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 Predicting the location of a protein within the cell can help in 

elucidating its function and deducing its involvement in certain 

biochemical pathways. In this study, machine learning models are 

investigated to predict the Protein subcellular Localization Sites in 

Cells. The aim of this research is to develop an algorithm that can 

accurately predict the Protein subcellular Localization Sites in Cells 

Processes that help in determine healthy cell which is crucial for 

understanding protein functions and their roles in various biochemical 

pathways, the onset of disease and its potential use as a drug target. Two 

models were explored, which are Logistic Regression; A statistical 

model suitable for binary classification, which estimates probabilities of 

localization based on input features and K-Nearest Neighbor (KNN); a 

non-parametric method that classifies proteins based on the majority 

label of their nearest neighbors in the feature space for prediction of the 

Protein subcellular Localization Sites in Cells. A comprehensive dataset 

containing protein sequences and their corresponding subcellular 

localization labels was curated. Relevant features from the protein 

sequences were extracted; the dataset was divided into training and 

testing sets. Models were trained on the training set, and their 

performance was evaluated on the testing set. Model performance was 

assessed using several key metrics: Classification Accuracy, F-score 

Precision and Recall which was found through confusion matrix. K-

Nearest Neighbors (KNN) achieved the highest accuracy of 98% and a 

precision of 100%, indicating it correctly classified almost all instances 

and did not misclassify any positives. Logistic Regression demonstrated 

a classification accuracy of 92%, with precision and recall values of 

96%. While it performed well, it was not as effective as KNN in this 

context. The confusion matrix provided insights into the model 

performance, revealing rates of true and false positives, which are 

crucial for understanding the models' strengths and weaknesses. The 

findings suggest that K-Nearest Neighbors (KNN) is the more suitable 

model for predicting protein subcellular localization sites in cells, 

offering higher accuracy and precision compared to Logistic 

Regression. 
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1.0. Introduction 

A cell is the most basic unit of life, and all living things are made of cells, cells arise from the [1]. 

Over the years, cell biology has progressed in steps to understand and characterize cells. There are 

different types of cells, despite this difference, the cell organization is similar, and they share 
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common features, including that they all self-replicate and are separated from the extracellular space 

by the cell membrane, which allows substances to go in and out of the cell. The cell membrane is 

present in every type of cell. 

The biological cell is a complex structural unit with various functionally distinct subcellular 

compartments/ locations. These subcellular compartments include the cell membrane, cytoplasm, 

nucleus, endoplasmic reticulum, Golgi apparatus, mitochondria, and extracellular region, each with 

a defined set of roles. The major role of subcellular localization is to provide a functional 

environment for proteins [2]. 

Many experiments have been developed for accurately recognizing subcellular locations of proteins 

[3]. However, wet experiments are characterized by long experimental time, high experimental 

failure rate, and expensive experimental materials. In order to avoid these disadvantages, machine 

learning-based methods were developed to predict protein subcellular location [4],[5].  

Computational approaches are becoming indispensable components of molecular and cellular 

biology, especially in the analyses of complex genomes for which massive amounts of sequence 

data must be examined for biological function. Functional information can be obtained from 

sequence information not by solving equations of first principles, but by inference based on 

empirical knowledge. Although the sequences data are now collected and organized in publicly 

available database, functional data are not well organized, except, perhaps, in the brain of a human 

expert. 

Protein sequencing played a pivotal role in mapping out the human genome, and is an essential tool 

for many basic and applied research applications today. It is an important tool for determining the 

thousands of nucleotide variations associated with specific genetic diseases, like Huntington's, which 

may help to better understand these diseases and advance treatment. The accurate identification of 

subcellular localization of a protein is a crucial step for its functional annotation and to decide its 

role in underlying complex biological processes. 

Experimental techniques to characterize proteins at a biochemical, structural and physiological level 

have improved considerably over the years providing researchers with the tools necessary to 

understand protein function at a cellular and an organism level. Combined with detailed functional 

data, large-scale genome sequencing efforts have also greatly increased the scale of proteomic data 

available from model and non-model species. However, a major challenge facing researchers today is 

simply keeping pace with the sheer volume of low throughput and high-throughput data being 

generated. Although scientific publications are used to disseminate research findings to the wider 

community, manually identifying, curating and collating individual experiments is a time and labour 

intense process. Understanding protein subcellular localization is important to help understand not 

only the function of individual proteins but also the organization of the cell as a whole. The 

traditional approach to determine the subcellular localization of protein depends on biochemical 

experiments such as fluorescence microscopy, electronic microscopy, and cell separation methods 

[6]. However, for a single protein, these methods are very labor-intensive and often time-consuming 

in today’s post-genomic era, given the rate at which protein data is generated. A reliable automated 

method is required that can precisely predict the subcellular localization of protein molecules [7]. 

Automating this process with higher accuracy remains a challenging task in 

molecular/computational biology. In this study we have made an attempt to develop an approach 

that analyzes machine learning algorithm in Predicting Cellular Protein localization Sites on E- 

coli’s dataset. 
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1.1 Review of Related Work 

[8] did a comparison of four classifiers to predict cellular localization sites of proteins in yeast and 

E.coli. A set of sequence derived features, such as regions of high hydrophobicity, were used for 

each classifier. The methods compared were a structured probabilistic model specifically designed 

for the localization problem, the k nearest neighbors classier, the binary decision tree classifier, 

and the naive Bayes classifier. The result of tests using stratified cross validation show that k 

nearest neighbor classifier performs better than other methods. In the case of yeast this difference 

was statistically significant using a cross-validated paired t test. The result is an accuracy of 

approximately 60% for 10 yeast classes and 86% for 8 E.coli classes. The best previously reported 

accuracies for these datasets were 55% and 81% respectively. 

[9] Investigated a meta-learning approach for classifying proteins into their various cellular 

locations based on their amino acid sequences. A meta-learner system based on k-Nearest 

Neighbors (k-NN) algorithm as base-classifier, since it has shown good performance in this context 

as individual classifier and DECORATE as meta-classifier using cross-validation tests for 

classifying Escherichia Coli bacteria proteins from the amino acid sequence information is 

evaluated. A report of comparison against a Decision Tree induction as base-classifier is also 

evaluated. The experimental results show that the k-NN-based meta-learning model is more 

efficient than the Decision Tree-based model and the individual k-NN classifier. Results of KNN 

gave 87.5% accuracy obtained using 5- CV on E.coli dataset. Its Confusion Matrix also shows that 

none of the minority class proteins namely imL and imS, have been classified correctly. 

[10] present a Support Vector Machines- Recursive Feature Elimination (SVM-RFE) Feature 

selection technique to select suitable features from the many features in the Bakers Yeast dataset. 

The obtained features were used for predicting essential proteins. The goal of feature selection was 

to find the suitable features that both have powerful prediction ability for protein essentiality and 

share minimal biological meaning between each other. The SVM-RFE algorithm adopts a 

backward feature elimination strategy. It constructs sorting coefficient by weight vectors generated 

by Support Vector Machine (SVM), and then removes iteratively a feature with the smallest 

coefficient. SVM-RFE gets the sorted list in descending order of all the features. 

[11] Presents a backward feature selection technique that is applied to thousands of features on three 

datasets including M638 which contains 638 proteins, Gneg1456 including 1456 locative proteins 

and Gpos523 consisting of 523 Gram-positive bacterial protein sequences within each subcellular 

localization. Backward feature selection technique is used here to rank the features so as to find 

out the informative features and reduce the computation cost. The initial feature vector for each 

protein is constructed by combining PSSM, PROFEAT and GO features. For each dataset, feature 

vectors of all proteins constituted a feature matrix, where each row corresponded to a sample and 

each column corresponded to a feature. Then, SVM-RFE is implemented by training an SVM with 

a linear kernel on the feature matrix. The top K features are finally obtained by eliminating a 

number of features corresponding to the smallest ranking criteria and applied in sequel. 

[12] Proposed a feature subset selection technique whereby the statistical significance of each 

feature of a superfamily from all other superfamilies is measured. This technique was applied on 

a protein sequence represented by a vector of 8420 features. The features that did not contribute in 

the representation of a sequence were removed from the original feature space to substantially 

reduce feature vectors’ dimension. The proposed feature selection technique extracts different 
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subsets of features from the original feature space and selects the best feature subset that shows 

maximum accuracy results. The subset of the best and relevant features was used to discriminate 

between different protein classes or superfamilies. The processed data, after the feature selection, 

is used during the classification which drastically minimizes the running time of the Classification 

algorithms. 

Constituent amino-acids can be analyzed to predict secondary, tertiary and quaternary protein 

structure. Protein structure prediction is the prediction of the three-dimensional structure of a 

protein from its amino acid sequence. That is, the prediction of its folding and its secondary, 

tertiary, and quaternary structure from its primary structure. Structure prediction is fundamentally 

different from the inverse problem of protein design. Protein structure prediction is one of the most 

important goals pursued by bioinformatics and theoretical chemistry; it is highly important in 

medicine (for example, in drug design) and biotechnology (for example, in the design of novel 

enzymes). 

There are three major theoretical methods for predicting the structure of proteins: Comparative 

modeling, Fold recognition and Abinitio prediction. 

1) Comparative Modeling 

Comparative modeling exploits the fact that evolutionarily related proteins with similar sequences, 

as measured by the percentage of identical residues at each position based on an optimal structural 

superposition, have similar structures. The similarity of structures is very high in the so-called 

``core regions'', which typically are comprised of a framework of secondary structure elements 

such as alpha-helices and beta-sheets. Loop regions connect these secondary structures and 

generally vary even in pairs of homologous structures with a high degree of sequence similarity. 

2) Fold Recognition 

Threading uses a database of known three-dimensional structures to match sequences without 

known structure with protein folds. This is accomplished by the aid of a scoring function that 

assesses the fit of a sequence to a given fold. These functions are usually derived from a database 

of known structures and generally include a pairwise atom contact and solvation terms. Threading 

methods compare a target sequence against a library of structural templates, producing a list of 

scores. The scores are then ranked and the fold with the best score is assumed to be the one adopted 

by the sequence. The methods to fit a sequence against a library of folds can be extremely elaborate 

computationally, such as those involving double dynamic programming, dynamic programming 

with frozen approximation, Gibbs Sampling using a database of ̀ `threading'' cores, and branch and 
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bound heuristics, or as “simple” as using sophisticated sequence alignment methods such as 

Hidden Markov Models. 

3) Abinitio Prediction 

The abinitio approach is a mixture of science and engineering. The science is in understanding 

how the three-dimensional structure of proteins is attained. The engineering portion is in deducing 

the three-dimensional structure given the sequence. The biggest challenge with regards to the 

folding problem is with regards to abinitio prediction, which can be broken down into two 

components: devising a scoring function that can distinguish between correct (native or native- 

like) structures from incorrect (non-native) ones, and a search method to explore the 

conformational space. In many abinitio methods, the two components are coupled together such 

that a search function drives, and is driven by, the scoring function to find native-like structures. 

Assigning subcellular localization to proteins is one of the major tasks of functional proteomics. 

Despite the impressive technical advances of the past decades, it is still time-consuming and 

laborious to experimentally determine subcellular localization on a high throughput scale. Thus, 

computational predictions are the preferred method for large-scale assignment of protein 

subcellular localization, and if appropriate. Previous studies indicated that proteins in the same 

organelle share specific functional domains [13]. 

Following extraction of a training dataset containing proteins clearly assigned to one of the 14 sub- 

locations, we performed the prediction work in a feature space constructed using the protein 

domain composition, as obtained from a well-established database using machine learning 

approach. 

2.0. Methodology 

This study employed supervised machine learning approach in order to mitigate the limitation of the 

existing system. Logistic regression and K-Nearest Neighbor prediction algorithms were used to 

build the prediction models for protein subcellular localization sites. 

A.   Logistic regression 

Logistic regression is one of the most popular Machine Learning algorithms, which comes under 

the Supervised Learning technique. It is used for predicting the categorical dependent variable using 

a given set of independent variables. It can predict the output of a categorical dependent variable. 

Therefore, the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true 

or False, etc. but instead of giving the exact value as 0 and 1, it gives the probabilistic values which 

lie between 0 and 1. Logistic Regression is much like Linear Regression except that how they are 

used. Linear Regression is used for solving Regression problems, whereas Logistic regression is used 

for solving the classification problems. 

B. K-Nearest Neighbor 

K-Nearest Neighbor is one of the simplest Machine Learning algorithms based on Supervised 

Learning technique. The algorithm assumes similarity between the new case/data and available cases 

and put the new case into the category that is most similar to the available categories. It stores all 

the available data and classifies a new data point based on the similarity. This means when new data 
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appears then it can be easily classified into a well suite category by using K- NN algorithm. K-NN 

algorithm can be used for Regression as well as for Classification but mostly it is used for the 

Classification problems. It is a non-parametric algorithm that does not make any assumption on 

underlying data. 

K-NN is a non-parametric algorithm, which means it does not make any assumption on underlying 

data. It is also called a lazy learner algorithm because it does not learn from the training set 

immediately instead it stores the dataset and at the time of classification, it performs an action on the 

dataset. When the algorithm is at its training phase, its just stores the dataset and when it gets new 

data, then it classifies that data into a category that is much similar to the new data. 

2.1. Data Collection 

The dataset for this study was collected from Kaggle machine learning repository; with datasets that 

having 336 instances of Ecoli protein sequences. These are classified into 8 different classes namely 

cp, im, imS, imL, imU, om, omL and pp. The dataset is extremely imbalanced because the distribution 

of instances in each class is very much variant. The percent of representation of the eight classes is 

represented in Table 1. 

                                                   Table 1: Protein sites representation. 

 

S/N Site % of the 
Dataset 

1 cp 42.56 
2 im 22.92 
3 imS 0.6 
4 imL 0.6 
5 imU 10.42 
6 om 5.95 
7 omL 1.49 
8 PP 15.48 

2.2.Data Preparation 

Data preparation includes preprocessing such as fixing missing values and scaling of the variables 

into numeric. These processes prepare the data for modeling. There were no missing vales in the 

336 datasets 

2.3.Data Preprocessing 

Counting number of unique classes of the dataset such as sites, sequence name and number of 

counts was carried out. The preprocessing of the dataset involved several critical steps to ensure 

its suitability for analysis. The first step was to count the number of unique classes within the 

dataset, which included the following categories:  

a. Sites: Each unique site where the data was collected was identified and counted. This helps in 

understanding the geographical or experimental diversity within the dataset. 

b. Sequence Names: The dataset was examined for unique sequence identifiers. This step is vital 

for tracking and comparing different sequences throughout the analysis. 

c. Counts: The total number of occurrences for each unique class was recorded. This quantitative 
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assessment is essential for statistical analyses and understanding the distribution of data points. 

The results of this analysis are summarized in Table 2, which provides a comprehensive overview 

of the unique classes identified in the dataset. Each entry in the table includes the category, the 

number of unique entries, and additional relevant statistics that may assist in further analyses. 

Additionally, the distribution of these unique classes is visually represented in Figure 1. This figure 

includes distribution plots that illustrate the frequency of each class, enabling a quick assessment 

of the dataset’s composition. Such visualizations are crucial for identifying any imbalances or 

anomalies in the data, which could influence subsequent analytical outcomes. 

 

                            Table 2: Counting number of unique classes of the dataset 
 

 

 

                 

        Figure 1: Counting number of unique classes of the dataset the distribution plots 
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The raw dataset were saved with an extension of CSV format in Microsoft excel 2010 version. The 

preprocessing process started by cleaning the raw data, the raw dataset consists of categorical 

values real numbers and integers. A sample of the raw dataset and the scaled data set are 

represented in table 3 and 4 respectively. 

                                                  Table 3:  Input data head and tail 
               

MCG GVH LIP CHG AAC ALM1 ALM2 SITE 
270 0.56 0.68 0.48 0.5 0.77 0.36 5 
120 0.25 0.26 0.48 0.5 0.39 0.32 0 
259 0.78 0.68 0.48 0.5 0.83 0.4 5 
233 0.66 0.48 0.48 0.5 0.54 0.7 4 
167 0.47 0.59 0.48 0.5 0.52 0.76 1 

... ... ... ... ... ... ... ... 
323 0.76 0.73 0.48 0.5 0.44 0.39 7 
192 0.41 0.51 0.48 0.5 0.53 0.75 1 
117 0.51 0.49 0.48 0.5 0.53 0.14 0 

47 0.43 0.4 0.48 0.5 0.39 0.28 0 
172 0.33 0.45 0.48 0.5 0.45 0.88 1 

 

                                                           Table 4: Input data scaled 

-0.06819 -0.12186 -
0.22361 0 -2.57894 -1.46458 -1.02678 -0.78344 

-1.33549 -0.87754 -
0.22361 0 -1.45426 -0.39883 -0.04134 -0.78344 

1.04703 0.702521 -
0.22361 0 2.179327 -0.39883 -1.26141 1.129609 

0.844262 0.152935 -
0.22361 0 1.227674 0.296227 -0.6983 1.129609 

-0.57511 -0.12186 -
0.22361 0 -1.1082 1.315643 1.460282 -0.40083 

1.401874 1.5269 -
0.22361 0 -0.15655 1.083957 1.27258 0.747 

-1.18342 -0.60275 -
0.22361 

0 -0.5026 -0.16714 0.193289 -0.78344 

0.742878 2.145184 -
0.22361 0 -0.5026 -0.76953 -0.886 1.894828 

-1.53826 -1.28973 -
0.22361 0 -0.5026 -1.09389 -0.60445 -0.78344 

0.134575 -0.80884 -
0.22361 0 -1.45426 -0.53784 -0.13519 -0.78344 

-1.23411 -0.39665 -
0.22361 0 -1.28123 -0.90854 -0.46367 -0.78344 

-0.0175 -0.46535 -
0.22361 0 -0.58912 -1.04755 -0.60445 -0.78344 



Osaseri R.O & Usiobaifo A.R. / NIPES - Journal of Science and Technology Research 

6(4) 2024 pp. 9-23 

17 

 

-1.18342 -0.80884 -
0.22361 0 -0.93517 -0.67685 -0.27597 -0.78344 

-0.6258 -0.25925 -
0.22361 0 -1.19472 1.454654 -1.44911 -0.40083 

-0.22027 0.015539 -
0.22361 0 -1.1082 -0.44517 -0.36982 -0.78344 

... ... ... ... ... ... ... ... 
 

 

3.0. Results and Discussion 

In this study, we assessed the performance of two classification algorithms—Logistic Regression 

(LR) and K-Nearest Neighbors (KNN)—in the context of predicting subcellular protein 

localization. Utilizing a dataset split of 70% for training and 30% for testing, we applied Python 

to implement both algorithms and evaluate their effectiveness through various performance 

metrics, including accuracy, precision, recall, and F-score. The confusion matrices (Figures 2 and 

3) illustrate how well each algorithm classified the different protein localization categories. For 

Logistic Regression, the model achieved an accuracy of approximately 92.86%, identifying most 

classes correctly, though it struggled with certain categories, reflected in lower precision and recall 

for some classes. In contrast, KNN outperformed with an accuracy of about 97.62%, demonstrating 

strong performance across all classes, as indicated by perfect precision and recall for several 

categories. Logistic Regression exhibited a precision of 97.5% for the most common class, but 

lower values for some less frequent categories, which suggests a tendency towards misclassifying 

certain classes. 

KNN showed a marked improvement, achieving 100% precision and recall in multiple categories, 

underscoring its robustness in handling the dataset. The performance scores (Table 5) highlight 

KNN's superiority in overall effectiveness, especially in recall and F-score, indicating that KNN 

maintained a lower rate of false negatives. 

This study contributes to the existing body of literature on protein localization classification by 

providing comparative insights into the performance of LR and KNN within this specific domain. 

While previous works have often favored more complex models, our findings suggest that KNN, 

with its simple yet effective approach, can outperform traditional algorithms like Logistic 

Regression, especially in scenarios with class imbalance. The presence of class imbalance in the 

dataset can affect the algorithms' performance. More advanced techniques, such as SMOTE 

(Synthetic Minority Over-sampling Technique), could be utilized to mitigate this issue. The 

comparative performance of both algorithms is captured in Figures 4 to 9 below while the 

performance of classification methods combining all association measures are represented in Table 

5. 

 

array([[39, 1, 0, 0, 0, 0, 0, 0], 

[ 1, 14, 0, 0, 0, 0, 0, 0],nm 550 

 
[ 

 
0, 

 
1, 

 
0, 

 
0, 

 
0, 

 
0, 

 
0, 

 
0], 

 

[ 0, 0, 0, 0, 1, 0, 0, 0],  

[ 0, 0, 0, 0, 7, 0, 0, 0],  

[ 0, 0, 0, 0, 0, 5, 0, 2],  

[ 0, 0, 0, 0, 0, 0, 2, 0],  

[ 0, 0, 0, 0, 0, 0, 0, 11]], dtype=int64) 
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Figure 2: Confusion matrix on Logistic Regression classification 

 

precision: [0.975 0.875 0.      0. 0.875 1. 

1. 0.84615385] 

recall: [0.975 0.93333333 0. 0. 1. 0.71428571 

1. 1. ] 

fscore: [0.975 0.90322581 0. 0. 0.93333333 0.83333333 

1. 0.91666667] 

support: [40 15 1 1 7 7 2 11] 

Accuracy: 0.9285714285714286 

array([[40, 0, 0, 0, 0, 0, 0, 0],  

[ 0, 15, 0, 0, 0, 0, 0, 0],  

[ 0, 1, 0, 0, 0, 0, 0, 0],  

[ 0, 0, 0, 0, 1, 0, 0, 0],  

[ 0, 0, 0, 0, 7, 0, 0, 0],  

[ 0, 0, 0, 0, 0, 7, 0, 0],  

[ 0, 0, 0, 0, 0, 0, 2, 0],  

[ 0, 0, 0, 0, 0, 0, 0, 11]], dtype=int64) 
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Figure 3: Confusion matrix on k neighbors classification 

 

 

precision: [1. 0.9375 0. 0. 0.875 1. 1. 1. ] 

recall: [1. 1. 0. 0. 1. 1. 1. 1.] 

fscore: [1. 0.96774194 0. 0. 0.93333333 1. 

1. 1. ] 

support: [40 15 1 1 7 7 2 11] 

Accuracy: 0.9761904761904762 

 
 

 

 

Figure 4: learning curves for KNN 
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Figure 5: Scalability of the model (KNN) 

 
 

 

Figure 6: performance model (KNN) 
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      Figure 7: Learning curves for logistic regression 

 

 

 

 

         Figure 8: Scalability of Logistic regression 



 

 Osaseri R.O & Usiobaifo A.R. / NIPES - Journal of Science and Technology Research 

6(4) 2024 pp. 9-23 

22 

 

 

                                    Figure 9: performance of Logistic regression model 

 

Table 5. Performance of Classification Methods Combining All Association Measures 
 

Classifier Precision % Recall % F.score% Accuracy % 

LR 96% 96% 96% 92% 

KNN 100% 100% 100% 98% 

 

4.0. Conclusion 
 

Proteins play a crucial role in various biological processes within the body. They are responsible 

for catalysing metabolic reactions, transporting molecules from one area of the body to another, 

mediating cell repair, and also form a part of our immune system. In order to elucidate a protein’s 

function, one key piece of information is the location of the protein within the cell. Proteins 

perform many important tasks in living organisms, such as catalysis of biochemical reactions, 

transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the 

role of any particular protein is referred to as its “function.” One aspect of protein function that 

has been the target of intensive research by computational biologists is its subcellular localization. 

Proteins must be localized in the same subcellular compartment to cooperate toward a common 

physiological function. Predicting the location of a protein within the cell can help in elucidating 

its function and deducing its involvement in certain biochemical pathways. Hence this project 

employed, our study provides a comparative analysis of Logistic Regression (LR) and K-Nearest 

Neighbors (KNN) for predicting subcellular protein localization. The results demonstrate that 

KNN outperforms LR, achieving an accuracy of 97.62% compared to LR’s 92.86%. While LR 

displayed high precision for the most common class, it struggled with less frequent categories, 

indicating a tendency for misclassification. In contrast, KNN consistently delivered 100% 
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precision and recall in several categories, showcasing its effectiveness in handling the dataset 

and minimizing false negatives. 

These findings highlight the potential of KNN as a robust classifier in protein localization tasks, 

especially in the presence of class imbalance. The study suggests that while more complex 

models are often favored, simpler algorithms like KNN can provide superior performance in 

specific contexts. Future research may explore advanced techniques, such as SMOTE, to further 

enhance classification accuracy in imbalanced datasets. Overall, this work contributes valuable 

insights to the field of protein localization classification, encouraging the consideration of KNN 

as a viable alternative to traditional models.  
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