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 This study introduces a new approximate method for analyzing 

ribbed slabs, named Calibrated Eurocode Results (CER) or 

Ogbonna-Umeonyiagu's method, based on finite element 

method (FEM) results. The method was developed by 

calibrating existing approximate techniques, specifically the 

ACI coefficient and Eurocode methods, through comparison 

with FEM results obtained using SAFE 2016. Manual analyses 

were conducted on ribbed slabs with varying boundary 

conditions, revealing significant discrepancies between 

existing approximate methods and FEM results for ribbed 

slabs. Notably, the Eurocode method showed considerable 

convergence with FEM results. A statistical regression analysis 

was performed, yielding calibration factors that improved the 

accuracy of the Eurocode method, bringing its results within 

6% of FEM values, compared to a previous discrepancy of 

65%. The newly developed method offers enhanced bending 

moment coefficients for ribbed slabs, performing better than 

existing methods and facilitating easier analysis of two-way 

slabs. A Java program was also created to implement this 

method, demonstrating its effectiveness and adding to the 

repertoire of tools available for slab analysis. 
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1. Introduction 

 

The slab is a key structural component in buildings and also serves as deck in bridges. The floor 

system of a structure can take many forms such as in situ solid slabs, ribbed slabs or precast units. 

Slabs may span in one direction or in two directions and they may be supported on monolithic 

concrete beams, steel beams, walls or directly by the structure's columns [1]. The shape, 

arrangement, and stiffness of the supporting beams all play a significant role in the slab's 

performance. Slabs are used almost in every building to enclose the space along with some other 
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structural elements such as walls, columns etc. In comparison to other structural elements, a slab 

is highly indeterminate due to the integrity of the internal stress resultants and it offers several load 

paths to the applied loading. Due to the integrity of internal force-resultants, the structural 

behaviour of the slabs is highly susceptible to the type, layout of the supporting system and 

stiffness of the supporting structural element. Change in any parameters of the supporting systems 

causes a significant change in the moment-field induced in the slab under applied loading. 

Removal of even a single support will lead to a considerable change in the behaviour of the slab. 

In addition, even small changes in the depth of the supporting beams/system will cause a 

significant change in the moment field in the slab panel. Over the past few decades, several 

approximate methods for analyses of two-way slabs were developed. They include equivalent 

frame method (EFM) and direct design method (DDM), which have restrictions on their use or 

may be time-consuming, so many other approximate methods such as Rankine-Grashoff, Marcus, 

coefficient method in ACI 318-63 code and Euro code (EC2) are widely used due to their 

simplicity. The dilemma for the designer is to decide which of these methods is the most 

appropriate for a given two-way slab system. Several computer analysis programs are available 

using the finite element method with different element types and capabilities. Most past research 

has proved that the results from finite element programs are compatible with the elastic plate theory 

results. In 1998 [2] compared the results obtained from finite element analyses of two-way solid 

slab using STAAD-III with those obtained using approximate methods adopted by ACI codes, 

including coefficient method, direct design method and equivalent frame method. The results 

obtained from this research show that the finite element solution complies with the elastic plate 

theory for aspect ratios ranging from 1.0 to 5.0, where the maximum error in moments is equal to 

2.60% and in deflection is equal to 2.04%, which is considered acceptable. [3] analyzed the waffle 

slab by an approximate method using Rankine-Grashoff method and compared it with the results 

from Timoshenko’s plate theory and ETABS 2015. The results showed that finite element results 

and plate theory are in good agreement, However, Rankine-Grashoff method overestimates critical 

bending moment and shear force because they neglect negative moments at the supports. [4] made 

a parametric study of two-way slab analyses using various methods including Rankine-Grashoff 

method, Plate Theory, Stiffness Matrix Method and STAAD program. The study shows that Plate 

theory underestimates the bending moment shear force values when compared to other methods, 

but the most important result is that Rankine- Grashoff method and plate theory can be only used 

when the slab is simply supported on all sides since each of the methods does not take into 

consideration the deflection of boundary and their stiffness. The first approximate method of two- 

way slab analyses was published in 1910 by the National Association of Cement Users (NACU), 

the distribution of load in this method was based on the equality of the deflection in the middle of 

two perpendicular slab strips, and this principle was the main factor in development of other 

approximate methods. [5] worked on the comparative study of Analyses of Two-Way Solid R.C. 

Slab Using Approximate and Finite Element Methods. This research aims to derive an approximate 

method for the analyses of ribbed slabs, based on the finite element of solution. This was achieved 

by reviewing available approximate methods for analyses of two-way slab systems, comparison 

and verification of the numerical results generated from the methods with those of the finite 

element method, and derivation of a new approximate method based on FEM to analyse ribbed 

slabs. 
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1.1 Ribbed and Waffle Slabs 

Two-way spanning ribbed slabs, known as waffle slabs, offer a material-efficient alternative to 

rectangular solid slabs, which tend to be wasteful, especially in cement usage. By modifying the 

slab's composition, its weight can be reduced without compromising strength or performance. 

Ribbed and waffle slabs exemplify such efficient designs. Flat slabs are generally more economical 

than ribbed slabs. However, the intricate formwork required for ribbed slabs can be cost- 

prohibitive for small domestic projects. 

 

Figure 1. Ribbed slab [6] 

Using hollow clay blocks can further reduce weight and simplify the formwork process. Grid or 

coffered floor systems, made up of beams placed at regular perpendicular intervals and integrated 

with a monolithic slab, are frequently utilized in large architectural spaces such as auditoriums and 

theaters to provide column-free areas. The rectangular or square voids formed in the ceiling are 

effectively used for concealed architectural lighting. According to [6], connecting a series of ribs 

(beams) with structural topping significantly reduced the weight of the slab between the ribs, as 

shown in Figure 2.5. Ribbed slabs can be constructed in various ways: 

i) Ribbed slabs without permanent blocks. The space between the beams is created using 

square or rectangular plastic formers during casting. Reinforcement is laid between the 

former. 

ii) Ribbed slabs with permanent hollow or solid blocks to obtain a flat ceiling. 

 

1.2 Methods of Analyses for Ribbed and Waffle Slabs 

A grid is a highly redundant and statically indeterminate structural system. Various methods are 

used for analyzing grid floor frames: 

 

i.) Rankine-Grashoff Method: 

This is an approximate method equating deflection at rib junctions and suitable for small grids 

with rib spacing ≤ 1.5m, but not for larger spans. 

ii.) Plate Theory: 

[7] analyzed moments and shears based on deflection surfaces. Maximum bending moments 

occur at span centers, torsional moments at corners, and shear forces at midpoints of longer 

sides. 

iii.) Computerized Analysis and Design: 

Necessary for rigorous elastic solutions due to slab sensitivity to support conditions. 

Computerization helps achieve economical designs through repeated analyses. 
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1.3 Reinforced Concrete Slab Failure Modes 

Reinforced concrete (RC) slabs without shear reinforcement subjected to concentrated loads can 

fail due to bending, shear, and anchorage failure (Figure 2). Bending failure is desirable as it allows 

ductile deformation and redistribution of internal forces before collapse. However, shear failure is 

undesirable due to its brittle nature, causing sudden collapse and posing significant risk to life and 

property. Shear failures are categorized as one-way shear failure, often occurring in slab-wall 

systems, and punching shear failure, occurring in slab-column systems. Although anchorage 

failure due to bond-slip is common, it is not the primary focus of this study. The study of RC slab 

failure modes dates to [8], with extensive research conducted through laboratory tests, field tests, 

and numerical simulations to develop empirical and mechanical models [9]. 
 

Figure 2. Three different failure modes for Reinforced Concrete Slabs [9] 

 

1.4 Methods of Two-Way Slabs Analyses 

The various methods that are used for analyses of two-way slabs include: 
i) Elastic Plate Theory 

ii) Finite Element Method (FEM) 

iii) Approximate Methods (Rankine -Grashoff, Marcus, ACI, BS8110, EC2 etc). 

 

1.4.1 ACI code coefficient methods 

Determining exact moments in two-way slabs with various support conditions is complex and 

impractical for design practice. Hence, simplified methods are adopted. One popular method uses 

'Moment Coefficients' from the 1963 ACI Code for two-way slabs supported on four sides by stiff 

beams. This method employs tables of moment coefficients for different support conditions. These 

coefficients are based on elastic analyses and account for inelastic redistribution, providing a 

practical approach to calculating moments, shears, and reactions in such slabs. The moment values 

in the middle strips are computed from 

 

𝑀𝑎,𝑚𝑎𝑥 = 𝐶𝑎𝑤𝑙2 (1) 

 

𝑀𝑏,𝑚𝑎𝑥 = 𝐶𝑏𝑤𝑙2 (2) 
 

Where: 

𝑀𝑎, 𝑚𝑎𝑥, 𝑀𝑏, 𝑚𝑎𝑥 = 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠ℎ𝑜𝑟𝑡 𝑎𝑛𝑑 𝑙𝑜𝑛𝑔 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
𝑤 = 𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎. 
𝐶𝑎, 𝐶𝑏 = 𝑇𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 
𝑙𝑎, 𝑙𝑏 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑙𝑒𝑎𝑟 𝑠𝑝𝑎𝑛 𝑖𝑛 𝑠ℎ𝑜𝑟𝑡 𝑎𝑛𝑑 𝑙𝑜𝑛𝑔 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
This method provides the values of Ma.max and Mb,max along the central strip of the slab, as 
demonstrated in Figure 3 for a slab simply supported on all sides. As shown, the maximum 
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moments are less elsewhere. Therefore, other design values can be reduced according to the 

variation shown. These variations in maximum moment across the width and length of a 

rectangular slab are accounted for approximately by designing the outer quarters of the slab span 

in each direction for a reduced moment. 

 

Figure 3 Variation of moments in a uniformly loaded slab simply supported on 

all sides 

Compared to the idealized ‘simply supported’ slab, Figure 3 shows a more ‘realistic’ scenario 

where a system of beams supports a two-way slab. 

 

1.4.2 Euro Code (EC2) 

When a slab is supported on all four sides, it spans in both directions, often making it more 

economical to design it this way. The bending in each direction depends on the span ratio and 

support restraints [10]. For a square slab with similar restraints, the load spans equally in both 

directions. For a rectangular slab, more load is carried in the stiffer, shorter direction. If one span 

is much longer, the load is primarily carried in the shorter direction, potentially allowing for a one- 

way design. Moments are calculated using tabulated coefficients [1] 

 

1.5 Simply supported slab spanning in two directions 

A slab simply supported on its four sides will deflect about both axes under load and the corners 

will tend to lift and curl up from the supports, causing torsional moments. When no provisions 

have been made to prevent this lifting or to resist the torsion, then the moment coefficients of Table 

may be used and the maximum moments are given by: [10]. 

𝑀𝑠𝑥 = 𝑎𝑠𝑥𝑛𝑙2 (3) 

and 

𝑀𝑠𝑦 = 𝑎𝑠𝑦𝑛𝑙2 (4) 
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Figure 4. Division of slab into middle and edge strips [10]. 

According to [11], for purposes of computerization, the values of 𝛼𝑠𝑥 𝑎𝑛𝑑 𝛼𝑠𝑦 can be obtained 

from 

𝑘4 

𝛼𝑠𝑥 = 
8(1 + 𝑘4) 

(5𝑎) 

And 

𝑘2 

𝛼𝑠𝑦 = 
8(1 + 𝑘4) 

(5𝑏) 

𝑊ℎ𝑒𝑟𝑒 𝑘 = 𝑙𝑦/𝑙𝑥 (5𝑐) 

1.6 Restrained slab spanning in two directions 
When the slabs have fixity at the supports and reinforcement is added to resist torsion and to 

prevent corners of the slab from lifting, the maximum moments per unit width are given by: [10] 

Where: 𝛽𝑠𝑥 , 𝛽𝑠𝑦 = moment coefficients 

𝑀𝑠𝑥 = 𝛽 𝑎𝑠𝑥𝑛𝑙2 (6) 
And 

𝑀𝑠𝑦 = 𝛽 𝑠𝑦𝑛𝑙2 (7) 

Where: 𝛽𝑠𝑥 , 𝛽𝑠𝑦 = moment coefficients 

1.7 Introduction to Mathematical Modelling 

According to [12], models represent our beliefs about how the world functions, and mathematical 

modeling expresses these beliefs using the language of mathematics. This approach offers several 

advantages like clear formulation and identification of assumptions, provision of well-defined 

rules which facilitate efficient expression and analysis, utilization of extensive proven 

mathematical results and high computational ability. 

 

1.7.1 Regression and Correlation 

Regression and correlation are statistical methods for analyzing relationships between variables, 

but they serve different purposes. Regression models the relationship between a dependent variable 

and one or more independent variables, aiming to create a predictive model for estimating the 

dependent variable based on the independents. It focuses on understanding the nature and strength 
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of these relationships, aiding in prediction and identifying how changes in independent variables 

affect the dependent variable. Correlation, on the other hand, measures the strength and direction 

of the relationship between two variables without establishing causation. 

 

1.8 Computer Analyses and Design Program 

Computer programming packages are available for analyses of thermal effects on bridges. Most of 

the software like STAADPRO, SAFE are sold as commercial packages and will require adequate 

training to use. Computer programs can also be written to validate the results of manual analyses 

and to reduce the time spent as well as the error made during manual calculations. Several object- 

oriented programming languages have been developed in recent years. These include C++, C#, 

and Java. Java is one of the more popular object-oriented programming languages because it has 

several unique features. During the last fifteen years, finite element development has gradually 

shifted from procedural approach (Fortan, C) towards an object-oriented approach. Mostly, object- 

oriented finite element algorithms have been implemented in C++ programming language. It was 

shown that an object-oriented approach with the C++ programming language could be used 

without sacrificing computational efficiency as compared to Fortran. The Java language, 

introduced by Sun Microsystems in over two decades ago, possesses features that make it attractive 

for use in computational modeling. Java is a simple language (simpler than C++). It has a rich 

collection of libraries implementing various APIs. Java makes it is easy to create GUIs and to 

communicate with other computers over a network. With Java memory leaks is prevented with 

built-in garbage collection mechanism. Another advantage of Java is its portability. Java virtual 

machines (JVM) are developed for all major computer systems. JVM is embedded in most popular 

Web browsers in form of applets. Applets can be downloaded through the Internet and executed 

within a web browser. Useful for object-oriented design Java features are packages for organizing 

classes and prohibition of class multiple inheritance. This allows cleaner object-oriented design in 

comparison to C++. 

 

2. Materials and Methods 

 

2.1 Specifications for Design of Interior Panel of Ribbed (Waffle) Slabs using Approximate 

Methods 

 

Figure 5a. Plan of waffle slab. 
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Figure 5b. Section through the slab 

 

 

a. Slab Identification 

The Interior panel of a waffle R.C. Slab with different aspect ratios will be analyzed by finite 

element using SAFE 2016 program. The slab has the following geometrical and material 

properties: 

𝑆𝑙𝑎𝑏 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 80𝑚𝑚 
𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 = 26.667 𝑘𝑁/𝑚𝑚2 
𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 = 0.2 
Loads: 
The loads on floor slab are calculated on the basis of density of reinforced concrete and floor finish 

considered as 10 kN/m2. 

𝐿𝑖𝑣𝑒 𝑙𝑜𝑎𝑑 = 2 𝑘𝑁/𝑚2 
𝐷𝑒𝑎𝑑 𝑙𝑜𝑎𝑑 = 10𝑘𝑁/𝑚2 
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑙𝑜𝑎𝑑 = 1.4𝐺𝑘 + 1.6𝑄 = 1.4 × 10 + 1.6 × 2 = 17.2 𝑘𝑁/𝑚2 

5m x 5m Slab (aspect ratio=1.0) 

b. Model dimensions 

The model has dimensions in short direction = 5 m and long direction varies with variable aspect 

ratios (1.0, 1.25, 1.5, 1.75, 2.0). 

c. Sample slab analyses using approximate methods: 

This section aims to analyze interior ribbed slab with dimensions 5 x 5 (aspect ratio = 1.0) and is 

restrained on all four sides. using the approximate methods such as Eurocode (EC2) and ACI 318- 

63 coefficient method. 

The result of the analyses are as follows: 

i. Eurocode Method 

Moment in each direction 

Short direction moments: 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑒𝑑𝑔𝑒 = −0.031 
𝑀𝑠𝑥 = 𝛽𝑠𝑥𝑤𝑙2

 

= 0.031 × 17.2 × 52 = 13.33 𝑘𝑁. 𝑚 
𝑆𝑙𝑎𝑏 𝑤𝑖𝑑𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 𝑜𝑛𝑒 𝑟𝑖𝑏 = 500 𝑚𝑚. 
𝑇ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑟𝑖𝑏 = 13.33 × 0.5 = 6.67 𝑘𝑁𝑚 
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑡 𝑚𝑖𝑑 − 𝑠𝑝𝑎𝑛 = 0.024 
𝑀𝑠𝑥 = 𝛽𝑠𝑥𝑤𝑙2

 

= 0.024 × 17.2 × 52 = 10.32 𝑘𝑁. 𝑚 
𝑇ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑟𝑖𝑏 = 10.32 × 0.5 = 5.16𝑘𝑁𝑚 
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Long direction Moments: 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑒𝑑𝑔𝑒 = −0.032 
𝑀𝑠𝑦 = −𝛽𝑠𝑦𝑤𝑙2 

= 0.032 × 17.2 × 52 = 13.33𝑘𝑁. 𝑚 
𝑇ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑟𝑖𝑏 = 13.33 × 0.5 = 6.67 𝑘𝑁𝑚 
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑡 𝑚𝑖𝑑 − 𝑠𝑝𝑎𝑛 = 0.024 

𝑀𝑠𝑦 = 𝛽𝑠𝑦𝑤𝑙2
 

= 0.024 × 17.2 × 52 = 10.32 𝑘𝑁. 𝑚 
𝑇ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑟𝑖𝑏 = 10.32 × 0.5 = 5.16𝑘𝑁𝑚 
ii. ACI 318-63 Coefficient Method 

𝑀𝑎 = 𝐶𝑎𝑤𝑙2 
𝑀𝑏 = 𝐶𝑏𝑤𝑙2 
𝑙𝑎 = 5.00 − 0.30 = 4.70 𝑚, 
𝑙𝑏 = 5.00 − 0.30 = 4.70 𝑚 
𝑙𝑎 

 
 

𝑙𝑏 
= 

4.70 

4.70 
= 1.0 

𝐶𝑎 = 0.045, 𝐶𝑦 = 0.036  

Short direction moment 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 = −0.045 
𝑀𝑎 = 𝐶𝑎𝑤𝑙2 = 0.045 (17.2) (4.7)2  = 17.1𝑘𝑁𝑚 
𝑇ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑟𝑖𝑏 = 17.1 × 0.5 = 8.55𝑘𝑁𝑚 
𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 = 0.018 

𝑀𝑎 = 𝐶𝑎𝑤𝑙2 = 0.018(17.2)(4.7)2  = 6.84 𝑘𝑁𝑚 
𝑇ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑟𝑖𝑏 = 6.84 × 0.5 = 3.42𝑘𝑁𝑚 

Long direction moment 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 = −0.045 
𝑀𝑏 = 𝐶𝑏𝑤𝑙2 = 0.045 (17.2)(4.7)2  = 17.1𝑘𝑁𝑚 
𝑇ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑟𝑖𝑏 = 17.1 × 0.5 = 8.55 𝑘𝑁𝑚 
𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 = 0.036 
𝑀𝑏 = 𝐶𝑏𝑤𝑙2 = 0.036(17.2)(4.7)2  = 13.68 𝑘𝑁𝑚 
𝑇ℎ𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑟𝑖𝑏 = 13.68 × 0.5 = 6.84𝑘𝑁𝑚 

To obtain 𝛼 and, 𝛽 for simply supported slab: 
8𝑀𝑎 

𝛼 = (10) 
𝑤𝑙2 
8𝑀𝑏 

β = 
𝑤𝑙2 (11) 

Apply 𝑀𝑎 and 𝑀𝑏 in equations (10) and (11): 
8𝐶 𝑙2 

𝛼 = 
𝑎 𝑎 

 

2 
𝑥 

  

(12) 

=
8𝐶𝑏𝑙𝑏

2

𝑙𝑦
2

                                                                                                                              (13) 

𝑙 
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−𝛼 =
8(0.045)(4.7)2

52
= 0.32, 𝛼 =

8(0.036)(4.7)2

52
= 0.25,   

 −  𝛽 =     
8(0.045)(4.7)2

52
   = 0.32 ,      𝛽 =     

8(0.036)(4.7)2

52
 = 0.25                     

 

iii. Finite Element Analyses of Ribbed Slab (Interior Panel) 

Finite element Modelling of 5m x 5m Slab 

The following are results were obtained from SAFE 2016 finite element program for the analyses 

of ribbed slab. The slab is of 5 m X 5 m dimension, with boundary beams of 30 cm X 50 cm 

and slab thickness is equal to 80 mm 

Results of finite element analyses: 

 
Figure 6. Deflection shape of model 

Figure 6 shows deflection shape of slab and boundary beams with maximum deflection equal to 
7.14 mm 

 

Figure 7. Bending moment diagram in X direction (short) 



Umeonyiagu and  Ogbonna  / Journal of Materials Engineering, Structures and Computation 3(3) 2024 pp. 12-34 

22 

 

 

Bending moment map for slab in direction X and Y axis is shown in Figures 7 and 8, respectively. 

From both figures, it is evident that the maximum moment in the slab occurs at midspan of the 

slab. 

 

Figure 8. Bending moment diagram in Y direction (long) 

To compare finite element results with other approximate methods, the average moment in a strip 

with width equal to 1.0 m in both directions, as shown in Figure 9 and Figure 10, respectively, will 

be taken. Note that the results of strip moment are less than the maximum moment shown in Figure 

8 and Figure 9, since strip moment shows the average value of moment at 1.0 m width. 

 
Figure 9. Bending moment for 1.0m strip in X direction (short), kN.m 
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Figure 10. Bending moment for 1.0m strip in Y direction (long), kN.m 

Determination of 𝛼 𝑎𝑛𝑑 𝛽 for the Finite Element Method 
8𝑀𝑥 8𝑀𝑏 

𝛼 = 𝑤𝑙2 
,  𝛽 = 

𝑤𝑙2 

𝑊ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 1.0, 
𝑥 𝑦 
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𝛼 = 8 × 30.6/17.2 × 52 = 0.569 
𝛽 = 8 × 11.95/17.2 × 52 = 0.222 

2.2 Development of Java Program for the Application of the derived Approximate methods 

The study will develop a Java based computer program for the application of the newly derived 

approximate Method. This method is called Calibrated Eurocode Results (CER) or Ogbonna- 

Umeonyiagu’s coefficient method. 
 

Figure 11. The Java based program SDDIP 

The developed computer program is called SDDIP v.1.1, it has graphical user interface (GUI) for 

the analyses of rectangular solid slabs and ribbed slabs. It shows the SDDIP V.1.1 program with 

a design dialog box which allow the user to enter the required design information which the 

program uses to analyze the slab based on the coefficients derived using the CER method. The 

design of the slab is in accordance to [10] and Eurocode 2 provisions. 

 

3 Results and Discussion 

 

3.1 Finite element versus approximate methods for Ribbed Slabs (Interior Panels) 

In this section, we will compare the results of finite element analyses with other approximate 

methods mentioned for interior panel of ribbed slabs. 
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Table 1. Bending Moment and Load Distribution in Short direction for Interior Panel of Ribbed Slabs) 

Method Finite Element Eurocode 

(EC2) 

ACI 

318-63 
 

𝑳𝒚/𝒍𝒙 𝜶 Moment 

(kN.m) 

𝜶 Moment 

(kN.m) 

𝜶 Moment 

(kN.m) 

1.00 
(5x5) 

0.66 30.6 0.192 10.32 0.250 6.84 

1.25 
(5x6.25) 

0.79 42.48 0.269 14.62 0.184 10.25 

1.50 

(5x7.5) 
0.903 48.56 0.319 17.2 0.230 12.16 

1.75 
(5x8.75) 

0.970 52.17 0.352 18.92 0.243 13.30 

2.0 
(5x10) 

1.01 54.11 0.118 20.64 0.254 14.10 

 

Table 2. Bending Moment and Load Distribution in Long Direction for Interior Panel of Ribbed Slab 

Method Finite Element Eurocode 

(EC2) 

ACI 

318-63 
 

𝑳𝒚/𝒍𝒙 𝜷 Moment 
(kN.m) 

𝜷 Moment 
(kN.m) 

𝜷 Moment 
(kN.m) 

1.00 
(4x4) 

0.66 30.6 0.192 10.32 0.25 6.84 

1.25 
(4x5) 

0.51 40.46 0.192 16.13 0.080 6.70 

1.50 

(4x6) 
0.388 46.90 0.192 23.22 0.044 5.35 

1.75 
(4x7) 

0.327 53.99 0.113 31.61 0.023 3.68 

2.0 
(4x8) 

0.291 62.47 0.118 41.28 0.016 3.24 

 

Tables 1 and 2 represent the values of moment load distribution coefficients in short and long 

direction which were used to perform a statistical regression on each of the approximate methods 

and the finite element method. 

 

3.2 Regression Analyses for Interior Panel of Ribbed Slabs (Short Direction) 

The results from the analyses of Interior Panel of Ribbed Slab are summarized in Table 3 
The results are used to derive new models for the analyses of interior panels of ribbed slabs through 

statistical regression methods. The application of linear regression method was performed using 

Microsoft Excel’s Data Analyses Tool and the results are present in the sub-sections as follows: 
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Table 3. Summary of Bending Moment in Short Direction for Interior Panel of Ribbed Slabs 

Aspect Ratio Finite Element Eurocode ACI 

1 30.6 10.32 6.84 

1.25 42.48 14.62 10.25 

1.5 48.56 17.2 12.16 

1.75 52.17 18.92 13.30 

2 
54.11 20.64 14.10 

 

Table 4. Regression Statistics for Interior Panel of Ribbed Slabs (Short Direction) 
 Regressio n Statistics  

 FEM Eurocode ACI 

Multiple R 0.946377 0.97759 0.958962 

R Square 0.89563 0.955682 0.919608 

Adjusted R Square 0.860839 0.940909 0.89281 

Standard Error 3.534464 0.980551 0.948457 

Observations 5 5 5 

 

From Table 4, the Pearson correlation coefficient value (Multiple R) is equal to 0.946377 for the 

finite element regression results, which is very strong. Values of 0.97759, and 0.958962 were also 

reported for the Eurocode and the ACI methods respectively. From the ANOVA table, the 

significance F or P -Value of the regression models for the moments obtained from the various 

approximate analyses methods and the finite element method are shown in Table 5 

 
Table 5. ANOVA Results for Interior Panel of Ribbed Slabs (Short Direction) 

Analyses Method significance F- Value 

Finite Element Method 0.014785 

Eurocode 0.004014 

ACI-316, 63 0.009918 

 

Figure 12. Variation of bending moment for Interior Panel of Ribbed Slabs using different 

methods (Short Direction) 
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3.3 Determination of the Calibration Factor (CF) for the Eurocode method using the Finite 

Element Method Results of Interior panel of Ribbed Slabs (Short Direction) 

𝑇ℎ𝑒 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 𝑦 = 0.423𝑥 − 2.925 (14) 
𝑅² = 1 

Where 
𝑦 = 𝑡ℎ𝑒 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝑎𝑛𝑑 
𝑥 = 𝑡ℎ𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 
From Table 4.154, 

𝑇ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 0.423 
𝑇ℎ𝑒 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = −2.925 
To adjust the Eurocode results to match the Finite Element results, we need to transform the 

regression equation by inverting Equation 4.10 (Montgomery, Peck, & Vining, 2012). 
𝑦 + 2.925 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 = 𝑥 = 

From Equation 4.13, 
0.423  

 
10.32 + 2.925 

(15) 

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 1, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 = 
0.423 

= 31.31𝑘𝑁. 𝑚 

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 1.25, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 = 
14.62 + 2.925 

 
 

0.423 
17.2 + 2.925 

= 41.48𝑘𝑁. 𝑚 

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 1.5, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 = 
0.423 

= 47.58 𝑘𝑁. 𝑚 

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 1.75, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 = 
18.92 + 2.925 

 
 

0.423 
= 51.64 𝑘𝑁. 𝑚 

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 2, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 = 
20.64 + 2.925 

 
 

0.423 
= 55.71 𝑘𝑁. 𝑚 
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Table 6. Comparison of the Bending Moment results from the Finite Element, The Eurocode and the CER methods 

for Interior Panels of Ribbed Slabs (Short Direction) 

 

Aspect 

Ratio 

 

Finite Element 

(kN.m) 

 

Eurocode 

(kN.m) 

CER 

(kN.m) 

Percentage 

Difference (%) 

Between FEM & 

CER 

Percentage 

Difference (%) 

Between 

Eurocode & 

CER 

1 30.6 10.32 31.31 2.27 67.01 

1.25 42.48 14.62 41.48 2.35 64.75 

1.5 48.56 17.2 47.58 2.02 63.85 

1.75 52.17 18.92 51.64 1.02 60.22 

2 54.11 20.64 55.71 2.87 62.95 

 

Table 6, compares the results of design momnts from the Finite Element, Eurocode and the CER 

methods for Interior Panel of Ribbed Slabs. The percentage difference between the bending 

moments obtained from Finite Element method and the Calibrated Eurocode Results (CER) 

method ranges 1.08% to 2.87% for aspect ratios between 1.0 to 2.0 (Table 4.6). The percentage 

difference between the design moments obtained from Eurocode method and the calibrated 

Eurocode results (CER) method is approximately 63.75% for aspect ratios between 1.0 to 2.0. 

3.4 Regression Analyses for Interior Panel of Ribbed Slabs (Long Direction) 

 

From Table 7, the Pearson correlation coefficient value (Multiple R) is equal to 0.997672 for the 

finite element regression results, which is very strong. Values of 0.995185 and 0.969739 were also 

reported for the Eurocode and the ACI methods respectively. From the ANOVA table, the 

significance F or P -Value of the regression models for the moments obtained from the various 

approximate analyses methods and the finite element method are shown in Table 8 

 
Table 7. Regression Statistics for Interior Panel of Ribbed Slabs (Long Direction) 

 Regressio n Statistics  

 FEM Eurocode ACI 

Multiple R 0.997672 0.995185 0.969739 

R Square 0.995349 0.990392 0.940394 

Adjusted R Square 0.993798 0.98719 0.920525 

Standard Error 0.96437 1.391819 0.469766 

Observations 5 5 5 

 

Table 8 ANOVA Results for Interior panel of Ribbed Slabs (Long Direction) 

Analyses Method significance F- Value 

Finite Element Method 0.000135 

Eurocode 0.000401 

ACI-316, 63 0.00629 
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Figure 13. Variation of bending moment for Interior Panel of Ribbed Slabs using different 

methods (Long Direction) 

The variation of bending moment for ribbed slabs using the different approximate methods and 

the finite element method for the longer direction of the slab is shown in Figure 13 

 

3.5 Determination of the Calibration Factor (CF) for the Eurocode method using the Finite Element 

Method Results (Long Direction) 

𝑇ℎ𝑒 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 𝑦 = 0.995𝑥 − 22.13                              (16 ) 

𝑅² =  1 
Were  
𝑦 =  𝑡ℎ𝑒 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝑎𝑛𝑑 
 𝑥 =  𝑡ℎ𝑒 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 

𝑇ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = 0.995 
𝑇ℎ𝑒 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 = −22.13 
To adjust the Eurocode results to match the Finite Element results, we need to transform the regression 

equation by inverting Equation 16 [13]. 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 = 𝑥 =
𝑦 + 22.13

0.995
                                                  (17) 

From Equation 17, 

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 1, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 =
10.32 + 22.13

0.995
= 32.61𝑘𝑁. 𝑚  

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 1.25, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 =
16.13 + 22.13

0.995
= 38.45𝑘𝑁. 𝑚  

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 1.5, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 =
23.12 + 22.13

0.995
= 45.48 𝑘𝑁. 𝑚  

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 1.75, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 =
31.61 + 22.13

0.995
= 54.01 𝑘𝑁. 𝑚  

𝑤ℎ𝑒𝑛 𝑙𝑦/𝑙𝑥 = 2, 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝐸𝑢𝑟𝑜𝑐𝑜𝑑𝑒 𝑅𝑒𝑠𝑢𝑙𝑡 𝐶𝐸𝑅 =
41.28 + 22.13

0.995
= 63.72 𝑘𝑁. 𝑚  

The percentage difference between the design moments obtained from finite element method and the 

calibrated Eurocode results (CER) method ranges 2 % to 6.16 % for aspect ratios between 1.0 to 2.0 

(Table 12). It can also be seen from Table 12 that the percentage difference between the results from the 

Eurocode method and the CER method for Short Direction of Interior Panel of Ribbed Slabs is 

approximately 50.4%. 

The percentage difference between the design moments obtained from finite element method and the calibrated 
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Eurocode results (CER) method ranges 2 % to 6.16 % for aspect ratios between 1.0 to 2.0 (Table 9). It can also be 

seen from Table 12 that the percentage difference between the results from the Eurocode method and the CER 

method for Short Direction of Interior Panel of Ribbed Slabs is approximately 50.4%. 

Table 9. Comparison of Bending Moment results from the Finite Element, The Eurocode and the CER methods for 

Interior Panel of Ribbed Slabs (Long Direction) 

Aspect 

Ratio 

Finite 

Element 

(kN.m) 

Eurocode 

(kN.m) 

 

CER (kN.m) 

Percentage 

Difference 

Between FEM & 
CER(%) 

Percentage 

Difference 

between Eurocode 
& CER (%) 

1 30.6 10.32 32.61 6.16 68.35 

1.25 40.46 16.13 38.45 4.97 58.04 

1.5 46.9 23.22 45.48 3.03 48.94 

1.75 53.99 31.61 54.01 2.00 41.47 

2 62.47 41.28 63.72 2.00 35.22 

 

 
  

 
Figure 14. Comparison between the Eurocode, Finite Element and the Calibrated 

Eurocode (CER) methods. 

3.7 Derivation of Approximate Method for the Analyses of Ribbed Slab Spanning in Two 

Directions (Interior Panels) 

The bending moment coefficients for Interior Panels of Restrained slabs given in [10] used in the 

analysis of Interior Panel of Ribbed Slabs. Table 10 shows the ratios of Bending Moment results 

from Eurocode and CER methods for Interior panel of Ribbed Slab (Short Direction). The average 

ratio of the bending moments is 2.813. 

 
Table 10. Ratios of the Bending Moment results from Eurocode and CER methods for Interior panel of Ribbed Slab 

(Short Direction) 

Aspect Ratio Eurocode (kN.m) CER (kN.m) Ratio 

1 10.32 31.31 3.03 

1.25 14.62 41.48 2.84 

1.5 17.2 47.58 2.77 

1.75 18.92 51.64 2.73 

2 20.64 55.71 2.67 

 

Table 10 shows the ratios of Bending Moment results from Eurocode and CER methods for Interior 

panel of Restrained Slab (Long Direction). The average ratio of the bending moments is 2.14 for 
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the long direction and 2.48 for either direction. The value of 2.48 is used to multiply the 

original 𝑎𝑠𝑥 𝑎𝑛𝑑 𝑎𝑠𝑦 ratios from Eurocode [10] to obtain the derived 𝑎𝑠𝑥 𝑎𝑛𝑑 𝑎𝑠𝑦 coefficient for 

the CER method in Table 11 

. 
Table 11. Comparison of the Bending Moment results from Eurocode and CER methods for Interior panel of 

Restrained Slab (Long Direction) 

Aspect Ratio Eurocode (kN.m) CER (kN.m) Ratio 

1 10.32 32.61 3.12 

1.25 16.13 38.45 2.38 

1.5 23.22 45.48 1.96 

1.75 31.61 54.01 1.71 

2 41.28 63.72 1.54 

 
Table 12. Bending moment coefficients for the Analyses of Interior Panels of Restrained Slab Spanning in Two 

Directions (CER Method) 

 

Types of 

panel and 

moments 

considered 

 Short Direction coefficients for values ( 𝜷𝒔𝒙) 

𝒍𝒚/𝒍𝒙 
 Long 

Direction 

coefficients 

for all 

values of 
𝒍𝒚/𝒍𝒙 (𝜷𝒔𝒚) 

 1.0 1.1 1.2 1.3 1.4 1.5 1.75 2.0 

Interior Panels 

Negative 

moment a 

continuous 
edge 

0.077 0.102 0.104 0.114 0.124 0.131 0.146 0.156 0.089 

Positive 

moment at 
 mid-span  

0.060 0.069 0.079 0.087 0.091 0.099 0.109 0.119 0.060 

 

 

 

3.8 Application of the Developed Computer Program for the Analyses of Ribbed Slabs using 

CER Method 

The results from the analyses of Interior Panel of Ribbed Slab (Short Direction) are summarized 

in Table 13. 
Table 13. Summary of Bending Moment in Interior Panel of Ribbed Slab (Short Direction) 

Aspect 

Ratio 

Finite Element (kN.m) CER (Manual Analyses) 

(kN.m) 

CER (SDDIP V.1.1) 
(kN.m) 

1 30.6 31.31 31.94 

1.25 42.48 41.48 42.14 

1.5 48.56 47.58 47.17 

1.75 52.17 51.64 52.26 

2 54.11 55.71 55.10 

 

Figure 15, shows a comparison between the results from the Finite Element Program, the Manual 

Analyses using CER Coefficients and the CER results from the Developed Program SDDIP V.1.1 

for Interior Panel of Ribbed Slabs (Short Direction). 
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Figure 15. Comparison between the Finite Element method, the Manual analyses using CER 

Coefficients and the CER results from the Developed Program SDDIP V.1.1 for Interior 

Panel of Ribbed Slabs (Short Direction) 

Table 14 and Figure 16, shows a comparison between the results from the Finite Element Program, 

the Manual Analyses using CER coefficients and the CER results from the Developed Program 

SDDIP V.1.1 for Interior Panel of Ribbed Slabs (Long Direction). 

 
Table 14. Summary of Bending Moment in Interior Panel of Ribbed Slab (Long Direction) 

Aspect 

Ratio 

Finite Element (kN.m) CER (Manual Analyses) 

(kN.m) 

CER (SDDIP V.1.1) 
(kN.m) 

1 30.6 32.61 32.55 

1.25 40.46 38.45 38.14 

1.5 46.9 45.48 46.14 

1.75 53.99 54.01 54.72 

2 62.47 63.72 63.46 

 

Figure 16. Comparison between the Finite Element Method, the manual analyses using CER 

Coefficients and the CER results from the Developed Program SDDIP V.1.1(Ribbed Slabs) 



Umeonyiagu and  Ogbonna  / Journal of Materials Engineering, Structures and Computation 3(3) 2024 pp. 12-34 

33 

 

 

4. Conclusion 

The findings of this research can be summarized as follows: 
i.) The design moments derived from both approximate and finite element methods showed a 

high degree of similarity for two-way simply supported rectangular slabs. 

ii.) In contrast, the design moments for restrained slabs and ribbed (waffle) slabs revealed 

significant discrepancies between the results of the approximate methods and the finite 

element methods, necessitating further statistical regression analyses. 

iii.) The Rankine-Grashoff and Marcus methods were found to be inadequate for analyzing 

restrained and ribbed slabs. 

iv.) Among the evaluated methods, the results obtained using the Eurocode method 

demonstrated superior alignment with the finite element method compared to other existing 

approximate methods. 

v.) The statistical regression analysis, utilizing the finite element method as the independent 

variable and the Eurocode method as the dependent variable, produced a calibration factor. 

This factor serves to refine the accuracy of the Eurocode method's results. 

vi.) By applying this calibration factor to the Eurocode method's outputs, the results closely 

approximate those derived from the finite element method, reducing the error margin from 

over 65% to about 6%. 

vii.) The established regression calibration factor can facilitate the formulation of a new 

approximate coefficient, simplifying and enhancing the analysis of slabs. 

viii.) Additionally, the developed Java software provides a practical tool for 

implementing the newly derived approximate method, known as Ogbonna-Umeonyiagu’s 

method / CER method, in computational applications. 
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