

NIPES Journal of Science and Technology Research 2(2) 2020 pp. 11-22 ISSN-2682-5821

11

Comparative Analysis of Software Components Reusability Level using GFS

and ANFIS Soft-Computing Techniques

1Ajayi, Olusola O., 2Chiemeke, Stella C., 3Ukaoha, Kingsley C.
1Dept. of Computer Science, Adekunle Ajasin University Akungba-Akoko, Ondo State, Nigeria.
2,3Dept. of Computer Science, University of Benin, Benin City Edo State, Nigeria

Corresponding Emails: olusola.ajayi@aaua.edu.ng, schiemeke@uniben.edu kingsley.ukaoha@uniben.edu

Article Info Abstract

Keywords: software component,

reusability, soft-computing, adaptive

neuro-fuzzy, genetic algorithm,

genetic-fuzzy, agile development

The quest to develop software of great quality with timely delivery and

tested components gave birth to reuse. Component reusability entails

the use (re-use) of existing artefacts to improve the quality and

functionalities of software. Many approaches have been used by

different researchers and applied to different metrics to assess software

component reusability level. In addition to the common quality factors

used by many authors, such as customisability, interface complexity,

portability and understandability, this study introduces and justifies

stability, in the context of volatility as a factor that determines the

reusability of software components. Sixty-nine software components

were collected from third party software vendors and data extracted

from their features were used to compute the metric values of the five

(5) selected quality factors. Genetic-Fuzzy System (GFS) was used to

predict the level of the components’ reusability. The performance of the

GFS was compared with that of Adaptive Neuro-Fuzzy Inference

System (ANFIS) approach using their corresponding average RMSE

(Root Mean Square Error), in order to ascertain the level of accuracy

of the prediction. The results of the findings showed that, GFS with an

RMSE of 0.0019 provides better reusability prediction accuracy

compare to ANFIS with an RMSE of 0.1480.

Received 29 January 2020

Revised 17 March 2020

Accepted 06 April 2020

Available online 1 June 2020

https://doi.org/10.37933/nipes/2.2.2020.2

https://nipesjournals.org.ng

ISSN-2682-5821/© 2020 NIPES Pub.

All rights reserved.

1. Introduction

Reusability is the degree to which a software component can be reused [1, 2, 3]. This

consequently leads to reduced software development cost and less development time as it enables

less writing but more of assembly. Reusability plays an important role in component based

software development (CBSD) and also acts as the basic criterion for evaluating component. [4]

asserted that reusability of a component is an important aspect, which gives the assessment to

reuse the existing developed component, thereby reducing the risk, cost and time of software

development. If a component is not reusable, then the whole concept of component-based software

development fails [5]. Reusability is one of the quality attributes of CBSD. It can measure the

degree of features/components that are reused in building similar or different new software with

minimal change [6]. To realize the reuse of components effectively, reusability estimation has to

be carried out. For systematic reuse process, the use of metrics is very germane. Without metrics,

evaluating the quality and qualification of the selected components for reuse becomes an uphill

task [6]. [7] defined reusability as the quality of any software component to be used again with

slight or no modification. Software reuse is the process of creating software systems from existing

software assets rather than building them from scratch. Reusability was also viewed as the quality

mailto:olusola.ajayi@aaua.edu.ng
mailto:schiemeke@uniben.edu
mailto:kingsley.ukaoha@uniben.edu

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

12

factor of software that qualifies it to be used again in another application, be it partially modified

or completely modified. In other words, software reusability is a measure of the ease with which

previously acquired concepts and objects can be used in new contexts. [8] sees reusability of a

component as an important aspect, which gives the assessment to reuse the existing developed

component. [6] view reusability as a physical replaceable part of a system that adds functionality

to the system, through the realization of a set of interfaces. The components having well defined

interfaces can be considered good for reuse. The interfaces have strong significance in context of

reusability of components.

Metrics however plays indispensable role in the successful evaluation of software component

reusability. According to [1], it is necessary to measure reusability of software components in

order to realize the effective reuse of such components. According to the author, metrics are used

to determine quality factors that affect reusability. A component alone has certain characteristics

that tend to affect its reusability. Quality factors are chosen to provide an analysis of the

reusability of a component. The choice of factors affecting reusability are considered based on

activities carried out while reusing the components.

Unlike in the past where researchers employed statistical methods of predicting reusability [9][1],

recent interdisciplinary techniques such as fuzzy logic, Artificial Neural Network (ANN), Neuro-

fuzzy etc. have taken the lead due to their power of predictability [10][11][4][7]. This work

investigates the works of [10],[11],[4] and [7], who all adopted soft-computing approach to predict

reusability of software component, but with varying degree of accuracy

1.1. Related work

Researchers have adopted the use of statistical approaches like correlation analysis, while some

made use of soft-computing techniques such as ANN, Fuzzy Logic etc. to evaluate component

reusability.

[1] applied statistical method to component reusability assessment issue. Metric suites for

measuring reusability of software components were developed. In implementing the work,

Component Overall Reusability (COR) model was developed to assess and evaluate Java web

components. The study proposed three quality factors as criteria for measuring reusability

characteristic, while five metrics were deployed for the measurement. The factors are:

understandability, adaptability, and portability, while the metrics include: EMI (Existence of

Meta-Information) and RCO (Observability) – for measuring Understandability, RCC

(Customisability) – for measuring Adaptability, SCCr (Self-Completeness of Component’s return

Value) and SCCp (Self-Completeness of Component’s Parameter) – for measuring Portability.

The result of the analysis conducted using one hundred and twenty-five Java web components

from www.jars.com, shows that the proposed metrics were suitable. However, the empirical study

was limited to evaluation with Java beans components; as other component technologies like .Net,

ActiveX etc were not explored for further validation.

[12] addressed reusability from the perspective of adaptability, compose-ability, and complexity

metrics. The work aimed to cover the main aspects of reusable software components, which in

their opinion are compose-ability and adaptability. Both factors were evaluated based on the

complexity of the component interface. The major contribution of the work, which adopted

qualitative approach, was the formulation of metrics and design of a mathematical model for

practical assessment of the specified software component characteristics. The proposed model is

however, required to be validated by assessing several software components based on it.

[10] contributed largely to software component reusability works by proposing an artificial neural

network (ANN) soft-computing-based approach to assess the reusability of software components.

The work aimed at aiding developers to select the best component in terms of its reusability. In

their research, four factors on which reusability of components depend, were identified. These are:

http://www.jars.com/

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

13

customisability, interface complexity, portability, and understandability. The empirical work was

carried out with forty (40) components collected from www.jars.com and

www.elegantjbeans.com. Applying ANN soft-computing approach, network is trained on training

data by considering different number of hidden neurons for two training functions namely, trainlm

and trainbr, to get the best results. Results obtained showed that the network was able to predict

the reusability of components with optimum performance and with an RMSE of 0.1348 using

trainlm as the training function. The limitation of the work was in the limited number of data used

to train the network. It was submitted that using a greater number of components may produce

better results/accuracy for the training and testing.

[11] discussed reusability in relation to Component-Based Development (CBD) and proposes a

reusability metrics for black-box components. It identifies factors affecting reusability as:

customisability, interface complexity, portability, and document quality. In the study, Fuzzy Logic

based approach was used to estimate the reusability of components using Triangular Membership

Functions (TMF). The authors used two classroom-based Java beans components, namely

Calculator and ChartB for validation. Reusability values of 0.71 and 0.3124 were arrived at

proving that FIS (Fuzzy Inference System) is able to predict reusability of components with an

acceptable level of accuracy. Further, it was submitted that the adopted approach can be validated

against other approaches for estimated reusability of components.

[13] applied Neuro-Fuzzy technique on a case study which they took from a reputed journal. The

case study was concerned with the reusability of software components. The reusable

components/attributes were coupling, complexity, volume regularity and reuse frequency. They

proved that Neuro-Fuzzy model yields less percentage average error as compared to standalone

fuzzy logic and neural network. It also produces greater accuracy for software reusability as

compared to FIS and ANN.

 [14] developed an automated process of component selection by using Adaptive Neuro-Fuzzy

interference system (ANFIS) based technique using 14 reusable components’ parameters. Neuro-

Fuzzy based approach was adopted to select optimal reusable components efficiently. The

developed approach was validated with three data sets for three proposed software architectures.

The results showed that the proposed approach was able to predict the reusability of these

components with an acceptable accuracy. However, stability was used as a fuzzy input with

variables such as Low, Medium and High in the ANFIS structure, without reference to porting of

the components as suggested in their definition.

[15] proposed a multi-criteria fuzzy-based approach for predicting software requirement stability

based on complexity point measurement and for finding out the complexity weight based on

requirement complexity attributes such as functional requirement complexity, non-functional

requirement complexity, input-output complexity, interface and file complexity. The research

paper discussed the importance of measuring the requirements changes for the lack of instability

in the requirements. The prediction model for requirements stability approach provides the

solution for measuring the requirements changes based on the complexity point measurement

model. The work, however, did not justify nor demonstrate the applicability of the model for

developing maintenance and transition projects based on different complexity attributes and

different adjustment factors.

 [4] however adopted multi-disciplinary technique of Adaptive Neuro Fuzzy Inference System

(ANFIS) in the assessment of component reusability. In the study, four dependent factors, namely:

customisability, interface complexity, understandability, and portability were used to estimate

reusability of software components. The result obtained using ANN approach and using data from

Sharma et al (2009) was a RMSE of 0.1852. Applying ANFIS approach to the same set of data

yielded a RMSE of 0.1695, which shows that Neuro-Fuzzy gives a better and more accurate

reusability result. The comparative analysis of the proposed ANFIS and the existing ANN was

http://www.jars.com/
http://www.elegantjbeans.com/

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

14

carried out on forty-eight (48) Java components. It was however, opined that, accuracy of the used

method is subject to availability of substantial number of data/components.

[7] takes into account three different factors for determining reusability of software components

and then proposed a model for reusability assessment using the Adaptive Neuro-Fuzzy Inference

System (ANFIS). The quality factors used include: coupling, complexity, and portability. The

experiment used 338 records retrieved from open source produced a RMSE of 0.042482. It was

suggested that, new factors like understandability, cohesion, clarity, generality etc. can also be

added, and the cumulative effect of those factors can be seen on the future predictions. Also,

different techniques can be used other than ANFIS to predict reusability such as Support Vector

Machine, etc. Lastly, it was submitted that, a much better generalised approach is expected if real

time data is considered.

[6] identified four attributes for estimating reusability of a black-box components. The reusability

metric was parameterised using: component interface complexity, component understandability,

component customisability, and component reliability. The project made use of file upload

component of the apache commons project. The work proved that the proposed metrics were able

to determine reusability. It was however reported that the work requires further validation,

suggesting that the weight values for the estimation of reusability be adjusted using neural

networks.

2. Methodology

This study adopts:

i. Component-based development approach. This methodology helps to build component

analysis tool for accessing common software components;

ii. Metric-based approach. This methodology aids to measure the degree to which a

component is reusable;

iii. Soft-computing approach. This methodology predicts the certainty for reusability.

The following procedures were followed in ensuring a successful implementation of the work:

i. Commercial Off-The Shelf Software (COTS) Components were extracted from third party

software vendors. According to [2], the key to the success of Component-Based Software

Development (CBSD) is its ability to use software components that are often developed by and

purchased from third party.

Component Data Extraction;

Sixty-nine (69) software components were gotten from four (4) different third-party

component development organisations (www.elegantjbeans.com, www.jidesoft.com,

www.math.hws.edu, and www.codeproject.com). Table 1 shows the sources, nature and

numbers of the components.

Table 1: Components Used

Component Source Nature of

Components

Number of

Components

Period of

Extraction

www.elegantjbeans.com Java

Components

48 Mar., 2016

www.jidesoft.com Java

Components

4 April,

2016

www.math.hws.edu Web

Components

13 Oct., 2016

www.codeproject.com .Net

Components

4 Nov., 2016

http://www.elegantjbeans.com/
http://www.jidesoft.com/
http://www.math.hws.edu/
http://www.codeproject.com/
http://www.elegantjbeans.com/
http://www.jidesoft.com/
http://www.math.hws.edu/
http://www.codeproject.com/

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

15

ii. Appropriate metrics for each quality factor that qualifies the characteristic, reusability, were

applied. We consider the same quality factors as used by the duo of [10] and [4], with Stability (in

the context of volatility) as an addendum.

iii. Genetic-fuzzy soft-computing approach was deployed for evaluating the level of reusability of

the selected components. Genetic fuzzy system is a system that exploits genetic algorithms to

automatically generate or optimise the knowledge base of a fuzzy system; since the fuzzy system

is not able to learn on its own. Researches have shown that hybridised genetic algorithm gives a

more accurate predictive result [17][18][19].

2.1 Design

Adapting Kumar et al. (2013)’s approach and establishing the need for stability as a factor for

component reusability measurement,

Let Rcn = Fcn[Xn, Yn, Zn, Jn, Kn] (1)

Where:

Rcn is the reusability of component.

Fcn is implemented using Genetic-Fuzzy with Xn, Yn, Zn, Jn, and Kn as input dependent variables,

representing Customisability (COCU), Interface Complexity (COIC), Portability (CORE),

Understandability (COUS) and Stability (COST) respectively.

In the proposed model, Genetic-Fuzzy System is developed, trained and tested using MATLAB

software. The steps involved in the development of the system are:

i. Extract component data

ii. Compute the metric value of Xn, Yn, Zn, Jn, and Kn

iii. Represent the variables in Fuzzy format

iv. Load values of Xn, Yn, Zn, Jn, and Kn into Fuzzy toolbox

v. Apply the Genetic Optimiser to tune the knowledge base

vi. Compute the fitness value until the threshold/termination is reached

Algorithm (ANFIS)

 Select Loader

 If loader = ANFIS, load cipus-run.m

 browse to retrieve training data

 load training data

 if fileext = ‘*.csv’, ‘load successful’

 else ‘load unsuccessful’, reload

endif

 browse to retrieve testing data

 load training data

 if fileext = ‘*.csv’, ‘load successful’

 else ‘load unsuccessful’, reload

 endif

 End Select

 RUN Reusability RMSE

 VIEW Reusability RMSE

Algorithm (GFS)

 Select Loader

 If loader = GFS, load myga.m

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

16

 load fuzzy-excel formatted file (loaddata.m)

if fileext = ‘*.csv’, ‘load successful’

else ‘load unsuccessful’, reload

 endif

 load/call/invoke ga_fitfunc.m

 if load_status = ‘correct’, proceed

else re-load/re-call/re-invoke fitness function

 endif

 End Select

 RUN Reusability RMSE

 VIEW Reusability RMSE

2.2. Experimental Evaluation

2.2.1 The FIS Properties

Table 3 presents the details/structure of the Fuzzy Inference System design properties.

Table 3: FIS Structure/Properties
Parameter FIS Names (s) Property Default/Range Value/Parameter

Range

Input Parameter 1

Input Parameter 2

Input Parameter 3

Input Parameter 4

Input Parameter 5

COCU

COIC

CORE

COUS

COST

[0 1]

[0 1]

[0 1]

[0 1]

[0 1]

Input FIS Type: Sugeno

MF Type: Triangular

Output Name: Reusability

Output Type: Linear

Input Parameters: Low [0 0.25 0.5]

Medium [0.25 0.5 0.75]

High [0.5 0.75 1]

Low [0 0.25 0.5]

Medium [0.25 0.5 0.75]

High [0.5 0.75 1]

Low [0 0.25 0.5]

Medium [0.25 0.5 0.75]

High [0.5 0.75 1]

Low [0 0.25 0.5]

Medium [0.25 0.5 0.75 0]

High [0.5 0.75 1 0]

Low [0 0.25 0.5 0]

Medium [0.25 0.5 0.75 0]

High [0.5 0.75 1 0]

Output Parameters: Low [0 0 0 0 0 0]

Medium [0.5 0.5 0.5 0.5 0.5 0.5]

High [1 1 1 1 1 1]

2.2.2 The ANFIS Evaluation Parameters

Table 4 shows the specifications of the ANFIS evaluation parameters.

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

17

Table 4: ANFIS Specifications
PARAMETERS Main Attribute Others

Testing Data 20 data 29% of the entire data
used

Training Data 49 data 71% of the entire data
used

No of Epoch 50

Error Tolerance 0

Rules 243

Logical Operator AND

Inputs 5 C.I.P.U.S (Customizability,
Interface complexity,
Portability,
Understandability,
Stability)

Input MF 3 Low, Medium and High

Output 1 Reusability

Output MF 3 Low, Medium and High

Optimisation Method Hybrid

2.2.3 The GA Optimisation Parameters and Algorithm

Table 5 shows the specifications of the parameters used for the GA.

Table 5: GA Specifications
PARAMETERS Main Attribute Others

Data loaddata.m (matlab file) x = csvread(‘data.csv’)

Fitness Function ga_fitfunc (matlab
function)

y = (x(1)+x(2)+x(3)+x(4)+x(5))/5

Population Randomized Constraint Dependent

Bounds Lower: [0 0 0 0 0]
Upper: [1 1 1 1 1]

Selection Tournament Size: 4

Mutation Adaptive Feasible

Crossover Two-point (Double)

Stopping Criteria Generation

Fitness Scaling Scaling Function Rank

2.2.4 Statistical Representation and Comparative Analysis

Appendix A shows the RMSE values of the two approaches (ANFIS and GFS) for the selected

components.

Figure 11 represent the comparative chart for the ANFIS and GFS’s RMSE in which GFS proved

to have lower RMSEs (0.0019), implying better predictor.

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

18

Figure 11: ANFIS and GFS’ RMSE

Table 6 shows the aggregate values of Table A1 in Appendix for the three components selected

and for the five quality factors in use.

Table 6: Computed Aggregate Values of Component Types

Analysing with SPSS, and using ANOVA (Analysis of Variance), the result is shown in Table 7

Table 7: ANOVA analysis of Component Types’ Aggregated Values

From Table 8, Java Components proved more reusable as it recorded the least standard error

(0.07935) compare to .Net Component’s 0.26680 and Web Component’s 0.30975. Figure 12

shows the reusability prediction level of the various software components used.

COMPONENT

TYPES

COCU COIC CORE COUS COST

Java 0.88 0.86 0.48 0.92 0.79

Web 0.66 0.27 2.08 0.73 0.69

.Net 0.79 0.47 2 0.79 0.75

Component Types N Mean Std. Deviation Std. Error

Java 5 .7860 .17743 .07935

Web 5 .8860 .69263 .30975

.Net 5 .9600 .59657 .26680

Total 15 .8773 .50318 .12992

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

19

0

0.5

1

1.5

2

2.5

C O C U C O I C C O R E C O U S C O S T S . E .

Java Web .Net

 Figure 12: Components’ Reusability Prediction Level

3. Finding

The finding from the study show that, GFS with an RMSE of 0.0019 provides better reusability

prediction accuracy compared to ANFIS with an RMSE of 0.1480. The experiments conducted

showed that Java Components, with a S.E. of 0.07935 proved more reusable compare to Web

Component’s S.E. of 0.30975; and .Net Component’s S.E. of 0.26680.

4. Conclusion

The study established a Genetic-Fuzzy System (GFS) for the evaluation of software component

reusability, with the results proving the new system a better predictor than the most commonly

used system (ANFIS). Software component assessment with other component types other than

Java components. With researches showing that most studies on reusability of software

components were done experimenting only with Java Components, this study was able to carry

out its assessment of component reusability using Java, Web and .Net Components. The research

took a leap to evaluate the level of reusability of each component, with Java Components proving

more reusable than the rest two component types. The study therefore contributed to the increasing

body of knowledge that Java Components are more reusable than other component types.

The practice of software component reusability no doubt aid software development cost and time.

However, of greater necessity is the issue of measuring to ascertain the level of reusability of the

selected software components for reusability. This, many researchers agreed with and deployed

different evaluation techniques in assessing the level of reusability of software components.

Consequently, this work presented a comparative analysis of software components reusability

using genetic-fuzzy system and adaptative neuro-fuzzy inference system. The study utilised five

quality factors in measuring the reusability of sixty-nine (69) software components.

The result of the evaluation carried out shows genetic-fuzzy system predicts more accurately with

an RMSE of 0.0019 as against the commonly used method, ANFIS, with an RMSE of 0.1480,

adjudging genetic-fuzzy system as a better predictor.

4.1 Direction for further studies

Five quality factors were used in the determination of the reusability of the selected components,

other quality factors as related to software components (e.g. operability, statelessness etc.), can

also be considered in future research work in the prediction of software component reusability.

References
[1] Washizaki, H., Yamamoto, H., and Fukazawa, Y. (2003). A metrics suite for measuring reusability of software

components. Proceedings of the 9th International Symposium on Software Metrics. Sept 3-5, Sydney, Australia,

pp. 201-211

[2] Sharma, A., Kumar R., Grover P. S. (2006). Investigation of reusability, complexity and customisability for

component-based systems", ICFAI Journal of IT, 2(1).

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

20

[3] Fazal-e- Amin, Mahmood, A. K., and Oxley, A. (2011). A Review of Software Component Reusability

Assessment Approaches. Research Journal of Information Technology, 3(1):1-11.

[4] Kumar, V., Kumar, R., and Sharma, A. (2013). Applying Neuro-Fuzzy Approach to build the Reusability

Assessment Framework across Software Component Releases – An Empirical Evaluation. International Journal

of Computer Applications. 70(15): 41-47

[5] Thakral, S., Sagar, S., and Vinay (2014). Reusability in Component Based Software Development – A Review.

World Applied Sciences Journal. 31(12):2068-2072.

[6] Singh, A. P. and Tomar, P. (2014). Estimation of Component Reusability through Reusability Metrics.

International Journal of Computer, Control, Quantum and Information Engineering. 8(11):1865-1872

[7] Goel, S., and Sharma, A. (2014). Neuro-Fuzzy based Approach to Predict Component’s Reusability. International

Journal of Computer Applications, 106(5)

[8] Kumar, A., Chaudhary, D., and Kumar, A. (2014). Empirical Evaluation of Software Component Metrics.

International Journal of Scientific and Engineering Research. 5(5):814-820

[9] Aman, H. (2002). A Quantitative Method of Verifying Metrics Using Principal Component Analysis and

Correlation Analysis. Journal of IEICE. J85-D-1(10): 1000-1002

[10] Sharma, A., Kumar, R. and Grover, P. S. (2009). Reusability assessment for software components. ACM

SIGSOFT Software Engineering Notes. 34(2):1-6.

[11] Sagar, S., Nerurkar, N.W., and Sharma, A. (2010). A soft computing based approach to estimate reusability of

software components. ACM SIGSOFT Software Engineering Notes, 35(4):1-5

[12] Rotaru, O. P. and Dobre, M. (2005). Reusability Metrics for Software Components. AICCSA '05 Proceedings of

the ACS/IEEE 2005 International Conference on Computer Systems and Applications. Pgs. 24-I. Washington,

USA.

[13] Singh, H. and Toora, V. K. (2011). Neuro-Fuzzy Logic Model for Component Based Software Engineering.

International Journal of Engineering.

[14] Ravichandran, K., Suresh, P., and Sekr, K. R. (2012). ANFIS Approach for Optimal Selection of Reusable

Components. Research Journal of Applied Sciences, Engineering and Technology, 4(24): 5304-5312

[15] Christopher, D., and Chandra, E. (2012).Prediction of software requirements stability based on complexity point

measurement using multi-criteria fuzzy approach, International Journal of Software Engineering & Applications

(IJSEA), Vol.3, No.6, November 2012.

[16] Sandhu, P. S., Dalwinder, S. S., and Singh, H. (2008). A Comparative Analysis of Fuzzy, Neuro-Fuzzy and

Fuzzy-GA Based Approaches for Software Reusability Evaluation. Proceedings of World Academy of Science,

Engineering and Technology (WASET). 2:292-295

[17] Hegazy, O., Soliman, O. S., Toony, A. A. (2014). Hybrid of neuro-fuzzy inference system and quantum genetic

algorithm for prediction in stock market. Issues in Business Management and Economics. 2(6):094-102.

www.journalissues.org/IBME accessed on 13/10/2017

[18] Fazlic, L. B., Avdagic, K., Omanovic, S. (2015). GA-ANFIS Expert System Prototype forPrediction of

Dermatological Diseases. European Federation for Medical Informatics (EFMI). Pgs. 622-626

[19] Dhokley, W., Ansari, T., Fazlic, N., Mohd.Hafeez, H. (2016). New Improved Genetic Algorithm for

Coronary Heart Disease Prediction. International Journal of Computer Applications 136(5): 0975-8887

Appendix A

Table A1: Components’ RMSE Values for ANFIS and GFS

Component Type

RMSE

(ANFIS)

RMSE

(GFS)

Java Components 0.1741 0.142

Java Components 0.1727 0.142

Java Components 0.1703 0.1367

Java Components 0.1687 0.1367

Java Components 0.1674 0.1367

Java Components 0.1665 0.1367

Java Components 0.1656 0.1367

Java Components 0.1652 0.1367

Java Components 0.1648 0.1305

http://www.journalissues.org/IBME

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

21

Java Components 0.1644 0.1305

Java Components 0.1639 0.1305

Java Components 0.1633 0.1302

Java Components 0.1628 0.1273

Java Components 0.1623 0.1263

Java Components 0.1617 0.1263

Java Components 0.1611 0.1263

Java Components 0.1605 0.1177

Java Components 0.1599 0.1052

Java Components 0.1592 0.08672

Java Components 0.1585 0.08672

Java Components 0.1578 0.05859

Java Components 0.1571 0.05859

Java Components 0.1563 0.03984

Java Components 0.1558 0.03672

Java Components 0.1556 0.03672

Java Components 0.1551 0.03672

Java Components 0.1549 0.03672

Java Components 0.1543 0.03672

Java Components 0.154 0.03672

Java Components 0.1535 0.03359

Java Components 0.1525 0.03325

Java Components 0.1515 0.02754

Java Components 0.1523 0.02754

Java Components 0.1513 0.02583

Java Components 0.1513 0.02583

Java Components 0.1515 0.01489

Java Components 0.1512 0.01333

Java Components 0.1515 0.01191

Java Components 0.1511 0.01191

Java Components 0.1514 0.01191

Java Components 0.1507 0.01191

Java Components 0.1513 0.01191

Java Components 0.1505 0.01191

Java Components 0.1508 0.01191

Java Components 0.1499 0.01141

Java Components 0.1507 0.01025

Java Components 0.1497 0.007224

Java Components 0.1506 0.007224

Java Components 0.1494 0.007224

Java Components 0.15 0.007224

Java Components 0.1492 0.007224

Java Components 0.1497 0.006442

Web Components 0.1489 0.005661

Web Components 0.1496 0.005661

Web Components 0.1488 0.004099

O.O. Ajayi et al. / NIPES Journal of Science and Technology Research

2(2) 2020 pp. 11-22

22

Web Components 0.1493 0.004099

Web Components 0.1485 0.004099

Web Components 0.1492 0.003925

Web Components 0.1485 0.003925

Web Components 0.149 0.003925

Web Components 0.1484 0.003925

Web Components 0.1487 0.003832

Web Components 0.1483 0.00368

Web Components 0.1485 0.003362

Web Components 0.1481 0.003362

.Net Components 0.1483 0.003362

.Net Components 0.148 0.00266

.Net Components 0.1482 0.001879

.Net Components 0.1479 0.001879

