8.865727700000 

0.3 4.106440756278 4.106440756000 8.799400925152 8.799400926000 

0.4 4.142623789899 4.142623790000 8.733608094714 8.733608095000 

0.5 4.179163981615 4.179163982000 8.668345018151 8.668345018000 

0.6 4.216064844061 4.216064844000 8.603607539534 8.603607540000 

0.7 4.253329953021 4.253329924000 8.539391509681 8.539391537000 

0.8 4.290962896869 4.290962804000 8.475692832270 8.475692921000 

0.9 4.328967276114 4.328967104000 8.412507466043 8.412507636000 

1.0 4.367346731478 4.367346480000 8.349831399216 8.349831655000 

 

  Table 5:  (𝛼 < 𝛽) 
t Analytical 

Solution 𝑥(𝑡) 
VIM 

Solution 𝑥(𝑡) 
Analytical 

Solution 𝑦(𝑡) 
VIM 

Solution 𝑦(𝑡) 
0.0 4.000000000000 4.000000000000 9.000000000000 9.000000000000 

0.1 3.657473020744 3.657473258000 8.932387296668 8.932387294000 

0.2 3.346536796070 3.346536998000 8.864935239948 8.864935237000 

0.3 3.064097573818 3.064097837000 8.797679574554 8.797679571000 

0.4 2.807379952412 2.807380177000 8.730651950326 8.730651947000 

0.5 2.573892073952 2.573892359000 8.663880372174 8.663880368000 

0.6 2.361396256269 2.361396506000 8.597389579842 8.597389576000 

0.7 2.167881361179 2.167881643000 8.531201405234 8.531201402000 

0.8 1.991539481074 1.991539751000 8.465335073997 8.465335070000 

0.9 1.830744135389 1.830744404000 8.399807487591 8.399807484000 

1.0 1.684031442829 1.684031744000 8.334633466917 8.334633463000 

 

  Table 6:  (𝛼 = 𝛽) 
t Analytical 

Solution 𝑥(𝑡) 
VIM 

Solution 𝑥(𝑡) 
Analytical 

Solution 𝑦(𝑡) 
VIM 

Solution 𝑦(𝑡) 
0.0 4.000000000000 4.000000000000 9.000000000000 9.000000000000 

0.1 3.693713901517 3.693714070000 8.932407277368 8.932407275000 
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0.2 3.413183652004 3.413183941000 8.865010279466 8.865010275000 

0.3 3.156082329242 3.156082424000 8.797838192760 8.797838190000 

0.4 2.920304355828 2.920304706000 8.730917063216 8.730917058000 

0.5 2.703946085963 2.703946207000 8.664270073277 8.664270071000 

0.6 2.505282320509 2.505282688000 8.597917875002 8.597917871000 

0.7 2.322752234866 2.322752401000 8.531878791541 8.531878789000 

0.8 2.154939736038 2.154940050000 8.466169095953 8.466169091000 

0.9 2.000562151892 2.000562388000 8.400803173218 8.400803170000 

1.0 1.858455074810 1.858455294000 8.335793735914 8.335793731000 

 

4. Graphs Representation 

 

 
Figure 1 Numerical solutions of the Predator 𝑦(𝑡) and Prey 𝑥(𝑡)  when 𝛼 < 𝛽  Example 1 

 

 
Figure 2 Unsteady states of phase planes for Predator-Prey when 𝛼 < 𝛽   Example 1 

 

 
Figure 3 Numerical solutions of the Predator 𝑦(𝑡) and Prey 𝑥(𝑡)  when 𝛼 > 𝛽 Example 1 
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Figure 4 Steady states of phase planes for Predator-Prey when 𝛼 > 𝛽   Example 1 

 

 
Figure 5 Numerical solutions of the Predator 𝑦(𝑡) and Prey 𝑥(𝑡)  when 𝛼 = 𝛽  Example 1 

 

 
Figure 6 Steady states of phase planes for Predator-Prey when 𝛼 = 𝛽   Example 1 

 

         
      Figure 7 Numerical solutions of the Predator 𝑦(𝑡) and Prey 𝑥(𝑡)  when 𝛼 > 𝛽 Example 2 
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       Figure 8 Unmutualistic interactions phase for Predator-Prey when 𝛼 > 𝛽 Example 2 

                                   
 

       Figure 9 Numerical solutions of the Predator 𝑦(𝑡) and Prey 𝑥(𝑡)  when 𝛼 < 𝛽  Example 2 

 

 

 
 

                 Figure 10 Mutualistic interactions phase for Predator-Prey when 𝛼 < 𝛽 Example 2 
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Figure 11 Numerical solutions of the Predator 𝑦(𝑡) and Prey 𝑥(𝑡)  when 𝛼 = 𝛽 Example 2 

 

 
       Figure 12 Unmutualistic interactions phase for Predator-Prey when 𝛼 = 𝛽 Example 2 

 

 

 

3.1 Discussion 

The numerical solutions for six cases of interaction behaviors between Predator-Prey are presented 

in Tables 1 to 6 while Figures 1 to 6 show plots relationship of Predator-Prey for example one and 

Figures 7 to 12 depict the numerical solution and interaction behaviors of Predator-Prey for example 

two. Finally, the study have revealed the interactions behaviors between two species (steady, 

unsteady, mutualistic and unmutualistic interactions) from computational analysis. 

 

  4. Conclusion 

This article highlights the feasibility and capability of MAPLE 18 software codes to solve nonlinear 

system of Lotka–Volterra two species of Predator-Prey model. The conventional variation iteration 

method was employed using MAPLE 18 software commands to overcome the rigorous 

computational work and simplification of integrals involves during iteration process. Two examples 

are consider to test the efficiency of the algorithm and the numerical results obtained were compared 

with analytical solutions with little relative errors. The advantage of the MCVIM over the 

conventional approach is faster, easy and it provides an efficient numerical solutions. Finally, the 

proposed scheme is easy to implement and shows a good agreement with analytic results. 
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