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 Models are the heart of machine learning as they represent the end 

product of the learning process and help in making predictions. With 

the widespread adoption of machine learning and the ever-increasing 

security concerns especially when dealing with sensitive data like 

healthcare and financial data, the security of machine learning models 

has become expedient to guarantee the privacy of training data and 

ensure the continuous acceptance and adoption of machine learning in 

fields involving sensitive data. This study presents a systematic review 

of centralized and decentralized machine learning models; security 

challenges, common application areas and defence mechanisms 

implemented to curb the security threats in centralized and 

decentralized machine learning models. Also, we propose future 

directions and avenues for research and development to improve the 

security, performance and resilience of centralized and decentralized 

machine learning models. 
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1.0. Introduction 

Machine learning (ML) has revolutionized various sectors by enabling systems to learn and improve 

from experience without being explicitly programmed [1, 2]. At the core of ML are models, which 

are mathematical representations learned from data to make predictions on new, unseen data [3, 4]. 

Traditionally, ML models are trained in centralized environments where large datasets are gathered 

and processed [5, 6]. While this approach has yielded results, it raises great concerns about security, 

privacy and scalability [7, 8]. To address these challenges, decentralized ML has emerged as an 

alternative to enhance privacy in the learning process [5, 9]. Centralized models, though effective 

possess inherent vulnerabilities to various security threats [10, 11]. The centralized storage and 

processing of sensitive data make them attractive for attacks such as data breaches, poisoning, 

intellectual property theft and byzantine failures [12, 13, 14]. Furthermore, centralized models 

hinder collaboration and knowledge sharing among organizations [15, 16]. Decentralized ML 

models distribute data and computation across multiple nodes, enhancing privacy, security, and 

resilience [17, 18]. By dividing silos and enabling collaborative learning, decentralized models 

unlock the potential of massive datasets while preserving data control and ownership [19, 20, 21]. 

However, decentralized systems introduce new challenges like byzantine failures and 

communications security challenges [22, 23, 24]. 

 

1.1 Machine Learning Model 

The ML model is the mathematical representation of the real-world process learned from the data 

[25, 26]. A dataset of examples is fed into the model, the model learns from these examples to 

distinguish between the objects presented by identifying underlying patterns [27, 28, 29]. 
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Supervised and unsupervised learning are the two common types of machine learning [30, 31]. In 

supervised learning, the model is trained with the use of labelled data, in labelled data the desired 

output is given for each input [32, 33, 34]. The goal of the model in supervised learning is to learn 

a mapping function that will accurately predict the label for unseen data [35, 36, 37]. Classification 

and regression are common tasks in supervised learning. Classification predicts the category using 

discrete labels while regression predicts continuous numerical values [30, 38]. Unsupervised 

learning deals with unlabeled data, the task of the model is to find hidden patterns within the data 

to make predictions [39]. Clustering and dimensionality reduction are examples of unsupervised 

learning techniques. In clustering, similar data points are grouped together, in dimensionality 

reduction, complex data is simplified by reducing the number of features [1]. 

When a model is trained, it can be used for predictions on new data. This is where the true value of 

the model lies [40]. The accuracy of prediction is dependent on many factors like algorithm, 

complexity of model, quality and quantity of the data etc. [41]. 

ML models are not infallible, they can make mistakes and also expose sensitive training data used 

to train them to adversaries [42, 43, 44]. Privacy-preserving machine learning (PPML) techniques 

are privacy guarantees put in place to ensure the privacy of training data and preserve model 

integrity [45, 46]. 

 

1.2 Security of Machine Learning Model 

ML has been tremendously useful. However, it has also introduced a new frontier of security 

challenges [47]. It is expected that machine learning models should learn from data and make 

accurate predictions while protecting the privacy of training data [48]. These models rely on vast 

amounts of data to learn, improve and make predictions and this has made them targets for data 

breaches [4, 49]. Malicious actors can take advantage of model vulnerabilities in data collection, 

storage, and processing to manipulate, steal or misuse data [50, 51]. 

Machine learning models are vulnerable to adversarial attacks, where attackers can inject malicious 

inputs to deceive the model [52]. These attacks can manipulate the output of the model leading to 

incorrect decisions with devastating consequences [52, 53]. Different techniques like adversarial 

training, input validation, robust optimization etc. can help to mitigate these risks [50]. 

Besides adversarial model attacks, machine learning models can also leak sensitive information 

about training data. A common privacy-preserving technique to curb this is differential privacy, a 

technique that adds noise to data to protect privacy [54, 55]. Furthermore, model stealing attacks 

are also a possibility, where attackers attempt to replicate the functionality of a model without access 

to the original training data, necessitating robust model protection mechanisms [44, 56]. 

 

2.0 Related Works 

[3], presented a comparative analysis of centralized versus federated averaging. They compared 

federated averaging with centralized learning models. Their results showed that centralized models 

perform better than federated averaging in terms of accuracy, however, they noted that security risks 

is much higher in centralized models as a result of storing data in a central location.  

[5], performed a convergence performance between classical and federated machine learning using 

two datasets that are available publicly. Logistic regression using the MNIST dataset and image 

classification using the CIFAR-10 dataset were used. Their results showed that federated learning 

has higher convergence in a limited communication round while maintaining the anonymity of the 

participants. 

[7], carried out a survey analyzing the journey and transition from centralized to distributed learning. 

They examined and compared different machine learning deployment architectures, and they 

provided a new classification of federated learning research fields and topics based on a thorough 
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analysis of technical challenges. They elaborated on taxonomies that cover different challenging 

aspects, trends and contributions in literature including system designs, models, application areas, 

security and resource management. 

 [8], examined and compared different machine learning deployment architectures considering 

centralized and federated machine learning. They provided a new classification of federated learning 

topics and research directions based on an analysis of technical challenges and recent related work. 

They elaborated comprehensive taxonomies that cover different challenging aspects in centralized 

learning as well as federated learning. Also, they discussed important open research directions. 

[9], surveyed distributed learning and federated learning. Firstly, they proposed an architecture for 

federated learning systems and related techniques. Secondly, they explained federated learning 

systems from four aspects namely aggregation algorithms, types of parallelism, security and data 

communication. Thirdly, they presented four federated systems that are widely used based on 

functional architecture. Finally, they summarized their limitations and presented suggested research 

directions. 

[19], presented an analysis of federated learning, introduced the development process, architecture, 

definition and classification of federated learning and explained the concept of federated learning 

by comparing it with centralized machine learning. Also, they described peculiar challenges of 

federated learning that need to be addressed. Finally, they discussed future research directions in 

federated learning systems based on deep learning. 

[31], carried out a comparative analysis of centralized and federated machine learning. They 

discussed the different factors affecting federated learning and the differences between federated 

learning and centralized learning. They empirically demonstrated the effect the number of samples 

per device has on the distribution of the output labels of federated systems. They showed that 

federated learning has a cost advantage when the size of the model to be trained is not large. Finally, 

they presented the need for careful design to enhance cost and performance. 

[37], studied the changing landscape in machine learning, they analyzed the evolution of machine 

learning from centralized to distributed and then to federated learning. Also, they addressed each 

type of machine learning as well as their different limitations and strengths. 

[59], carried out a study on centralized and decentralized federated approaches using the transformer 

architecture to estimate remaining useful life. They noted the advantage of using decentralized 

federated learning over centralized learning and compared the performance of decentralized 

federated learning with centralized methods. They compared the performance of decentralized 

federated learning with centralized learning using two federated algorithms to predict the useful life 

of an asset remaining. 

[63], carried out a study on the applications of distributed learning for the Internet of things. They 

provided a background of machine learning and presented a preliminary to typical distributed 

learning approaches. Then they carried out an extensive review of distributed learning for IoT 

services. From the literature they reviewed, they present challenges of distributed learning for IoT 

and propose promising research directions and solutions. 

 

3.0 Methodology 

This study employed a systematic review approach, building on previous studies [36, 57, 58]. We 

developed specific research questions to direct our search, selection, and analysis of existing 

literature. This strategy was essential to accomplish the objectives of this study. The objectives of 

this study are to; examine the vulnerabilities associated with centralized and decentralized machine 

learning models, identify existing defense mechanisms and propose future research directions to 

strengthen the security of centralized and decentralized machine learning models. The inclusion 

criteria are research papers written in English language that; contain valuable content on centralized 
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and decentralized machine learning models and papers containing relevant content on the security 

challenges in machine learning models written over the last decade i.e. from 2015 to 2024. Papers 

not meeting these criteria were not collected. Research papers were sourced by a desk search on the 

Scopus database with keywords like "machine learning models", "centralized machine learning 

models", "decentralized machine learning models" and "security of machine learning models". 

Table 1 shows the statistics of the papers obtained through the desk search per year.  

 

Table 1: Distribution of sourced papers 
S/N Year Number of Articles 

1 2015 15 

2 2016 11 

3 2017 13 

4 2018 15 

5 2019 15 

6 2020 13 
7 2021 21 
8 2022 12 
9 2023 13 
10 2024 17 

 

Also, for analysis, we employed judgmental sampling to select a paper from each year based on the 

suitability and relevance of the publication to the context of this review. It has been noted that 

Judgmental sampling is very effective in scenarios where a direct and particular target is desired 

and a population that exhibits pertinent qualities that meet the set target specification is necessary 

[57].  Going forward, our assertions, descriptions, analyses, arguments and conclusions about the 

topic at hand were based on the chosen papers. 

 

4.0 Discussion 

4.1 Centralized Machine Learning Models 

A centralized machine learning model is one where all data is collected and processed in a central 

location, this location is usually a powerful server or a cluster of servers residing either in a data 

centre or a cloud environment [59]. By collecting data from different sources, centralized machine 

learning empowers algorithms to reveal patterns and make predictions [60]. However, centralized 

machine learning models are faced with security and privacy concerns [15], this is because, when 

sensitive data is collected from different sources and amalgamated in a single location, it becomes 

a potential target for attackers [47]. A data breach can have devastating consequences, exposing 

personal, medical or financial records [18]. Beyond exposure to sensitive information, compromised 

trust in handling data can erode public confidence in machine learning and its adoption in certain 

fields [18]. 

Another critical security challenge is that a centralized system is a single point of failure. If the 

central repository is compromised, the entire infrastructure will be at risk. This vulnerability can 

lead to losses, reputational damage and loss of confidence in the infrastructure [5, 15]. 

The security challenges posed by centralized learning models demand a proactive and 

comprehensive approach to safeguard sensitive data, preventing sensitive data and protecting the 

integrity of machine learning models [18]. 
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4.2 Decentralized Machine Learning Models 

Decentralized machine learning models are distributed models that distribute the computational load 

across multiple devices. This distributed framework presents many advantages chiefly because it 

eliminates the vulnerability of having a single point of failure [17]. 

Also, decentralized models enhance privacy by keeping data in localized devices thereby reducing 

the risk of data breaches. Unlike centralized systems where large amount of data is aggregated in a 

central repository, decentralized systems minimize the exposure of sensitive information [61]. 

Decentralized machine learning like federated learning has offered good security and has gained 

acceptance in many fields involving sensitive user data [19]. 

Besides security, decentralized machine learning models also enhance scalability. As data volume 

continues to increase, centralized systems face processing challenges. Decentralized models address 

this challenge by harnessing the collective computational power of numerous devices. This 

distributed approach enables the handling of massive datasets without overwhelming a single entity 

[19, 59]. 

Moreover, decentralization improves system resilience. In traditional centralized systems, a single 

point of failure can cripple the entire system. Decentralized architectures, on the other hand, 

distribute the workload, making them more robust to failures. If one node malfunctions, the system 

can continue operating with minimal disruption [19, 62]. 

However, decentralized machine learning models also have unique security challenges. As a result 

of the distributed nature of the system, a larger attack surface is presented making it susceptible to 

various threats [22]. A major concern is data poisoning, where attackers can introduce misleading 

or corrupted data into the training process, thereby compromising model integrity. For instance, 

poisoning patient data in a decentralized healthcare system can lead to incorrect treatment 

recommendations or diagnoses [63, 9]. 

Model theft is another critical issue. As a resulted of the distributed nature of the learning model, 

intellectual property protection is complex. Malicious actors can steal the parameters of the model 

or replicate the behaviour of the model by accessing and analysing the data from different nodes. 

This presents a significant risk to the development of proprietary machine learning models [19].  

Communication vulnerabilities are also another challenge in decentralized machine learning 

models. The exchange of model updates and the intermediate results between the different devices 

can be intercepted and tampered with. This can compromise the integrity and privacy of the learning 

process. Attackers can also exploit this vulnerability to inject malicious code or manipulate the 

model's behaviour [5, 8]. 

 

4.3 Comparative Analysis of Centralized and Decentralized Machine Learning Models. 

In this section, we present a comparative analysis of centralized and decentralized machine learning 

models considering efficiency, scalability, and security. The efficiency of a machine learning model 

refers to the speed, resource allocation and overall performance of the model [46]. A more efficient 

model can process data faster with less computational power, and achieve similar or better results 

compared to a less efficient one [49]. Scalability is the ability of the model to handle increasing 

amounts of data or computational complexity without a significant impact on performance [37, 38]. 

A scalable model can efficiently process larger datasets and handle more complex tasks, making it 

suitable for applications with growing demands [38]. Security refers to the protection of the model, 

data, and infrastructure from unauthorized access, manipulation, or misuse. It involves safeguarding 

the confidentiality, integrity, and availability of machine learning data and components to ensure 

that the system operates as intended and remains reliable [11, 64]. 
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4.3.1 Efficiency in Centralized and Decentralized Machine Learning Models 

Figure 1 shows a comparative analysis of the efficiency of centralized and decentralized machine 

learning models. 

 

 
Figure 1: Efficiency of centralized and decentralized machine learning models 

 

Centralized servers can process large datasets efficiently due to the centralized location of powerful 

servers, data processing in decentralized models is done locally by participating devices thereby 

leading to slower processing for large datasets [8]. 

Decentralized models leverage the computational resources of individual devices thus improving 

efficiency. Centralized models require powerful hardware (GPUs, and TPUs) for training and 

inference [28]. 

Centralized models present no significant communication overhead as all data and processing occur 

on a single server. However, communication between individual devices and the server in 

decentralized models can introduce latency and overhead [5]. 

 

4.3.2 Scalability in Centralized and Decentralized Machine Learning Models 

Figure 2 shows a comparative analysis of the scalability in centralized and decentralized machine 

learning models. 

 

 
Figure 2: Scalability in centralized and decentralized machine learning models. 

 

Horizontal scaling is the process of increasing the computational power of a system by adding more 

machines or nodes to a cluster [65]. This allows the system to handle larger workloads and improve 

performance without modifying the existing software or hardware. In centralized models, horizontal 
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scaling can be done by adding more servers to the cluster while horizontal scaling can be 

implemented in decentralized models by adding more devices to the network [66]. 

Vertical scaling involves increasing the computational power of a single machine or node by 

upgrading its hardware components [66]. This involves adding more memory, storage, or processing 

power to the existing machine. Centralized models can scale vertically by upgrading hardware 

components while decentralized models may have limitations to vertical scalability due to 

constraints of individual devices [65, 66]. 

Centralized models can handle large datasets by adding more powerful hardware while 

decentralized models can handle large datasets by distributing data across multiple devices thereby 

reducing the computational burden on individual machines [6]. 

 

 

4.3.3 Security Analysis of Centralized and Decentralized Machine Learning Models 

Table 2 shows the security analysis of centralized and decentralized machine learning models. 

 

Table 2: Security Analysis of Centralized and Decentralized Machine Learning Models 
Vulnerability Centralized Models Decentralized Models 

Single point of failure High risk Not Applicable 

Model poisoning High risk Potential risk at individual nodes 

Data privacy High risk Lower risk 

Intellectual property theft High risk Lower risk 

DDoS attacks Low risk High risk 

Byzantine failure Low risk High risk 
Communication security Less critical Critical 

 

Centralized machine learning has a high risk of a single point of failure as a result of the central 

collection of data, if the central server experiences failure, the entire infrastructure will be 

compromised. On the other hand, decentralized learning addressed the challenge of a single point 

of failure by distributing data and processing across multiple devices. Therefore, failure of devices 

will be localized [31]. 

Model poisoning involves the manipulation of the training data by an adversary to degrade the 

performance of the model. The risk and mode of propagation of model poisoning differ significantly 

in centralized and decentralized machine learning models. Model poisoning in centralized machine 

learning models involve data poisoning which is injecting malicious data into the training set thereby 

making the model make misleading predictions [45]. Model poisoning in decentralized models can 

be carried out by either manipulating model updates sent to the central server, this can be gradient 

poisoning (modifying gradients to shift the model in a particular direction) or data poisoning as in 

the case of centralized model poisoning [31]. Inference poisoning is also another mode of 

propagation of model poisoning in a decentralized system, inference poisoning occurs at the 

inference phase and involves manipulating input data or the model itself to make incorrect 

predictions [45]. The risk of model poisoning in centralized models is high because data is located 

in a single location and malicious data can be injected easily. However, the risk of model poisoning 

in decentralized models also does exist but this risk is resident in the individual nodes [7, 45]. 

Privacy attacks in machine learning models lead to exposure of sensitive training data [64]. 

Centralized learning presents a high risk to privacy because of the centralized location of training 

data [20]. Centralized models are highly vulnerable to data breach as they offer a single point of 

failure, centralized models are also highly vulnerable to data misuse because the centralized entity 

has complete control over the data [8, 24]. Transparency issues are also a major privacy concern in 
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centralized machine learning as users often have limited visibility into how their data is used. 

Decentralized learning reduces privacy risk because data is not localized, guarantees data 

sovereignty because data remains under user control, reduces exposure of sensitive data because 

only necessary data is shared, and it also enhances transparency because data owners have more 

control over data usage [28]. 

Intellectual property theft in machine learning models occurs when someone uses another person's 

proprietary machine learning model, its data or components illegally [52, 54]. For theft of 

intellectual property in machine learning systems, attackers usually employ reverse engineering 

which involves analyzing the parameters and structures of the model to recreate a similar model, 

potentially stealing the intellectual property embedded in the model [67]. Centralized models are 

more vulnerable to intellectual property theft because the centralized repository is a potential target 

for attackers and also, reverse engineering is also easier in centralized models as attackers can easily 

analyze model output. [37]. Decentralized models have far less risk of intellectual property theft 

because reverse engineering is difficult in decentralized machine learning as a result of the 

distributed nature of data and computation [25]. 

While the possibility of denial of service cannot be denied in centralized machine learning, the risk 

is generally lower because of the centralized nature of data and computation [5]. However, in 

decentralized models, the risk of DDOS is higher because of its distributed nature as attackers can 

target individual nodes to deny training or inference, overwhelm individual nodes and slow down 

the distributed network thus impacting overall system performance [32]. 

Byzantine fault tolerance is the ability of machine learning models to continue operation correctly 

even when some of its components fail arbitrarily [61]. A byzantine failure occurs when a 

component misbehaves in a certain way, where one or more nodes behave maliciously or 

unpredictably including sending contradictory information to different parts of the system [61, 67]. 

The risk of byzantine failure exists in a centralized learning model but this risk is low because data 

is localized. However, the risk of byzantine failure is high in decentralized models where 

coordination is essential. In decentralized models, nodes can deviate from agreed-upon protocol, 

send misleading or incorrect information or even attempt to sabotage the training process [8, 48]. 

Communication security is a critical aspect of decentralized machine learning, the risk of 

communication security in centralized machine learning models is less critical as compared to that 

of decentralized machine learning models [19]. Communication security concerns in centralized 

models exist in data transmission (where data from different sources are transferred to the central 

server) and model transmission (when the model is distributed to different clients) [6]. 

Communication security breaches have a high risk in decentralized machine learning models and 

this is because of the coordination of learning between the different devices and the central server 

making it easier for adversaries to poison model updates [63]. 

 

4.4 Defense Mechanisms 

Table 3 shows the different defense mechanisms put in place to protect centralized and decentralized 

machine learning models. 

 

Table 3: Defense mechanisms in centralized and decentralized machine learning models 
Vulnerability Centralized Models Decentralized Models 

Single Point of Failure Disaster recovery and 

backups 

Not Applicable 

Model Poisoning Model monitoring, data 

validation  and adversarial 
training 

Outlier detection and 

federated learning 
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Privacy Differential privacy, 

encryption and access control 

Homomorphic encryption, 

differential privacy and 

federated learning 

Intellectual Property Theft Model obfuscation, access 
control and watermarking 

Model obfuscation and 
federated learning 

DDoS Attacks Load balancing, intrusion 
detection, rate limitation 

Load balancing, rate limiting, 
intrusion detection. 

Byzantine Failure Not applicable Reputation systems, outlier 

detection and consensus 
algorithms 

Communication security Encryption, authentication 
and integrity checks 

Encryption, authentication 
and integrity checks 

 

4.5 Application Areas of Centralized Machine Learning Models 

Centralized models are suitable in scenarios where; Large datasets are available as they can 

efficiently handle massive amounts of data [59]. Also, centralized models are suitable where data 

privacy is not a major concern; When data can be shared freely without compromising sensitive 

information, centralized models offer a straightforward and efficient solution [23]. Centralized 

models are also suitable when real-time predictions are required. Centralized models can be 

optimized for low latency, making them suitable for applications that demand immediate results 

[11].  Real-world applications of centralized machine learning models include; recommendation 

systems because centralized models can analyze vast amounts of data to provide personalized 

recommendations for content, products or services. Centralized models are also suitable for image 

recognition; centralized models can be trained on large datasets of images to achieve high accuracy 

in tasks like object detection and facial recognition [22]. Also, centralized models are suitable for 

natural language processing tasks; this is because centralized models can leverage large language 

models to understand and generate human language [31]. Fraud detection is also another area where 

centralized models are highly desirable as these models analyze patterns in large financial data to 

identify fraudulent transactions and protect against financial losses [68].  

 

4.6 Application Areas of Decentralized Machine Learning Models 

Decentralized models are suitable in scenarios where; Data privacy is a major concern because 

decentralized models can protect sensitive data by keeping it local and only sharing model updates 

[30, 22].  Decentralized models are also suitable when data is distributed across multiple devices 

because they can leverage data from a wide range of sources thus improving model accuracy and 

generalizability [68]. Also, decentralized models are desirable in scenarios where scalability is 

required, this is because they can be easily scaled to handle large numbers of devices and data points 

[52]. Real world applications of decentralized machine learning models include; federated ML 

models, they are used to train ML models on individual devices and share model updates without 

sharing their data thus ensuring privacy [24]. Internet of Things is another application of 

decentralized models; decentralized models have been deployed on IoT devices to analyze local 

data and make autonomous decisions thereby reducing the need for centralized cloud processing 

[54]. Also, decentralized models find applications in edge computing as they can be used to process 

data at the edge of the network, thus, reducing latency and improving responsiveness [54]. 

Decentralized models can also be integrated into blockchain technology to ensure data privacy and 

security [10].  
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4.7 Common Security Challenges and Solutions in Centralized and Decentralized Machine 

Learning Models 

In this section, we discussed common security challenges and solutions in centralized and 

decentralized machine learning models. We considered data privacy, model poisoning and model 

interoperability which are common security challenges in centralized and decentralized machine 

learning models. 

Data privacy in machine learning models refers to the protection of sensitive information used to 

train and deploy these models [55]. This involves ensuring that data is collected, stored, and 

processed without exposure [10]. Protecting privacy in decentralized models involves encryption to 

make it difficult for unauthorized parties to access, implementing strong access controls and data 

anonymization; transforming data to remove personally identifiable information making it harder to 

link an individual to his personal data [6]. Protecting privacy in decentralized models involves 

privacy-preserving techniques like homomorphic encryption; carrying out computation on 

encrypted data without decryption, secure multi-party computation; where multiple parties can 

collaborate on a task without revealing individual inputs, differential privacy; adding noise to data 

to protect individual privacy while preserving statistical accuracy, and the use of blockchain; a 

distributed ledger that can be used to securely record and track data transactions ensuring 

transparency and immutability [33, 42, 51]. 

Model poisoning is a malicious attack where adversaries inject malicious inputs into the training 

data of a machine learning model. These malicious inputs can be designed to mislead the model, 

causing it to produce incorrect or biased outputs [34]. By poisoning the model, attackers can 

compromise its accuracy, reliability, and security. In centralized models, anomaly detection can be 

used to mitigate model poisoning as statistical techniques can identify unusual or suspicious data 

points that may be indicative of poisoning attacks [11]. Input validation, adversarial training and 

ensemble methods are other techniques to address model poisoning in centralized models. Input 

validation can prevent malicious inputs from being processed. Adversarial training involves training 

the model with adversarial examples and this can make it more resilient to poisoning attacks. 

Ensemble methods involve combining multiple models and this can reduce the impact of poisoning 

attacks in centralized models [34, 69]. Preventing model poisoning in decentralized models involves 

techniques like secure aggregation to aggregate data from multiple nodes securely without revealing 

individual inputs. Reputation systems a technique to track the behaviour of nodes can help identify 

malicious nodes and thus prevent decentralized models from poisoning attacks by identifying and 

isolating malicious actors [33, 51, 70]. Also, adversarial distributed training which involves training 

the model across multiple nodes can make it more resistant to poisoning attacks [47]. 

Model interpretability is the ability to understand how a model arrives at its predictions. It involves 

explaining the decision-making process behind a model's outputs [67]. This is crucial for building 

trust in models, especially in high-stakes applications like healthcare or finance [43]. In centralized 

models, Local Interpretable Model-Agnostic Explanations LIME, a technique that approximates a 

complex model with a simpler and more interpretable model can be used to enhance model 

interpretability [43]. Shapley Additive exPlanations SHAP promotes interpretability by assigning 

to each feature a value that represents its contribution to the prediction, providing a global 

explanation of the model. Also, rule-based models that explicitly represent rules can be used in 

centralized models to enhance model interpretability [67]. In decentralized models, consensus 

mechanisms are highly beneficial to ensuring model interpretability [52]. Decentralized models can 

use consensus algorithms to agree on a common interpretation even if the individual nodes have 

different explanations [56]. Federated interpretability is another technique in decentralized models 

to ensure interpretability. Federated interpretability is a technique that applies interpretability 
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methods locally on individual nodes in a decentralized machine learning system to provide insights 

into how the model arrives at its predictions without sharing the raw data [37, 11]. 

 

5.0 Future Directions 

Figure 3 is a pictorial representation of the research progress and proposed future directions.  

 

 
Figure 3: Research progress and future directions 

 

The adoption of machine learning in certain fields is heavily reliant on addressing the challenges 

posed by both centralized and decentralized models [50]. While high accuracy and faster training 

time is a unique advantage of centralized learning over decentralized learning [68, 71]. 

Decentralized learning offers better privacy guarantee compared to centralized learning [60, 72]. 

Moving forward, research should focus on optimizing techniques for integrating federated learning 

into centralized systems. This can help leverage distributed data for training models while 

maintaining central location of data. This approach will enhance privacy, explainability and ethical 

considerations. Also, decentralized systems require optimized solutions for security, heterogeneous 

networks, efficient integration of edge computing and improved model performance. Researchers 

should focus on the integration of explainable A.I (XAI) into centralized and decentralized models. 

Understanding collaboration and revealing model contributions can help identify risk in 

decentralized systems, XAI can help ensure this in decentralized systems [67, 73]. In centralized 

systems, XAI can be used as a critical tool to understand model decisions and identify biases. XAI 

will a valuable tool to enhance reliability, accountability and transparency in both centralized and 

decentralized systems [67]. 
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Finally, future research can focus on bridging the gap between centralized and decentralized 

machine learning approaches to bolster security, privacy, scalability, ethical concerns, model 

accuracy as well as model interpretability. 

 

6.0 Conclusion 

To harness the full potential of machine learning, it is expedient to address the unique security 

concerns posed by machine learning models. Maintaining public trust and acceptability is dependent 

on the performance of machine learning systems and the security of user data used in training. In 

this study, we explored the various security risks associated with centralized and decentralized 

machine learning models as well as the different defence mechanisms put in place to curb these 

threats. Furthermore, we suggest future research directions to improve the security, performance, 

and resilience of centralized and decentralized machine learning systems. 
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