Exploring Sustainable Fuel Technologies for Transportation

Priya Singh & Alex Mercer

Institute for Sustainable Energy Studies, Eastern Technological University, India

Abstract

Transitioning to sustainable fuel technologies is essential to reduce the environmental impact of fossil fuels in transportation. This paper reviews a range of fuel options, including fossil fuels, electric vehicles (EVs), biodiesel, hydrogen fuel cells, methanol, and natural gas vehicles, to present an updated overview of their current applications, benefits, and limitations. By examining data from global energy organizations and recent research, the review emphasizes the need for infrastructure enhancements and supportive policies to create a diverse and sustainable energy mix for transportation, promoting a future of low-emission mobility.

Keywords:

alternative fuels, sustainable transportation, energy assessment

1.0 Introduction

Transportation remains a major source of greenhouse gas emissions, primarily due to its dependency on fossil fuels. According to the International Energy Agency (IEA), emissions from this sector contribute significantly to global CO₂ levels, highlighting the need to pursue alternative, lower-emission energy options [1-24]. Emerging solutions such as electric vehicles, biodiesel, hydrogen, and methanol hold potential to reduce greenhouse gas emissions and lessen reliance on limited resources.

Across the globe, governmental and research institutions are actively developing these alternative technologies, each of which comes with distinct advantages and challenges [25-30]. For instance, while electric vehicles (EVs) produce zero tailpipe emissions, their broader adoption is hindered by infrastructure gaps and battery sustainability concerns [31-50]. Biodiesel and other biofuels are renewable, but they are also constrained by scalability issues tied to feedstock availability and production expenses [51-70]. Hydrogen fuel cells, widely seen as suitable for heavy-duty applications, still need improvements in storage efficiency and cost reduction [71-83]. Additionally, methanol and natural gas, though viable alternatives, face specific barriers related to distribution infrastructure and long-term sustainability [23, 64].

This review synthesizes recent studies and data on each of these fuels, identifying their respective hurdles, possible solutions, and the necessary steps to facilitate their effective integration into global transportation.

2. Fossil Fuels: Dependable but Environmentally Costly

Despite advancements in cleaner energy options, fossil fuels continue to dominate the transportation sector due to their established infrastructure and economic efficiency [2, 4, 11].

However, the environmental impact of fossil fuels—ranging from air pollution to greenhouse gas emissions—makes a shift to cleaner fuels critical. The U.S. Department of Energy stresses that fossil fuel emissions are a primary driver of climate change, while the U.S. Energy Information Administration projects continued reliance unless major shifts occur [2, 4].

Fossil fuels provide high energy density and efficiency but face increasing regulatory challenges as their environmental consequences become more apparent. Agencies like the Environmental Protection Agency (EPA) support stricter emissions regulations and call for investments in cleaner technologies [3].

3. Electric Vehicles (EVs): Sustainable but Infrastructure-Intensive

Electric vehicles are central to sustainable transportation efforts due to their lack of tailpipe emissions, making them a key solution for urban pollution reduction. According to both the European Alternative Fuels Observatory [5] and the U.S. Department of Energy [9], EVs significantly curb emissions in urban areas. Yet challenges like limited charging infrastructure, battery lifespan, and energy-demanding manufacturing processes persist [74, 75].

The National Renewable Energy Laboratory underscores the importance of a robust charging network to address range limitations and make EVs more accessible [74]. Though EVs eliminate exhaust emissions, the environmental footprint of battery production, including the extraction of rare materials, remains a concern. The Union of Concerned Scientists advocates for the use of renewable energy sources for EV charging to maximize their environmental benefits [75].

4. Biodiesel: Renewable but Limited by Resources

Biodiesel, derived from biological materials such as vegetable oils and animal fats, offers a renewable alternative to traditional diesel. According to the National Biodiesel Board, biodiesel has the potential to reduce greenhouse gas emissions while supporting the agricultural sector [7]. Quality control, as highlighted by Bournay et al., is essential to ensuring consistent and reliable performance across applications [27].

However, scaling biodiesel production to meet global transportation needs presents challenges. Feedstock availability is limited, and biodiesel production competes with food resources, making widespread use challenging [32]. The National Renewable Energy Laboratory notes that biodiesel can work with existing diesel engines, but continued research into sustainable feedstock sources is necessary for its long-term viability [19, 18].

5. Hydrogen and Fuel Cells: Promising Yet Storage-Dependent

Hydrogen fuel cells offer a sustainable energy option for transportation, particularly for heavyduty vehicles. According to the U.S. Department of Energy, hydrogen fuel cells produce only water as a byproduct, making them ideal for zero-emission applications [10]. Research by Haeseong and Jang-Juan explores the current status of hydrogen fuel cells, identifying storage and cost as key challenges [62].

Building infrastructure for hydrogen production and distribution remains a significant hurdle. The Union of Concerned Scientists emphasizes that hydrogen technology requires substantial investment to create and maintain the necessary infrastructure [83]. Although hydrogen is energy-dense, storage solutions like compression and liquefaction are costly and energy-intensive, adding complexity to logistics and raising overall costs [10].

6. Other Alternatives: Methanol and Natural Gas Vehicles

Methanol and natural gas present additional options for alternative transportation fuels. Methanol, as detailed by the Methanol Institute [23], can be produced from natural gas, biomass, and other resources, making it an economical choice in regions with natural gas reserves. However, its lower energy density relative to gasoline and the infrastructure required for distribution limit its current applications [66].

Natural gas has also gained attention for its relatively cleaner combustion compared to gasoline and diesel. According to Natural Gas Vehicles for America, natural gas is effective in reducing vehicle emissions and promoting energy independence [65]. Studies by Ahn and Lee examine the infrastructure demands and economic factors involved in transitioning to this fuel [72-86].

7. Conclusion

This review underscores the variety of alternative fuel technologies available and their potential to create a more sustainable transportation system. While fossil fuels are embedded in global infrastructure, environmental concerns drive efforts to phase them out. EVs and hydrogen fuel cells hold considerable promise but require additional investment in infrastructure and technological development. Biodiesel, methanol, and natural gas offer complementary alternatives with unique applications, though each faces challenges in terms of scalability, cost, and infrastructure.

The future of sustainable fuel development will depend on policy backing, increased research investment, and public acceptance. A diversified, multi-fuel approach is likely needed to meet different transportation demands and to maximize sustainability across various transport modes.

References

- [1] International Energy Agency. (2020). Transportation. Retrieved from <u>https://www.iea.org/topics/transportation</u>
- [2] U.S. Department of Energy. (2019). Fossil fuels non-renewable energy. Retrieved from <u>https://www.energy.gov/science-innovation/energy-sources/fossil-fuels</u>
- [3] U.S. Environmental Protection Agency. (2021). Oil spills. Retrieved from https://www.epa.gov/oil-spills
- [4] U.S. Energy Information Administration. (2021). Fossil fuels. Retrieved from https://www.eia.gov/energy/fossil-fuels/
- [5] European Alternative Fuels Observatory. (2021). Electric vehicles. Retrieved from <u>https://www.afdc.energy.gov/vehicles/electric_vehicles.html</u>
- [6] International Energy Agency. (2020). Transportation. Retrieved from https://www.iea.org/topics/transportation
- [7] National Biodiesel Board. (2020). Biodiesel basics. Retrieved from https://www.biodiesel.org/aboutbiodiesel/biodiesel-basics
- [8] National Renewable Energy Laboratory. (2019). Alternative fuels data center. Retrieved from <u>https://www.afdc.energy.gov/</u>
- [9] U.S. Department of Energy. (2019). Electric vehicles. Retrieved from https://www.energy.gov/eere/electric/vehicles/electric-vehicles
- [10] U.S. Department of Energy. (2021). Hydrogen and fuel cells. Retrieved from <u>https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cells</u>
- [11] U.S. Energy Information Administration. (2021). Renewable & alternative fuels. Retrieved from https://www.eia.gov/topics/renewable_sources/renewable_alternative_fuels/
- [12] Cantrell, J. (2017). A brief history of the steam engine. Retrieved from https://www.popularmechanics.com/technology/news/a25860625/steam-engine-history/
- [13] Sperling, D., & Gordon, D. (2009). Two billion cars: Driving toward sustainability. Oxford University Press.
- [14] U.S. Department of Energy. (2020). Ethanol: A renewable fuel made from corn and other plant materials. Retrieved from https://www.energy.gov/eere/bioenergy/ethanol-renewable-fuel-made-corn-and-other-plant-materials
- [15] Department of Energy. (2021). Alternative Fuels Data Center. Retrieved from https://afdc.energy.gov/fuels/
- [16] International Energy Agency. (2021). Alternative fuels for road transport. Retrieved from <u>https://www.iea.org/reports/alternative-fuels-for-road-transport</u>
- [17] Kwasi-Effah, C. C., Obanor, A. I., & Aisien, F. A. (2015). Stirling Engine Technology: A Technical Approach to Balance the Use of Renewable and Non-Renewable Energy Sources. American Journal of Renewable and Sustainable Energy, 1(3).
- [18] The National Renewable Energy Laboratory (NREL). Detailed information on biodiesel production, properties, and performance, as well as information on the benefits and challenges of using biodiesel as a transportation fuel. Retrieved from https://www.nrel.gov/
- [19] The U.S. Department of Energy's Alternative Fuels Data Center (AFDC). Comprehensive information on alternative fuels, including biodiesel. Retrieved from <u>https://afdc.energy.gov/</u>
- [20] The American Biodiesel Board (ABB). Information on the production, properties, and benefits of biodiesel, as well as the latest industry news and research. Retrieved from <u>https://www.biodiesel.org/</u>
- [21] The European Biodiesel Board (EBB). Information on the production, properties, and benefits of biodiesel. Retrieved from https://www.ebb-eu.org/
- [22] Methanol Institute. (n.d.). About Methanol. Retrieved from https://www.methanol.org/about-methanol
- [23] United States Department of Energy. (n.d.). Alternative Fuels Data Center Methanol. Retrieved from https://afdc.energy.gov/fuels/methanol
- [24] Wu, Y., Fan, X., & Ma, L. (2017). Methanol as a transportation fuel: Status, challenges, and prospects. Renewable and Sustainable Energy Reviews, 68, 638-646.
- [25] Zhang, X., Zhang, D., & Wei, D. (2018). Methanol as a promising alternative fuel for transportation: A review. Renewable and Sustainable Energy Reviews, 81, 2307-2319.
- [26] Thomas, R. J., & Holmberg, M. (2017). Life cycle greenhouse gas emissions of methanol and diesel fuels used in heavy-duty vehicles in the United States. Journal of Cleaner Production, 142, 1418-1425.
- [27] Bournay, L., Casanave, D., Delfort, B., Hillion, G., Chodorge, J. A., & Cansell, F. (2013). Biodiesel standards and quality control. OCL-Oleagineux Corps Gras Lipides, 20(2), D204.
- [28] Ding, Y., Chen, D., & Cen, K. (2020). Biodiesel production from alternative feedstocks: Processes and future prospects. Bioresource Technology, 297, 122494.
- [29] Ferguson, C. R., Kirkpatrick, A. T., & McDonald, J. R. (2017). Internal combustion engines: Applied thermosciences. John Wiley & Sons.
- [30] Gao, L., Zhu, M., Liu, S., & Yu, L. (2018). Heterogeneous catalysts for biodiesel production. Topics in Catalysis, 61(3-4), 355-387.
- [31] Graboski, M. S. (2002). Introduction to biodiesel and the basics of biodiesel fuel quality. National Renewable Energy Laboratory. Retrieved from <u>https://www.nrel.gov/docs/gen/fy02/31168.pdf</u>
- [32] Santos, J. C., Ferreira, C. A., Cardoso, E. A., & Branco, C. D. (2021). Biodiesel production: Trends, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 137, 110603.
- [33] Singh, B., Ansal, T., & Kumar, A. (2017). Sustainable feedstock development for biodiesel production: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 67, 1225-1238.
- [34] Kwasi-Effah, C. C., & Rabczuk, T. (2018). Dimensional analysis and modelling of energy density of lithium-ion battery. Journal of Energy Storage, 18, 308-315.

- [35] U.S. Department of Energy. (n.d.). Alternative Fuels Data Center Ethanol. Retrieved from <u>https://afdc.energy.gov/fuels/ethanol_blends.html</u>
- [36] National Renewable Energy Laboratory. (n.d.). Ethanol. Retrieved from https://www.nrel.gov/research/ethanol.html
- [37] Renewable Fuels Association. (n.d.). Ethanol Basics. Retrieved from https://www.ethanolrfa.org/resources/ethanol-basics/
- [38] Obanor, A. I., & Kwasi-Effah, C. C. (2013). Assessment of university-industry collaboration and technology transfer in schools of engineering and sciences in Nigeria. Nigerian Journal of Technology, 32(2), 286-293.
- [39] Kwasi-Effah, C. C., Obanor, A. I., & Aisien, F. A. (2015). A review on electrolytic method of hydrogen production from water. American Journal of Renewable and Sustainable Energy, 1(2), 51-57.
- [40] Al-Sadat, A. H., & Yusoff, I. (2017). Ethanol as an alternative fuel: A review of current status and prospects. Renewable and Sustainable Energy Reviews, 70, 13-22.
- [41] Zhang, Y., & Fan, W. (2018). Life cycle assessment of corn-based ethanol production in the United States. Journal of Cleaner Production, 172, 2703-2712.
- [42] Olagbegi, P. O., Kwasi-Effah, C. C., & Ugbi, B. A. (2013). Assessment of health and safety practice in engineering workshop. International Journal of Engineering Sciences, 2(7), 297-301.
- [43] Kwasi-Effah, C. C., & Obanor, A. I. (2013). Simulation of the Emission Impact of a Hybrid-Electric Vehicle. International Journal of Engineering & Technology, 1(5), 251-259.
- [44] International Energy Agency. (2017). Compressed Air Energy Storage (CAES). Retrieved from <u>https://www.iea.org/reports/compressed-air-energy-storage-caes</u>
- [45] U.S. Department of Energy. (n.d.). Energy Storage Systems Compressed Air Energy Storage. Retrieved from <u>https://www.energy.gov/eere/storage/compressed-air-energy-storage</u>
- [46] Li, Y., & Wang, J. (2019). Compressed air energy storage systems: A review. Renewable and Sustainable Energy Reviews, 106, 136-149.
- [47] Kwasi-Effah, C. C., Obanor, A. I., Aisien, F. A., & Ogbeide, O. O. (2017). Performance Appraisal of a Gamma-Type Stirling Engine. International Journal of Oil, Gas and Coal Engineering, 5(4), 51-53.
- [48] Stine-Morrow, E. A. L., & Basu, S. (2017). Compressed air energy storage and the future of renewable energy. Renewable and Sustainable Energy Reviews, 69, 489-501.
- [49] Fan, Z., Li, Y., Li, J., & Wang, J. (2017). A comprehensive review of compressed air energy storage systems. Applied Energy, 189, 708-719.
- [50] U.S. Department of Energy. (n.d.). Hydrogen & Fuel Cells. Retrieved from <u>https://www.energy.gov/eere/fuel-cells/hydrogen-and-fuel-cells</u>
- [51] Kwasi-Effah, C. C., Igbeka, U. E., Ataman, B. C., Emenime, A. I., & Max-Eguakun, F. (2021). Development of a UFAA-19 series hybrid electric vehicle. NIPES Journal of Science and Technology Research, 3(4).
- [52] Unuareokpa, O. J., Madu, J. C., Edo-Taiwo, S. A., Peters, S. D., & Kwasi-Effah, C. C. (2022). Design and fabrication of a shell and tube heat exchanger for laboratory experiments. International Journal of Renewable Energy & Environment, 3(1), 34-53.
- [53] Omo-Oghogho, E., Essienubong, I. A., Kwasi-Effah, C. C., & Sadjere, E. G. (2021). Empirical Modelling and Estimation of Solar Radiation from Tilted Surfaces Relative to Angular Solar Relations.
- [54] Kwasi-Effah, C. C., Madu, J. C., Osayuwa, E. G., & Igiebor, A. E. (2021). Effects of Discharge Head on the Performance of a Mini-Hydraulic Ram Pump for Possible Application in Mini-Hydro Turbine Systems.
- [55] Ebunilo, P. O. B., & Kwasi-Effah, C. C. (2013). Preliminary Design and Economic Evaluation of a Solar Powered Freezer. International Journal of Engineering & Technology, 1(2), 74-83.
- [56] Obanor, A., & Kwasi-Effah, C. C. (2013). Reflections on Technology Transfer between University's Schools of Engineering and Sciences and Industry in Nigeria. In Advanced Materials Research (Vol. 824, pp. 579-583). Trans Tech Publications Ltd.
- [57] Ebunilo, P. O. B., & Kwasi-Effah, C. C. Solar refrigeration; a viable alternative for rural health centres. Microscope, 10(1), 1.
- [58] Igboanugo, A. C., Kwasi-Effah, C. C., & Ogbeide, O. O. (2016). A Factorial Study of Renewable Energy Technology in Nigeria. International Journal of Environmental Planning and Management, 2(4), 36-44.
- [59] Kwasi-Effah, C. C., & Obanor, A. I. Energy appraisal of a gasoline-electric vehicle.
- [60] National Renewable Energy Laboratory. (n.d.). Hydrogen and Fuel Cells. Retrieved from <u>https://www.nrel.gov/research/hydrogen-fuel-cells.html</u>
- [61] European Commission. (2021). Hydrogen as a fuel for transport. Retrieved from <u>https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/actions-being-taken-eu/hydrogen-fuel-transport_en</u>
- [62] Haeseong, J., & Jang-Juan, L. (2019). A review of hydrogen fuel cell vehicles: Current status and future prospects. Renewable and Sustainable Energy Reviews, 102, 796-808.
- [63] Lim, H. S., Kim, J., & Kim, S. (2019). Current status and future prospects of hydrogen as an energy carrier. Renewable and Sustainable Energy Reviews, 107, 343-360.
- [64] U.S. Department of Energy. (n.d.). Natural Gas Vehicles. Retrieved from https://www.afdc.energy.gov/fuels/natural_gas.html
- [65] Natural Gas Vehicles for America. (n.d.). Benefits of Natural Gas. Retrieved from https://www.ngvamerica.org/benefits/
- [66] Chen, Y., Yin, X., Huo, M., Zhao, Y., & Zhang, L. (2020). Progress in renewable methanol synthesis: Catalytic technologies and process optimization. Renewable and Sustainable Energy Reviews, 117, 109495.
- [67] Luque-Morales, G. S., Thiel, C., & Pham, T. N. (2018). Challenges and opportunities for methanol as an automotive fuel: A review. Fuel Processing Technology, 179, 116-135.

- [68] Miao, H., Zhang, X., Ou, S., & Zhang, X. (2017). A review on methanol as a potential transportation fuel. Renewable and Sustainable Energy Reviews, 67, 395-405.
- [69] Kwasi-Effah, C. C., Obanor, A. I., & Ogbeide, O. O. (2017). Performance Investigation of a Series-Parallel Petrol-Electric Vehicle. International Journal of Oil, Gas and Coal Engineering, 5(4), 54-60.
- [70] Kwasi-Effah, C. C. (2013). Performance appraisal of a gasoline-electric vehicle. LAP LAMBERT Academic Publishing.
- [71] Natural Gas Europe. (2021). Natural Gas Vehicles. Retrieved from https://www.naturalgaseurope.com/natural-gas-vehicles
- [72] Ahn, K. J., & Lee, J. H. (2017). Natural gas vehicles: Status, challenges, and prospects. Energy Policy, 104, 449-456.
- [73] Kumar, A., & Dale, B. E. (2016). Natural gas as a transportation fuel: Benefits and challenges. Renewable and Sustainable Energy Reviews, 55, 807-816.
- [74] National Renewable Energy Laboratory. (2019). Understanding Electric Vehicle Charging. Retrieved from https://www.nrel.gov/docs/fy19osti/75188.pdf
- [75] Union of Concerned Scientists. (2021). Electric Cars: Pros and Cons. Retrieved from <u>https://www.ucsusa.org/resources/electric-cars-pros-and-cons</u>
- [76] International Energy Agency. (2021). Global EV Outlook 2021: Energy Access Outlook. Retrieved from https://www.iea.org/reports/global-ev-outlook-2021-energy-access-outlook
- [77] Abanades, S., Poinsot, C., Charvin, P., & Flamant, G. (2020). Hydrogen storage: From conventional methods to emerging opportunities. Energy & Environmental Science, 13(5), 1264-1281.
- [78] Kwasi-Effah, C. C., Obanor, A. I., Aisien, F. A., & Ogbeide, O. (2016). Review of Existing Models for Stirling Engine Performance Prediction and the Paradox Phenomenon of the Classical Schmidt Isothermal Model. International Journal of Energy and Sustainable Development.
- [79] Espinosa-Martinez, N., Ramirez-Carriles, G., & Tsatsaronis, G. (2020). A review of hydrogen production technologies for better sustainability. Journal of Cleaner Production, 267, 122138.
- [80] Samsatli, S., Papageorgiou, L. G., & Shah, N. (2020). Review of hydrogen infrastructure for transport: Logistics, distribution models, and integration strategies. Applied Energy, 279, 115796.
- [81] Yoon, H., Manovic, V., & Lim, J. H. (2019). Techno-economic analysis of hydrogen production from natural gas and coal with carbon capture and storage: A perspective of South Korea. International Journal of Hydrogen Energy, 44(35), 19523-19541.
- [82] National Renewable Energy Laboratory. (2021). Hydrogen and Fuel Cells. Retrieved from https://www.nrel.gov/hydrogen/
- [83] U.S. Department of Energy. (2021). Fuel Cells: What You Need to Know. Retrieved from https://afdc.energy.gov/fuels/fuel_cells.html
- [84] Union of Concerned Scientists. (2021). Fuel Cells: Pros and Cons. Retrieved from <u>https://www.ucsusa.org/resources/fuel-cells-pros-and-cons</u>
- [85] Kwasi-Effah, C. C., & Obanor, A. I. (2013). Modeling and Simulation of a Gasoline-Electric Vehicle. International Journal of Engineering & Technology, 1(4), 163-176.
- [86] International Energy Agency. (2021). Global Fuel Cell Outlook 2021. Retrieved from <u>https://www.iea.org/reports/global-fuel-cell-outlook-2021</u>