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 Let A and B be non-empty subset of a multiplicative metric space 
(𝑋, 𝑑) and   𝑇: 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be a multiplicative R-cyclic 

contraction with respect to 𝛹. Then there exists a sequence 

{𝑥𝑛}𝑛∈ℕ ⊂ 𝐴 ∪ 𝐵 such that 𝑙𝑖𝑚
𝑛→∞

𝑑(𝑥𝑛 , 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛 , 𝑥𝑛+1) =

𝑑(𝐴, 𝐵), then 𝑙𝑖𝑚
𝑛→∞

𝑑(𝑥𝑛 , 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛 , 𝑥𝑛+1) =

𝑑𝑖𝑠𝑡(𝐴, 𝐵).   This paper provides solutions to numerous problems in 

physics, optimization and economics, which can be reduced to 

finding a common best proximity point of some non-linear operator. 

We considered the application of cyclic contraction mapping on the 

multiplicative metric space then we obtain 𝑙𝑖𝑚
𝑛→∞

𝑑(𝑥𝑛 , 𝑥𝑛+1) =

𝑖𝑛𝑓𝑛∈ℕ 𝑑(𝑥𝑛 , 𝑥𝑛+1) = 𝑑𝑖𝑠𝑡(𝐴, 𝐵), 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑣, 𝑇𝑣) ≤ 𝑑(𝐴, 𝐵), 
𝑑(𝑣, 𝑇𝑣) = 𝑑(𝐴, 𝐵), 𝑑(𝑇𝑥, 𝑇𝑦) ≤ (𝑑(𝑥, 𝑦))𝛹(𝑑(𝑥,𝑦)) ∙

𝑑(𝐴, 𝐵)1−𝛹(𝑑(𝑥,𝑦)) ≤ (𝑚𝑎𝑥 {𝑑(𝑥, 𝑦), [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝑇𝑦, 𝑦) ∙

𝑚𝑖𝑛 {𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)}]
1
2)𝜑(𝑑(𝑥,𝑦)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥,𝑦)) for all 𝑥 ∈

𝐴 and 𝑦 ∈ 𝐵. 
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1. Introduction 

Best proximity point theorem was first established by [1], which is a concept that analyses the 

existence of an optimal solution; and is a natural generalization of Banach fixed point theorem. The 

concept of multiplicative metric spaces is another important result that was introduced by [2]. They 

defined multiplicative metric space in such a way that the additive triangular inequality is replaced 

by “multiplicative triangular inequality”  𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) ⋅ 𝑑(𝑧, 𝑦)for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. The concept 

of multiplicative contraction mappings and proved some fixed point theorems on such mappings in 

a complete multiplicative metric space was firstly introduced by [3]. Some unique fixed point 

theorems in the context of multiplicative metric spaces was proved by [4], their results extended 

some well-known results from the literature to multiplicative metric space. They discovered that 

some fixed point theorems can be deduced in multiplicative metric space by using the established 

result. They also, gave an appropriate example to illustrate their results. A common fixed point result 

of quasi-weak commutative mappings on a closed ball in the frame work of multiplicative metric 

spaces was presented by [5]. They provided a non-trivial example to support their results. They also, 

studied sufficient conditions for the existence of a common solution of multiplicative boundary 

value problem. 
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A lot of researches were made on multiplicative metric space to prove results that hold on standard 

metric space of which is the best proximity points such as [1] whom established interesting best 

proximity point theorems for relatively non-expansive mapping. Later in 2012, [6] used R-function 

to establish best proximity point theorem in metric space. Moreover, [7] also introduce a new class 

of cyclic contraction mapping and considered the best proximity point theorem in the context of 

metric space. 

The current article provides solutions to numerous problems in Physics, Optimization and 

Economics, which can be reduced to finding a common best proximity point of some non-linear 

operator. Our results can be used to solve problems in Non-Newtonian calculus if all the required 

conditions are satisfied. We considered the application of cyclic contraction mapping on the 

multiplicative metric space. We establish the best proximity point theorems for cyclic contraction 

mapping and generalized cyclic contraction mapping in multiplicative metric space and applied it 

on the best proximity point theorems. 

Various authors have generalized Banach contraction principle in different spaces. The first analytic 

attempt at generalizing fixed point theorem to infinite dimensional spaces was made by [8]. They 

were able to show that a continuous operator defined from a compact, convex subset of 𝐶𝑚[0, 1] 

into itself has a fixed point. This result was then applied in solving certain differential and integral 

equations. But few authors have worked on multiplicative metric spaces. Such as [3], [4], [9]. 

Specifically, [3] introduced the concept of multiplicative contraction mappings and proved some 

fixed point theorems of such mappings on a complete multiplicative metric space. The weak 

commutative mappings on a multiplicative metric space was studied by [4, 9] generating some 

unique fixed point theorems in the set-up of multiplicative metric space. For further detail about 

multiplicative metric space and concept, we refer the reader to [3], [4] [10] and [11]. The concept 

of the best approximation theorems which is a concept that explores the existence of an approximate 

solution was introduced by [12], despite the fact that there is no known constructive technique for 

determining a fixed point of T, the Schauder-Tychonov fixed point theorem is extremely important 

in the proofs of many existence theorems of differential equations. We have observed that 

generalization of the Browder fixed point theorem to infinite dimensional spaces have involved 

additional condition on its domain.  

In some theorems, we may assume that the closed unit ball is compact and convex. Furthermore, 

since the compactness assumption of some theorems is often difficult to obtain in applications, 

considerable research has been done concerning weaker conditions for the domain which guarantee 

the existence of fixed point. Some common fixed point theorems for different mappings on 2-metric 

space was studied by [13] and [14] which was used by [15] to derived some common fixed point 

theorems related to weak commutative mappings on a complete metric space. Furthermore, [16] 

studied various fixed point results on the class of generalized metric spaces. Some fixed point results 

related to monotone operators in the setting of metric space equipped with partial order using a weak 

generalized contraction typed mapping was discussed by [17] which led to the characterization of 

metric completeness by generalized Banach contraction mappings in complete Hausdorff 

generalized metric spaces by [18].  

The extensive application potential of fixed point theory in various fields in several generalizations 

of the metric spaces, rectangular metric spaces, D-metric spaces, and G-metric spaces. Perhaps one 

of the most interesting generalizations is the G-metric space which was introduced by [16] that 

drawn the attention of mathematicians and became a very popular subject especially from the point 

of view of fixed point theory. Cyclic maps and in particular the fixed points of cyclic maps have 

been a subject of growing interest recently. The main number of studies regarding fixed points is 
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weakening the contractive conditions on the map under consideration. A map  𝑇: 𝑋 → 𝑋 on a metric 

space (𝑋, 𝑑) is called a weak 𝜑-contraction if there exists a strictly increasing function 𝜑: [0, ∞) →
[0, ∞) 𝑤𝑖𝑡ℎ 𝜑(0) = 0 such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦) − 𝜑(𝑑(𝑥, 𝑦)), 

For all 𝑥, 𝑦 ∈ 𝑋. These types of contractions have also been a subject of extensive research.  

2. Basic Preliminaries 

In this section, we present some basic definitions and results concerning the cyclic contraction 

mapping and best proximity point theorems. 

Definition 2.1 [Metric Space]: Let X be a non-empty set. A function d: 𝑋2→𝑅+is said to be a 

metric on X if for any 𝑥, 𝑦, 𝑧 ∈ X, the following condition hold:(𝑚1) 𝑑(𝑥, 𝑦) ≥ 0, (𝑚2) 𝑑(𝑥, 𝑦) =
0 𝑖𝑓𝑓 𝑥 = 𝑦, (𝑚3) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) and (𝑚4) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). 

Definition 2.2 [Multiplicative Metric Space]: Let X be non-empty set. A function d: 𝑋2→𝑅+is 

said to be multiplicative metric on X if for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following condition hold: 

(𝑑1) 𝑑(𝑥, 𝑦) ≥ 1𝑎𝑛𝑑 𝑑(𝑥, 𝑦) = 1 𝑖𝑓𝑓 𝑥 = 𝑦, (𝑑2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) and (𝑑3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) ∙
𝑑(𝑧, 𝑦).Then pair (𝑋, 𝑑) is called a Multiplicative Metric Space for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Definition 2.3 [Contraction Mapping]: Let (𝑋, 𝑑) be metric space. A mapping : 𝑋 → 𝑋 is called 

contraction if there exists a real constant λ ∈ [0,1] such that 𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝜆𝑑(𝑥, 𝑦)for all  𝑥, 𝑦 ∈
𝑋. 

Definition 2.4 [Multiplicative Contraction]: Let X be a multiplicative metric space. A mapping 

𝑇: 𝑋 → 𝑋 is said to be multiplicative contractive if there exist 𝜆 ∈ [0,1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤
𝑑(𝑥, 𝑦)𝜆, for all 𝑥, 𝑦 ∈X. 

Definition 2.5 [Cyclic Contraction Mapping]: Let A and B be non-empty subset of a metric 

space(𝑋, 𝑑), a cyclic map T:A∪B →A∪B is called a cyclic contraction mapping, if ∃ k ∈ [0,1) such 

that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦) + (𝑘 − 1)𝑑𝑖𝑠𝑡(𝐴, 𝐵),  for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. 

Definition 2.6 [K-Cyclic Mapping]: Two mappings T: A→B and S: B→A is said to form a K-

Cyclic mapping between A and B if there exists a non-negative real number λ<
1

2
 such that 

𝑑(𝑇𝑥, 𝑆𝑦) = 𝜆[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑆𝑦)] + (1 − 2𝜆)𝑑𝑖𝑠𝑡(𝐴, 𝐵) for all 𝑥 ∈ 𝐴  and  𝑦 ∈ 𝐵. 

Definition 2.7 [C-Cyclic Mapping]: Two mappings T: A→B and S: B→A is said to form a C-

Cyclic mapping between A and B if there exists a non-negative real number λ<
1

2
 such that 

𝑑(𝑇𝑥, 𝑆𝑦) = 𝜆[𝑑(𝑥, 𝑆𝑦) + 𝑑(𝑦, 𝑇𝑥)] + (1 − 2𝜆)𝑑𝑖𝑠𝑡(𝐴, 𝐵) for all 𝑥 ∈ 𝐴  and  𝑦 ∈ 𝐵. 

Definition 2.8 [R-Cyclic Contraction Mapping]: Let A and B be non-empty subsets of a metric 

space (𝑋, 𝑑). if a map 𝑇: 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 satisfies (𝑀𝑇1) 𝑇(𝐴) ∁ 𝐵 𝑎𝑛𝑑 𝑇(𝐵)∁ 𝐴, (𝑀𝑇2) ∃ an R-

function 𝜑: [0, ∞) → [0,1) such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜑(𝑑(𝑥, 𝑦))𝑑(𝑥, 𝑦) +  (1 − 𝜑(𝑑(𝑥, 𝑦)) then dist 

(A,B), for any 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵.Then T is called R-Cyclic contraction with respect to 𝜑 on 𝐴 ∪ 𝐵. 

Definition 2.9 [Generalized R-Cyclic Contraction Mapping]: Let A and B be non-empty subsets 

of a metric space (𝑋, 𝑑). A cyclic map T: A∪ 𝐵 → 𝐴 ∪ 𝐵 is called generalized R-cyclic contraction 

mapping if there exists R-function 𝜑 such that 𝑑(𝑇𝑥, 𝑇𝑦) ≤

𝜑𝑑((𝑥, 𝑦)) max {𝑑(𝑥, 𝑦),
1

2
[𝑑(𝑇𝑥, 𝑥) + 𝑑(𝑇𝑦, 𝑦) + min{𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)}]} + (1 −

𝜑(𝑑(𝑥, 𝑦))) 𝑑𝑖𝑠𝑡(𝐴, 𝐵) for all 𝑥 ∈ 𝐴𝑎𝑛𝑑𝑦 ∈ 𝐵. 
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Definition 2.10 [Weak MT-K Condition]: Let A and B be non-empty subsets of a metric space 
(𝑋, 𝑑) and 𝑇: 𝐴 → 𝐵 𝑎𝑛𝑑 𝑆: 𝐵 → 𝐴 be maps. We say that the pair of maps T and S satisfy weak MT-

K condition if there exists an MT-function 𝜑: [0, ∞) → [0,1)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑇𝑥, 𝑆𝑦) =
1

2
𝜑(𝑑(𝑥, 𝑦))[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑆𝑦)] + (1 − 𝜑𝑑(𝑥, 𝑦))𝑑𝑖𝑠𝑡(𝐴, 𝐵) for all 𝑥 ∈ 𝐴𝑎𝑛𝑑𝑦 ∈ 𝐵. 

Definition 2.11 [Weak MT-C Condition]: Let A and B be non-empty subsets of a metric 

space(𝑋, 𝑑) and 𝑇: 𝐴 → 𝐵 𝑎𝑛𝑑 𝑆: 𝐵 → 𝐴 be maps. We say that the pair of maps T and S satisfy weak 

MT-C  condition if there exists an MT-function 𝜑: [0, ∞) → [0,1) such that 𝑑(𝑇𝑥, 𝑆𝑦) =
1

2
𝜑(𝑑(𝑥, 𝑦))[𝑑(𝑥, 𝑆𝑦) + 𝑑(𝑦, 𝑇𝑥)] + (1 − 𝜑𝑑(𝑥, 𝑦))𝑑𝑖𝑠𝑡(𝐴, 𝐵) for all 𝑥 ∈ 𝐴𝑎𝑛𝑑𝑦 ∈ 𝐵. 

Definition 2.12 [MT-KC Condition]: Let A and B be non-empty subsets of a metric space(𝑋, 𝑑) 

and 𝑇: 𝐴 → 𝐵 𝑎𝑛𝑑 𝑆: 𝐵 → 𝐴 be two maps. The pair of maps T and S is said to satisfy weak MT-KC 

condition if there exists a pair of function, 𝜔: [0, ∞) →[0,1) satisfy the weak MT-KC condition such 

that 𝑑(𝑇𝑥, 𝑆𝑦) = 𝛼𝜑(𝑑(𝑥, 𝑦))[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑆𝑦)] + 𝛽𝜔(𝑑(𝑥, 𝑦))(𝑑(𝑥, 𝑆𝑦) + 𝑑(𝑦, 𝑇𝑥)) (1 −

2(1 − 2𝛼𝜑𝑑(𝑥, 𝑦) − 2𝛽𝜔(𝑑(𝑥, 𝑦))) 𝑑𝑖𝑠𝑡(𝐴, 𝐵)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐴𝑎𝑛𝑑𝑦 ∈  and 𝛼𝛽 ≤
1

2
 

Definition 2.13 [Weak 𝝋-contraction]: A map  𝑇: 𝑋 → 𝑋 on a metric space (𝑋, 𝑑) is called a weak 

𝜑-contraction if there exists a strictly increasing function 𝜑: [0, ∞) → [0, ∞) 𝑤𝑖𝑡ℎ 𝜑(0) = 0 such 

that 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦) − 𝜑(𝑑(𝑥, 𝑦)), for all 𝑥, 𝑦 ∈ 𝑋. 

Definition 2.14 [Best Proximity Point of a function]: Let A and B be nonempty closed and convex 

subsets of a complete metric space(𝑋, 𝑑) and let 𝑇: 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be cyclic. Assume that, for all 

𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵 then 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵). such that 𝛼 ∈ (0,1) 𝑡ℎ𝑒𝑛 𝑑(𝐴, 𝐵) = inf  {𝑑(𝑥, 𝑦), 𝑥 ∈
𝐴, 𝑦 ∈ 𝐵}. for 𝑥0 ∈ 𝐴, 𝑑𝑒𝑓𝑖𝑛𝑒 𝑥𝑛+1 = 𝑇𝑥𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛 ≥ 0. Then, there exists unique 𝑥 ∈
𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥2𝑛 → 𝑥 and 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵). hence, 𝑥 is called best proximity point of a function 

T. 

Definition 2.15 [Generalized Metric (G-metric on X)]: Let X be a nonempty set, 𝐺: 𝑋 × 𝑋 × 𝑋 →
𝑅+ be a function satisfying the following properties: G1:𝐺(𝑥, 𝑦, 𝑧) = 0 𝑖𝑓 𝑥 = 𝑦 = 𝑧, G2: 0 <
𝐺(𝑥, 𝑥, 𝑦)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑥 ≠ 𝑦, G3: 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) 𝑓𝑜𝑟  𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑦 ≠
𝑧, G4: 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋯ (symmetric in all three variables), G5: 𝐺(𝑥, 𝑦, 𝑧) ≤
𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧)𝑓𝑜𝑟𝑎𝑙𝑙 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋 (rectangle inequality), then the function G is called 

generalized metric, or, more specifically, G-metric on X, denoted by (𝑋, 𝐺) :G-metric space. 

Definition 2.16 [Multiplicative Cyclic Contraction]: Let A and B be non-empty subset of a 

multiplicative metric space(𝑋, 𝑑). A cyclic map 𝑇: 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is called multiplicative cyclic 

contraction if ∃𝜆 ∈ [0,1) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦)𝜆 ∙ 𝑑(𝐴, 𝐵)1−𝜆, for all 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵.  

Definition 2.17 [C-Cyclic Mappings]: Two mappings T: A→B and S: B→A is said to form a C-

Cyclic mapping between A and B if ∃ a non-negative real number λ<
1

2
 such that 𝑑(𝑇𝑥, 𝑆𝑦) =

𝜆[𝑑(𝑥, 𝑆𝑦) + 𝑑(𝑦, 𝑇𝑥)] + (1 − 2𝜆)𝑑𝑖𝑠𝑡(𝐴, 𝐵) for all 𝑥 ∈ 𝐴  and  𝑦 ∈ 𝐵. 

Definition 2.18 [Weak MT-K  Condition]: Let A and B be non-empty subsets of a metric space 
(𝑋, 𝑑) and 𝑇: 𝐴 → 𝐵 𝑎𝑛𝑑 𝑆: 𝐵 → 𝐴 be maps, then T and S satisfy weak MT-K condition if there 

exists an MT-function 𝜑: [0, ∞) → [0,1)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑇𝑥, 𝑆𝑦) =
1

2
𝜑(𝑑(𝑥, 𝑦))[𝑑(𝑥, 𝑇𝑥) +

𝑑(𝑦, 𝑆𝑦)] + (1 − 𝜑𝑑(𝑥, 𝑦))𝑑𝑖𝑠𝑡(𝐴, 𝐵) for all 𝑥 ∈ 𝐴𝑎𝑛𝑑𝑦 ∈ 𝐵, and 𝑇: 𝐴 → 𝐵 𝑎𝑛𝑑 𝑆: 𝐵 → 𝐴 then T 

and S satisfy weak MT-C  condition if there exists  MT-function 𝜑: [0, ∞) →
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[0,1) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑇𝑥, 𝑆𝑦) =
1

2
𝜑(𝑑(𝑥, 𝑦))[𝑑(𝑥, 𝑆𝑦) + 𝑑(𝑦, 𝑇𝑥)] + (1 − 𝜑𝑑(𝑥, 𝑦))𝑑𝑖𝑠𝑡(𝐴, 𝐵)  for 

all 𝑥 ∈ 𝐴𝑎𝑛𝑑𝑦 ∈ 𝐵. 

3. Multiplicative Cyclic Contraction Mappings Class and Best Proximity Point Theorems 

In this section, we introduce two new classes of multiplicative contraction mappings; multiplicative 

cyclic contraction and multiplicative R-cyclic contraction mappings, and establish best proximity 

point theorems with these mappings within the frameworks of multiplicative metric space. The 

method adopted in this research was through consulting necessary and relevant literatures mentioned 

in section two.  

Theorem 3.1: Let A and B be non-empty subset of a multiplicative metric space (𝑋, 𝑑) and   𝑇: 𝐴 ∪
𝐵 → 𝐴 ∪ 𝐵 be a multiplicative cyclic contraction. For 𝑥1 ∈ 𝐴 arbitrary chosen, define an iterative 

sequence {𝑥𝑛}𝑛∈ℕ 𝑏𝑦 𝑥𝑛+1 = 𝑇𝑥𝑛 then,  

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝐴, 𝐵)                 (1) 

Proof: First we show that the sequence {𝑑(𝑥𝑛, 𝑥𝑛+1)} is non-increasing. Now, let us fix  𝑛 ∈ ℕ; 

since T is a multiplicative cyclic contraction mapping, we see that             

 𝑑(𝑥𝑛+2, 𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛)                    (2) 

  ≤ 𝑑(𝑥𝑛+1, 𝑥𝑛)𝜆 ∙ 𝑑(𝐴, 𝐵)1−𝜆      (3)  

  ≤ 𝑑(𝑥𝑛+1, 𝑥𝑛)𝜆 ∙ 𝑑(𝑥𝑛+1, 𝑥𝑛)1−𝜆     (4) 

1),(),(inf),(lim 11 === ++→ BAdxxdxxd nnnnnn =
𝑑(𝑥𝑛+1,𝑥𝑛)𝜆∙𝑑(𝑥𝑛+1,𝑥𝑛)

𝑑(𝑥𝑛+1,𝑥𝑛)𝜆  

                = 𝑑(𝑥𝑛+1, 𝑥𝑛). (5) 

From (3.4) we need to show that the sequence {𝑑(𝑥𝑛, 𝑥𝑛+1)} is non-increasing. If there exists  𝑗 ∈
ℕ such that 𝑥𝑗 = 𝑥𝑗+1 ∈ 𝐴 ∩ 𝐵. Then by definition 𝑇𝑥𝑗 = 𝑥𝑗+1 = 𝑥𝑗; also 𝑥𝑗+2 = 𝑇𝑥𝑗+1 =

𝑇(𝑇𝑥𝑗) = 𝑇𝑥𝑗 = 𝑥𝑗. So  𝑥𝑗 = 𝑥𝑗+1 = 𝑥𝑗+2 = ⋯  therefore the lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 1.  

Then, lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝐴, 𝐵) = 1 .  (6) 

Similarly, we consider the case 𝑥𝑛+1 ≠ 𝑥𝑛 for all  𝑛 ∈ ℕ. If 𝑥1 ∈ 𝐴, then by the cyclic nature of T, 

we have 𝑥2𝑛−1 ∈ 𝐴 𝑎𝑛𝑑 𝑥2𝑛 ∈ 𝐵 for all 𝑛 ∈ ℕ. Since  

d(𝑥2, 𝑥3) = 𝑑(𝑇𝑥1, 𝑇𝑥2) ≤ 𝑑(𝑥1, 𝑥2)𝜆 ∙ 𝑑(𝐴, 𝐵)1−𝜆 

𝑑(𝑥3, 𝑥4) = 𝑑(𝑇𝑥2, 𝑇𝑥3) ≤ 𝑑(𝑥2, 𝑥3)𝜆 ∙ 𝑑(𝐴, 𝐵)1−𝜆       

   ≤ (𝑑(𝑥1, 𝑥2)𝜆 ∙ 𝑑(𝐴, 𝐵)1−𝜆)
𝜆

∙ 𝑑𝑖𝑠𝑡(𝐴, 𝐵)1−𝜆  

= 𝑑(𝑥1, 𝑥2)𝜆2
∙ 𝑑(𝐴, 𝐵)1−𝜆2

  

 and    

 

(6) 
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𝑑(𝑥4, 𝑥5) = 𝑑(𝑇𝑥3, 𝑇𝑥4) ≤ 𝑑(𝑥3, 𝑥4)𝜆 ∙ 𝑑(𝐴, 𝐵)1−𝜆    

    ≤ (𝑑(𝑥1, 𝑥2)𝜆2
∙ 𝑑(𝐴, 𝐵)1−𝜆2

)𝜆 ∙ 𝑑𝑖𝑠𝑡(𝐴, 𝐵)1−𝜆   

   = 𝑑(𝑥1, 𝑥2)𝜆3
∙ 𝑑(𝐴, 𝐵)1−𝜆3

   

hence we have  𝑑𝑖𝑠𝑡(𝐴, 𝐵) ≤  𝑑(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝑑(𝑥1, 𝑥2)𝜆𝑛
∙ 𝑑(𝐴, 𝐵)1−𝜆𝑛

   (7)  

For 𝑛 ∈ ℕ.Since 𝜆 ∈ [0,1), lim
𝑛→∞

𝜆𝑛 = 0. The proof follows immediately from (6) and the non-

increasing nature of {𝑑(𝑥𝑛, 𝑥𝑛+1)}, therefore we obtain lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ 𝑑(𝑥𝑛, 𝑥𝑛+1) =

𝑑𝑖𝑠𝑡(𝐴, 𝐵).          

The following useful theorem of best proximity point theorem for multiplicative cyclic contractions 

follows immediately. 

Theorem 3.2 Let A and B be non-empty subsets of a multiplicative metric space  (𝑋, 𝑑) and  𝑇: 𝐴 ∪
𝐵 → 𝐴 ∪ 𝐵 be a multiplicative cyclic contraction map. Let 𝑥1 ∈ 𝐴 be chosen arbitrary and define an 

iterative sequence {𝑥𝑛}𝑛∈ℕ 𝑏𝑦 𝑥𝑛+1 = 𝑇𝑥𝑛. Suppose that { .Av 𝑥2𝑛−1} has a multiplicative 

convergence in A, then ∃𝑣 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑣, 𝑇𝑣) = 𝑑(𝐴, 𝐵). 

Proof: Let 𝑇: 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be multiplicative cyclic contraction if  there exists 𝜆 ∈
[0,1) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦)𝜆 ∙ 𝑑(𝐴, 𝐵)1−𝜆,  for all 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵. Since T is a cyclic 

map and 𝑥1 ∈ 𝐴 then 𝑥2𝑛−1 ∈ 𝐴 and 𝑥2𝑛 ∈ 𝐵 for all 𝑛 ∈ ℕ, and  

{𝑥2𝑛𝑘−1} is a subsequence of {𝑥2𝑛−1} multiplicatively converging to a point 𝑣 ∈ 𝐴. Then by 

(multiplicative triangle inequality)  

𝑑(𝐴, 𝐵) ≤ 𝑑(𝑣, 𝑥2𝑛𝑘
) ≤ 𝑑(𝑣, 𝑥2𝑛𝑘−1) ∙ 𝑑(𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘

  for all 𝑘 ∈ ℕ,  and                                                                  

lim
𝑘→∞

𝑑(𝑣, 𝑥2𝑛𝑘−1) = 1, we have 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑣, 𝑥2𝑛𝑘
) ≤ 𝑑(𝑣, 𝑥2𝑛𝑘−1) ∙ 𝑑(𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘

)  

        (8) 

Taking limit as 𝑘 → ∞ we have 𝑑(𝐴, 𝐵) ≤ lim
𝑘→∞

𝑑(𝑣, 𝑥2𝑛𝑘
) ≤ lim

𝑘→∞
𝑑(𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘

) = 𝑑(𝐴, 𝐵) 

             (9)  

then lim
𝑘→∞

𝑑(𝑣, 𝑥2𝑛𝑘
) = 𝑑(𝐴, 𝐵). if 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑥2𝑛𝑘+1, 𝑇𝑣)      

   = 𝑑(𝑇𝑥2𝑛𝑘+1, 𝑇𝑣)  ≤ 𝑑(𝑥2𝑛𝑘
, 𝑇𝑣)

𝜆
∙ 𝑑(𝐴, 𝐵)1−𝜆      

     ≤ 𝑑(𝑣, 𝑥2𝑛𝑘
)

𝜆
∙ 𝑑(𝑣, 𝑥2𝑛𝑘

)
1−𝜆

    

        ≤ 𝑑(𝑥2𝑛𝑘
, 𝑣),  

Therefore, 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑥2𝑛𝑘+1, 𝑇𝑣) ≤ 𝑑(𝑥2𝑛𝑘
, 𝑣)    

taking limit as 𝑘 → ∞, we obtain 

𝑑(𝐴, 𝐵) ≤ 𝑑(𝑣, 𝑇𝑣) ≤ 𝑑(𝐴, 𝐵), 

𝑑(𝑣, 𝑇𝑣) = 𝑑(𝐴, 𝐵).        (2) 

 

(10) 
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Theorem 3.3: Let A and B be non-empty subset of a multiplicative metric space (𝑋, 𝑑) and   𝑇: 𝐴 ∪
𝐵 → 𝐴 ∪ 𝐵 be a multiplicative R-cyclic contraction with respect to 𝛹. Then ∃ a sequence {𝑥𝑛}𝑛∈ℕ ⊂
𝐴 ∪ 𝐵 such that  

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝐴, 𝐵).        

Proof: 

Let 𝑥1 ∈ 𝐴 be given. Define an iterative sequence {𝑥𝑛}𝑛∈ℕ 𝑏𝑦 𝑥𝑛+1 = 𝑇𝑥𝑛 for 𝑛 ∈ ℕ, clearly 

𝑑(𝐴, 𝐵) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1) for all 𝑛 ∈ ℕ. 

If there exists 𝑗 ∈ ℕ such that 𝑥𝑗 = 𝑥𝑗+1 ∈ 𝐴 ∩ 𝐵, then by definition 𝑇𝑥𝑗 = 𝑥𝑗+1 = 𝑥𝑗 . Also 𝑥𝑗+2 =

𝑇𝑥𝑗+1 = 𝑇(𝑇𝑥𝑗) = 𝑇𝑥𝑗 = 𝑥𝑗  .So  𝑥𝑗 = 𝑥𝑗+1 = 𝑥𝑗+2 = ⋯  

Hence, lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 1. 

Then lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝐴, 𝐵) = 1 . It suffices to consider the case 

𝑥𝑛+1 ≠ 𝑥𝑛 for all  𝑛 ∈ ℕ. since the sequence { 𝑑(𝑥𝑛, 𝑥𝑛+1)} is non-increasing in (1, ∞), then 𝑡1 =
lim

𝑛→∞
𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1) ≥ 1.Since 𝜑 is an R-function we have, 0 ≤

𝑠𝑢𝑝𝑛∈ℕ𝜑(𝑑(𝑥𝑛, 𝑥𝑛+1)) < 1.  

Suppose 𝜆: =  𝑠𝑢𝑝𝑛∈ℕ𝜑(𝑑(𝑥𝑛, 𝑥𝑛+1)), 𝑡ℎ𝑒𝑛 0 ≤ 𝜑(𝑑(𝑥𝑛, 𝑥𝑛+1)) ≤ 𝜆 < 1 for all 𝑛 ∈ ℕ. If 𝑥1 ∈ 𝐴, 

then by the cyclic nature of T, we have 𝑥2𝑛−1 ∈ 𝐴 𝑎𝑛𝑑 𝑥2𝑛 ∈ 𝐵 for all 𝑛 ∈ ℕ. Since T is a 

multiplicative cyclic R-contraction, we have   𝑑(𝑥2, 𝑥3) = 𝑑(𝑇𝑥1, 𝑇𝑥2)  

 ≤ 𝑑(𝑥1, 𝑥2)𝛹𝑑(𝑥1,𝑥2) ∙ 𝑑(𝐴, 𝐵)1−𝛹𝑑(𝑥1,𝑥2) 

 ≤ 𝑑(𝑥1, 𝑥2)𝜆 ∙ 𝑑(𝐴, 𝐵)  and 𝑑(𝑥3, 𝑥4) = 𝑑(𝑇𝑥2, 𝑇𝑥3) 

    ≤ 𝑑(𝑥2, 𝑥3)𝛹𝑑(𝑥2,𝑥3) ∙ 𝑑(𝐴, 𝐵)1−𝛹𝑑(𝑥2,𝑥3) 

≤ (𝑑(𝑥1, 𝑥2)𝜆 ∙ 𝑑(𝐴, 𝐵))𝛹𝑑(𝑥2,𝑥3) ∙ 𝑑(𝐴, 𝐵)1−𝛹𝑑(𝑥2,𝑥3) 

 = 𝑑(𝑥1, 𝑥2)𝜆2
∙ 𝑑(𝐴, 𝐵)     𝑎𝑙𝑠𝑜, 𝑑(𝑥4, 𝑥5) = 𝑑(𝑇𝑥3, 𝑇𝑥4) 

≤ 𝑑(𝑥3, 𝑥4)𝛹𝑑(𝑥3,𝑥4) ∙ 𝑑(𝐴, 𝐵)1−𝛹𝑑(𝑥3,𝑥4) 

≤ (𝑑(𝑥1, 𝑥2)𝜆2
∙ 𝑑(𝐴, 𝐵))𝛹𝑑(𝑥3,𝑥4) ∙ 𝑑(𝐴, 𝐵)1−𝛹𝑑(𝑥3,𝑥4) 

               = 𝑑(𝑥1, 𝑥2)𝜆3
∙ 𝑑(𝐴, 𝐵)        

Hence, we obtained 𝑑(𝐴, 𝐵) ≤  𝑑(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝑑(𝑥1, 𝑥2)𝜆𝑛
∙ 𝑑(𝐴, 𝐵)           

For 𝑛 ∈ ℕ. Since 𝜆 ∈ [0,1), lim
𝑛→∞

𝜆𝑛 = 0. The non-increasing nature of {𝑑(𝑥𝑛, 𝑥𝑛+1)}, we obtain  

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑𝑖𝑠𝑡(𝐴, 𝐵).        (3)   

 The existence theorem for a class of cyclic mappings follows immediately 
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Theorem 3.4: Let A and B be non-empty subsets of a multiplicative metric space  (𝑋, 𝑑) and   𝑇: 𝐴 ∪
𝐵 → 𝐴 ∪ 𝐵 be a multiplicative R-cyclic contraction. Let 𝑥1 ∈ 𝐴 be given. Define an iterative 

sequence {𝑥𝑛}𝑛∈ℕ 𝑏𝑦 𝑥𝑛+1 = 𝑇𝑥𝑛 𝑓𝑜𝑟 𝑛 ∈ ℕ.  suppose further that {𝑥2𝑛−1} has a multiplicative 

convergence subsequence in A, then there exist 𝑥 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑥, 𝑇𝑣) = 𝑑(𝐴, 𝐵). 

Proof: Let {𝑥2𝑛𝑘−1} be a subsequence of  {𝑥2𝑛𝑘−1} such that 𝑥2𝑛𝑘−1 → 𝑥 as 𝑘 → ∞. we observe 

that, 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑥, 𝑥2𝑛𝑘
) ≤ 𝑑(𝑥, 𝑥2𝑛𝑘−1) ∙ 𝑑(𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘

) for all 𝑘 ∈ ℕ,  since 

lim
𝑘→∞

𝑑(𝑥, 𝑥2𝑛𝑘−1) = 1, and  

𝑑(𝐴, 𝐵) ≤ 𝑑(𝑥, 𝑥2𝑛𝑘
) ≤ 𝑑(𝑥, 𝑥2𝑛𝑘−1) ∙ 𝑑(𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘

) 

Taking limit as 𝑘 → ∞ we have 

𝑑(𝐴, 𝐵) ≤ lim
𝑘→∞

𝑑(𝑥, 𝑥2𝑛𝑘
) ≤ lim

𝑘→∞
𝑑(𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘

) = 𝑑(𝐴, 𝐵)   

Hence, lim
𝑘→∞

𝑑(𝑥, 𝑥2𝑛𝑘
) = 𝑑(𝐴, 𝐵). 

Then 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑥2𝑛𝑘+1, 𝑇𝑥) =  𝑑(𝑥2𝑛𝑘
, 𝑇𝑥)       

 ≤ 𝑑(𝑥2𝑛𝑘
, 𝑥)

𝜑(𝑑(𝑥2𝑛𝑘
,𝑥))

∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥2𝑛𝑘
,𝑥))

     

 ≤ 𝑑(𝑥2𝑛𝑘
, 𝑥)

𝜑(𝑑(𝑥2𝑛𝑘
,𝑥))

∙ 𝑑(𝑥2𝑛𝑘
, 𝑥)

1−𝜑(𝑑(𝑥2𝑛𝑘
,𝑥))

 

  ≤ 𝑑(𝑥2𝑛𝑘
, 𝑥)        

Therefore , 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑥, 𝑇𝑥) ≤ 𝑑(𝐴, 𝐵) . then  𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵). which complete the proof 

(4). 

Theorem 3.5: Let A and B be non-empty subset of a multiplicative metric space (𝑋, 𝑑) and   𝑇: 𝐴 ∪
𝐵 → 𝐴 ∪ 𝐵 be generalized multiplicative R-cyclic contraction. For each 𝑥1 ∈ 𝐴 define an iterative 

sequence {𝑥𝑛}𝑛∈ℕ 𝑏𝑦 𝑥𝑛+1 = 𝑇𝑥𝑛, for 𝑛 ∈ ℕ. Then, lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1) =

𝑑(𝐴, 𝐵).     

Proof: We need to show that { 𝑑(𝑥𝑛, 𝑥𝑛+1)} is a non-increasing sequence. If 𝑛 ∈ ℕ is fixed and T 

is a generalized multiplicative R-cyclic contraction mapping, then  𝑑(𝑥𝑛+2, 𝑥𝑛+1) = 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) 

≤ (max {𝑑(𝑥𝑛+1, 𝑥𝑛), [𝑑(𝑇𝑥𝑛+1, 𝑥𝑛+1) ∙ 𝑑(𝑇𝑥𝑛, 𝑥𝑛)}

∙ min{𝑑(𝑥𝑛+1, 𝑇𝑥𝑛), 𝑑(𝑥𝑛, 𝑇𝑥𝑛+1)}]
1
2)𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) 

≤ (max {𝑑(𝑥𝑛+1, 𝑥𝑛), [𝑑(𝑥𝑛+2, 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛+1, 𝑥𝑛)}

∙ min{𝑑(𝑥𝑛+1, 𝑥𝑛+1), 𝑑(𝑥𝑛, 𝑥𝑛+2)}]
1
2)𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) 

≤ (max {𝑑(𝑥𝑛+1, 𝑥𝑛), [𝑑(𝑥𝑛+2, 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛+1, 𝑥𝑛)} ∙ 𝑑(𝑥𝑛+1, 𝑥𝑛+1)]
1
2)𝜑(𝑑(𝑥𝑛+1,𝑥𝑛))

∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) 

≤ (max {𝑑(𝑥𝑛+1, 𝑥𝑛), [𝑑(𝑥𝑛+2, 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛+1, 𝑥𝑛)}]
1

2)𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛))                                                                                 
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Suppose [𝑑(𝑥𝑛+2, 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛+1, 𝑥𝑛)]
1

2 = (max {𝑑(𝑥𝑛+1, 𝑥𝑛), [𝑑(𝑥𝑛+2, 𝑥𝑛+1) ∙

𝑑(𝑥𝑛+1, 𝑥𝑛)]
1

2})𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)), we see that, 𝑑(𝑥𝑛+1, 𝑥𝑛)
1
2 < 𝑑(𝑥𝑛+2, 𝑥𝑛+1)

1
2  

then 𝑑(𝑥𝑛+1, 𝑥𝑛) < 𝑑(𝑥𝑛+2, 𝑥𝑛+1). 

Implies 𝑑(𝑥𝑛+2, 𝑥𝑛+1) 

≤ ([𝑑(𝑥𝑛+2, 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛+1, 𝑥𝑛)]
1
2})𝜑(𝑑(𝑥𝑛+1,𝑥𝑛))  ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)), 

≤ ([𝑑(𝑥𝑛+2, 𝑥𝑛+1) ∙ 𝑑(𝑥𝑛+1, 𝑥𝑛)]
1
2})𝜑(𝑑(𝑥𝑛+1,𝑥𝑛))  ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) 

= [𝑑(𝑥𝑛+2, 𝑥𝑛+1)2]
1
2

𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) 

       = 𝑑(𝑥𝑛+2, 𝑥𝑛+1)𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) 

   ≤ 𝑑(𝑥𝑛+2, 𝑥𝑛+1)𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) ∙ 𝑑(𝑥𝑛+2, 𝑥𝑛+1)1−𝜑(𝑑(𝑥𝑛+1,𝑥𝑛)) 

              = 𝑑(𝑥𝑛+2, 𝑥𝑛+1). 

Suppose by contradiction. Then, [𝑑(𝑥𝑛+1, 𝑥𝑛) ∙ 𝑑(𝑥𝑛+2, 𝑥𝑛+1)]
1

2 < 𝑑(𝑥𝑛+1, 𝑥𝑛) implies 

𝑑(𝑥𝑛+1, 𝑥𝑛)
1
2 ≥ 𝑑(𝑥𝑛+2, 𝑥𝑛+1)

1
2 

Implies 𝑑(𝑥𝑛+1, 𝑥𝑛) ≥ 𝑑(𝑥𝑛+2, 𝑥𝑛+1), since { 𝑑(𝑥𝑛, 𝑥𝑛+1)} is non-increasing sequence then there 

exists  𝑗 ∈ ℕ such that 𝑥𝑗 = 𝑥𝑗+1 ∈ 𝐴 ∩ 𝐵, then by definition 𝑇𝑥𝑗 = 𝑥𝑗+1 = 𝑥𝑗 . Also 𝑥𝑗+2 = 𝑇𝑥𝑗+1 =

𝑇(𝑇𝑥𝑗) = 𝑇𝑥𝑗 = 𝑥𝑗, 𝑥𝑗 = 𝑥𝑗+1 = 𝑥𝑗+2 = ⋯ 

Therefore, lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 1.  

Then, lim
𝑛→∞

𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝑑(𝐴, 𝐵) = 1. 

So it remains to consider the case 𝑥𝑛+1 ≠ 𝑥𝑛 for all  𝑛 ∈ ℕ, since the sequence { 𝑑(𝑥𝑛, 𝑥𝑛+1)} is 

non-increasing and by the property of R-function we have 0 ≤ 𝜑(𝑑(𝑥𝑛+1, 𝑥𝑛)) ≤ 𝜆 < 1 for all 𝑛 ∈

ℕ where 𝜆: =  𝑠𝑢𝑝𝑛∈ℕ𝜑(𝑑(𝑥𝑛+1, 𝑥𝑛)). from  𝑥1 ∈ 𝐴,  we have 𝑥2𝑛−1 ∈ 𝐴 𝑎𝑛𝑑 𝑥2𝑛 ∈ 𝐵 for all 𝑛 ∈

ℕ, since T is a multiplicative cyclic R-contraction, then 𝑑(𝑥2, 𝑥3) = 𝑑(𝑇𝑥1, 𝑇𝑥2) 

≤ 𝑑(𝑥1, 𝑥2)𝜑(𝑑(𝑥1,𝑥2)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥1,𝑥2)) 

≤ 𝑑(𝑥1, 𝑥2)𝜑(𝑑(𝑥1,𝑥2)) ∙ 𝑑(𝐴, 𝐵) 

    ≤ 𝑑(𝑥1, 𝑥2)𝜆 ∙ 𝑑(𝐴, 𝐵)  

then, 𝑑(𝑥3, 𝑥4) = 𝑑(𝑇𝑥2, 𝑇𝑥3) 

≤ 𝑑(𝑥2, 𝑥3)𝜑(𝑑(𝑥2,𝑥3)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥2,𝑥3)) 

≤ (𝑑(𝑥1, 𝑥2)𝜆 ∙ 𝑑(𝐴, 𝐵))𝜑(𝑑(𝑥2,𝑥3)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥2,𝑥3)) = 𝑑(𝑥1, 𝑥2)𝜆2
∙ 𝑑(𝐴, 𝐵). similarly, 

𝑑(𝑥4, 𝑥5) = 𝑑(𝑇𝑥3, 𝑇𝑥4) 
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≤ 𝑑(𝑥3, 𝑥4)𝜑(𝑑(𝑥3,𝑥4)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥3,𝑥4)) 

 ≤ (𝑑(𝑥1, 𝑥2)𝜆2
∙ 𝑑(𝐴, 𝐵))𝜑(𝑑(𝑥3,𝑥4)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥3,𝑥4))  = 𝑑(𝑥1, 𝑥2)𝜆3

∙ 𝑑(𝐴, 𝐵). Hence, 

𝑑(𝐴, 𝐵) ≤  𝑑(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝑑(𝑥1, 𝑥2)𝜆𝑛
∙ 𝑑(𝐴, 𝐵) for all 𝑛 ∈ ℕ. Since 𝜆 ∈ [0,1), lim

𝑛→∞
𝜆𝑛 = 0.by 

the non-increasing nature of {𝑑(𝑥𝑛, 𝑥𝑛+1)}, then lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑑(𝐴, 𝐵).  

(5) 

From the above theorem, we establish the following best proximity point theorem for generalized 

multiplicative R-cyclic contractions. 

Theorem 3.6: Let A and B be non-empty subsets of a multiplicative metric space  (𝑋, 𝑑) and   𝑇: 𝐴 ∪
𝐵 → 𝐴 ∪ 𝐵 be a generalized multiplicative cyclic   R-contraction. Let 𝑥1 ∈ 𝐴 be given. Define an 

iterative sequence {𝑥𝑛}𝑛∈ℕ 𝑏𝑦 𝑥𝑛+1 = 𝑇𝑥𝑛 𝑓𝑜𝑟 𝑛 ∈ ℕ.  Suppose further that {𝑥2𝑛−1} has a 

multiplicative convergence subsequence in A, then there exist 𝑥 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑥, 𝑇𝑥) =
𝑑(𝐴, 𝐵). 

Proof: Let {𝑥2𝑛𝑘−1} be a subsequence of  {𝑥2𝑛𝑘−1} multiplicative converging to a point 𝑥 ∈ 𝐴. 

Since, by multiplicative triangle inequality, we have  

𝑑(𝐴, 𝐵) ≤ 𝑑(𝑥, 𝑥2𝑛𝑘
) ≤ 𝑑(𝑥, 𝑥2𝑛𝑘−1) ∙ 𝑑(𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘

), for all 𝑘 ∈ ℕ, and since 

lim
𝑘→∞

𝑑(𝑥, 𝑥2𝑛𝑘−1) = 1, then 

𝑑(𝐴, 𝐵) ≤ 𝑑(𝑥, 𝑥2𝑛𝑘
) ≤ 𝑑(𝑥, 𝑥2𝑛𝑘−1) ∙ 𝑑(𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘

) 

Taking limit as 𝑘 → ∞ we have 

𝑑(𝐴, 𝐵) ≤ lim
𝑘→∞

𝑑(𝑥, 𝑥2𝑛𝑘
) ≤ lim

𝑘→∞
𝑑(𝑥2𝑛𝑘−1, 𝑥2𝑛𝑘

) = 𝑑(𝐴, 𝐵) 

Hence, lim
𝑘→∞

𝑑(𝑥, 𝑥2𝑛𝑘
) = 𝑑(𝐴, 𝐵). 

On the other hand, since T is a generalized R-cyclic contraction mapping we have, 

𝑑(𝐴, 𝐵) ≤ 𝑑(𝑇𝑥, 𝑥2𝑛𝑘+1)

≤ max { 𝑑(𝑥, 𝑥2𝑛𝑘
), [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝑥2𝑛𝑘+1, , 𝑥2𝑛𝑘

)

∙ min{𝑑(𝑥, 𝑥2𝑛𝑘+1, ), 𝑑(𝑥2𝑛𝑘+1, 𝑇𝑥)}]
1
2} 

Letting 𝑘 → ∞, we obtain 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑇𝑥, 𝑥) 

≤ max {𝑑(𝐴, 𝐵), [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝐴, 𝐵) ∙ min {𝑑(𝑥, 𝑥), 𝑑(𝑥, 𝑇𝑥)}]
1
2} 

= max {𝑑(𝐴, 𝐵), [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝐴, 𝐵) ∙ 𝑑(𝑥, 𝑥)]
1
2} 

                     = max {𝑑(𝐴, 𝐵), [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝐴, 𝐵)]
1
2}                           

Now we consider the following two cases: 

Case I: If max {𝑑(𝐴, 𝐵), [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝐴, 𝐵)]
1
2} = 𝑑(𝐴, 𝐵), then it implies that; 
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𝑑(𝐴, 𝐵) ≤ 𝑑(𝑇𝑥, 𝑥) ≤ 𝑑(𝐴, 𝐵) 

which also implies, 𝑑(𝐴, 𝐵) = 𝑑(𝑇𝑥, 𝑥) 

Case II: If max {𝑑(𝐴, 𝐵), [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝐴, 𝐵)]
1
2} = [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝐴, 𝐵)]

1
2. then  

𝑑(𝑇𝑥, 𝑥) ≤ [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝐴, 𝐵)]
1
2 

𝑑(𝑇𝑥, 𝑥) ≤ 𝑑(𝐴, 𝐵) 

And it follows that 𝑑(𝑇𝑥, 𝑥) = 𝑑(𝐴, 𝐵). It is clear that every R-cyclic contraction is a generalized 

R-cyclic contraction. Indeed, if T is R-cyclic contraction then 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ (𝑑(𝑥, 𝑦))𝛹(𝑑(𝑥,𝑦)) ∙ 𝑑(𝐴, 𝐵)1−𝛹(𝑑(𝑥,𝑦)) 

≤ (max {𝑑(𝑥, 𝑦), [𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝑇𝑦, 𝑦) ∙ min {𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)}]
1
2)𝜑(𝑑(𝑥,𝑦)) ∙ 𝑑(𝐴, 𝐵)1−𝜑(𝑑(𝑥,𝑦)) 

for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. (6).  

4. Conclusion and Recommendations 

In this research, cyclic contraction mappings were studied in Multiplicative Metric Spaces, and we 

obtained Best Proximity Point Theorems in Multiplicative Metric Spaces by extending the results 

of [1] and [19] from Metric Space to Multiplicative Metric Space. For the three classes of cyclic 

mappings mentioned above. The best proximity point theorems were established in the setting of 

multiplicative metric spaces. 

Various classes of mappings introduced in this research can be further studied. It is recommended 

that, best proximity point should be investigated further in multiplicative metric space. Common 

best proximity point in multiplicative metric space may also be investigated. It may also be possible 

to establish fixed point theorem(s) in multiplicative metric spaces using a newly introduced 

multiplicative cyclic contraction mappings. It is recommended that example(s) of a generalized 

multiplicative R-cyclic contraction mapping which is not a multiplicative R-cyclic contraction be 

constructed.  
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