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 To improve work precision on finished products and reduce 

scrap in manufacturing, manufacturers must, as a rule, carry 

out precision tests on their equipment, which can be done using 

Process Capability Indices (PCIs). This case study presents a 

situation where a manufacturing company has two automatic 

steel rod-cutting machines of different models, which we refer 

to as machines A and B. Four steel rods of length 2.5m and 

thickness 16mm were required for the study. Two lengths of 

steel rod were fed into each piece of equipment to be cut into a 

desired length of 40mm with tolerance limits of 40±2mm. The 

Minitab 20 statistical software package was used to investigate 

the stability of the cutting process for both equipment using the 

Individuals and Moving Range (I-MR) chart and also to carry 

out a process capability analysis. Both machines were found to 

be stable; however, machine B was found to be incapable of 

operating within the desired tolerance limits as its upper 

control limit was outside the upper specification limit of 42mm. 

Machine A has superior PCIs and the best performance 

expected overall of 0.46 in parts per million. Based on these 

findings, machine A was recommended for usage when 

tolerance limits are well within ±2 mm, and machine B may be 

used only when wider tolerance limits are permissible. This 

helps to improve the precision of elements cut for 

manufacturing and also helps to reduce the scrapping of 

materials. 
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1 Introduction 

One frequently used monitoring instrument in the industry for characterizing and assessing the 

capability of manufacturing processes is the Process Capability Index (PCI) [1], [2]. A process's 

ability to generate outputs within a lower (LSL) and upper (USL) specified limit is described by 

PCIs. The ability to perform this task is known as a process's capability. To ascertain whether a 

process can produce goods that meet manufacturing criteria, several PCIs have been suggested for 

the manufacturing sector. These are helpful management tools that offer quantitative 

measurements of manufacturing capability [3]. PCIs were first established by Juran and Gryna[4], 

who introduced the capability index Cp. To counteract the disadvantages of Cp, Kane [5] 

introduced the index Cpk. The third process capability index, also referred to as the Taguchi 

capability index, was independently determined by Chan et al. [6]and Taguchi [7]. After analyzing 

the three capacity indices, Arzak et al. [8] concluded that the process Taguchi capability index 

(Cpm) was superior for improving customer satisfaction. 

Reduced scrap and a larger market share are two benefits of high-quality production [9]. A 

manufacturing company with two heavy-duty automatic steel rod-cutting machines that can both 

pull and cut long rods to the necessary lengths is located in southern Nigeria. The purpose of testing 

these two identically functioning but distinct model machines is to ascertain whether they can cut 

within predetermined tolerance limits. This will guarantee that the capabilities of both machines 

are established and that the machines are chosen for tasks based on the intended tolerance limits, 

which will aid in the production of items within the intended tolerance limits and, consequently, 

minimize scrap. 

PCIs can be multivariate, which simultaneously takes into account several quality features, or 

univariate, which focuses on just one quality characteristic—the subject of this study [10-16]. In 

the industry, multivariate PCIs are still not yet widely embraced in the industry [17]. In his 

introduction to certain uses of these indices, Kane [5] also covers the use of these indicators in the 

assessment of univariate production processes. Automobile production has profited from the use 

of these univariate PCIs [18]. Philimon et al [19] discussed manufacturing and process 

improvement in the belt manufacturing industry. Arzak et al [8] addressed the improvement of the 

filling process in a carbonated drink beverage company; Joseph [20] touched on improving the 

process stability of moulding equipment; Motorcu [9] dealt with machining processes; and Murty 

et al [21]and Ezewu et al. [22] discussed machine selection for process and product reliability. 

More literature on univariate PCIs and applications may be found in [23-26]. In this study, to 

reduce scrapping and improve precision in the production of elements needed for manufacturing, 

we evaluate the cutting ability of two automatic steel rod cutting machines, utilizing PCIs to 

estimate their ability within predetermined tolerance limits. The remainder of the work is 

organized as follows: Section 2 discusses the materials and methods used for the investigation. 

The results and discussion are covered in Section 3, and lastly, concluding thoughts are given in 

Section 4. 

2.      Materials and Method 

A manufacturing company has two heavy-duty automatic rod-cutting machines, and it is desired 

to unravel the process capability of these two machines of different models (Machine A and 
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Machine B). For this study, four (4) rods of length 2.5m and thickness 16mm were obtained. The 

rods are to be cut into bits of 40mm each, with the desired specification limit set at 40±2mm. Also, 

a digital vernier calliper is required for measurement and data collection. 

2.1       Data Collection/Sample Size  

Machine A was programmed to cut the rods into a desired length of 40mm. Two rods of length 

2.5m were fed into Machine A one after the other. After the cutting process, 100 pieces of cut rods 

were randomly collected for measurement. Afterwards, the same action was repeated with 

Machine B. Figure 1 shows a picture of a sample of a cut rod during data collection showing a 

length of 39.08mm on the digital vernier caliper. Minitab recommends a sample size of n ≥ 100; 

therefore, a sample size of n = 100 was adopted for the study[27], [28]. 

 
Figure 1. A cut sample displaying a dimension of 39.08mm 

 

2.2 Individual and Moving Range chart 

 

This study represents a situation where we need to deploy the Individual and Moving range charts 

to test the stability of the rod-cutting process for both machines. The moving range monitors 

inherent variability by using two successive data readings. The moving range can be obtained 

using the relationship [29]: 

1 iii xxMR         (1) 

Control chart for Individuals is thus; 
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Where x  represents the mean and MR , the moving range average and d2is obtained from tables 

for constructing variables control charts [29]. 

 



 

K. Ezewu et al. / Journal of Materials Engineering, Structures and Computation 
3(2) 2024 pp. 31-41 

34 

 

 

2.3 Process Capability Indices 

 

Three capability indices the Cp, Cpk, and Cpm are widely utilized in the manufacturing sector[1], 

[2]. They are presented as follows and offer numerical metrics to evaluate how well a production 

process satisfies preset specification limits: 
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Where LSL is the lower specification limit, USL the upper specification limit, T represents the 

target value and σ stands for the process standard deviation which also represents the process 

variability. The Capability indices of interest and their associated quality condition is displayed in 

Table 1. 

 

Table 1. Capability Indices of interest and their quality conditions. 
Index Usage Associated Quality Condition 

Cp When the process mean is ideally centered between the 

required specification boundaries, this index calculates 

the process yield[2]. 

 

Cp 2.2 Has 6 sigma quality 

Cp > 1.33 Satisfactory 

1<Cp<1.33 Partially adequate 

Cp = 1 0.27% nonconforming 

0.67<Cp<1 Not Adequate 

Cp < 0.67 Not adequate and 

requires serious 

modification. 

Cpk This measures the actual capability of the process as this 

indices takes into account how far from the center the 

process is operating[2], [30]. 

2.00 ≤ Cpk Super 

1.50 ≤Cpk≤2.00 Excellent 

1.33≤Cpk≤1.50 Satisfactory 

1.00≤Cpk≤1.33 Capable 

Cpk≤1.00 Inadequate 

Cpm These indices is similar to Cp with the difference being 

that it estimates the capability of the process around the 

target value. The Cpm is also called the Taguchi 

capability index[7] 

The larger the Cpm is, the better the process 

is functioning and producing output within 

specification and near target and the quality 

condition associated with Cp also applies. 

  

 

 

3.0  Results and discussion 

The dimensions of cut-out rods from machines A and B were collected using a digital Vernier 

caliper and are presented in Table 2(a) for machines A and Table 2(b) for machines B. The data is 

presented in five columns, and it is read downward, starting from the first column to the fifth 

column for both machines A and B, respectively. 
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Table 2(a). Rod Length (Machine A)  Table 2(b). Rod Length (Machine B) 

MACHINE A  MACHINE B 

40.59 40.46 40.56 40.89 40.50  40.87 40.49 39.90 40.40 41.05 

40.22 40.39 40.32 40.86 39.73  41.62 39.92 39.56 40.78 40.50 

39.42 40.40 40.23 40.04 40.16  39.74 41.50 40.27 40.20 39.53 

39.33 41.07 40.02 39.77 40.02  39.85 41.12 39.38 39.83 39.85 

39.85 40.03 40.40 40.43 40.76  39.90 40.07 41.06 40.78 40.95 

40.44 40.35 40.60 40.28 40.28  39.94 39.47 38.86 39.03 39.33 

40.06 39.89 40.50 40.44 40.30  40.18 39.71 41.23 39.08 40.30 

40.42 40.17 40.13 40.38 40.49  38.53 41.20 40.67 40.27 39.76 

40.43 40.75 40.54 39.92 40.06  39.60 41.36 40.24 39.89 40.79 

39.98 39.90 40.24 40.86 39.77  40.13 39.70 39.68 39.55 39.95 

40.71 40.06 40.77 40.06 40.73  39.59 39.56 40.56 40.82 40.17 

40.11 40.81 40.66 40.28 39.82  40.92 39.21 40.80 40.28 39.60 

40.32 40.14 40.70 40.12 40.46  40.65 39.08 40.40 39.65 40.99 

39.79 39.73 40.45 40.75 40.23  40.43 40.48 40.40 40.03 40.76 

39.41 40.52 40.18 39.91 40.28  39.90 39.56 39.93 40.61 39.58 

40.25 39.64 40.11 40.13 40.06  40.55 40.82 39.41 39.72 40.91 

40.00 40.81 40.27 40.84 40.02  40.78 41.43 40.29 40.00 39.96 

40.02 40.28 40.11 40.54 40.21  39.38 39.35 40.69 40.68 41.01 

39.83 40.06 39.99 40.27 39.38  39.41 40.15 40.95 40.60 40.02 

40.21 39.94 40.14 40.77 40.28  40.82 40.51 41.28 39.89 40.72 

 

 

3.1 Capability analysis for machine A 

To test for normality, the probability plot for the data set obtained from machine A is presented in 

Figure 2. From the probability plot, the cut rods have a mean of 40.25mm, an Anderson Darling 

test statistic of 0.322, a standard deviation of 0.3571, and a p-value of 0.524 (significance level α 

= 0.05), which shows that the data set is normally distributed. 
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Figure 2. Probability plot for cut rod from machine A. 

To investigate the stability of the rod cutting process from machine A, the I-MR chart displayed 

in Figure 3 shows that the dimensions of the cut rods are stable and well within three standard 

deviations from the mean, showing that the data is statistically under control with a lower and 

upper control limit of 39.16mm and 41.33 mm, respectively. 

 
Figure 3. I-MR chart for chopped rod (Machine A). 

 

The process capability indices for machine A shown in Figure 4, gives us a potential Cp of 1.84, 

a Cpk of 1.62, an overall Cpm of 1.54. and a PPM total of 0.46. 
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Figure 4. Capability Analysis report for Machine A. 

 

3.2 Capability Analysis for Machine B 

The probability plot for Machine B output shown in Figure 5, gives us a mean length of 40.21mm, 

a standard deviation of 0.6522, and a P-value of 0.220 (significance level α = 0.05), implying that 

the dataset is normally distributed. 

 
Figure 5. Probability plot for cut rod from machine B. 

 

To test the stability of the Machine B rod cutting process, we deployed the individual and moving 

range charts shown in Figure 6. The dimensions are found to be all within three standard deviations 

from the mean; hence, we consider the cutting process stable. 
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Figure 6. I-MR Chart for chopped rod (Machine B) 

The process capability indices for machine B shown in Figure 7, for the potential within status 

give a Cp of 1.00 and a Cpk of 0.90. It is observed that the Cpk value is less than the Cp value; 

hence, the process is a little off-centered, the Cpk quality condition is inadequate, and there is an 

expected overall PPM Total of 3365.22. 

 

 
Figure 7. Capability analysis report for Machine B 

 

3.3 Comparative analysis of the process parameters between Machine A and Machine B. 

The process mean and standard deviation for Machines A and B, extracted from Figure 2 and 

Figure 5 and presented in Table 3, show that Machine B is operating a little closer to the mean 

(40.00mm) than Machine A, with a process mean of 40.21mm. Machine A has superior variability 
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with a much lower process standard deviation of 0.3571 when compared to that of machine B 

(0.6522). Taking a look at the I-MR charts to investigate process stability, presented in Figure 3 

for machine A and Figure 6 for machine B and also presented in Table 3, Both processes are found 

to be stable. However, the Upper Control Limit (UCL) for Machine B (42.208mm) is outside the 

Upper Specification Limit (USL) of 42.00mm, while both the Lower and Upper Control Limits 

for Machine A (39.163mm and 41.332mm) are well within the desired Lower and Upper 

Specification Limits of 38.00mm and 42.00mm. The process capability indices of interest given 

in Figure 4 and Figure 7 for machines A and B, respectively, have been extracted and presented in 

Table 3. It can be observed that the capability indicators Cp, Cpk, and Cpm for Machine A are all 

higher than those of Machine B. Finally, in terms of parts per million out of specification expected, 

Machine A has a total of 0.46 parts per million, which informs us that 0.46 parts per million are 

expected to fall outside our desired specification limits, while Machine B has 3365.22 parts per 

million in total, falling outside the specification limits. 

Table 3. Presentation of key process parameters of interest. 
Key process parameters Machine A Machine B 

Process Mean 40.25mm 40.21mm 

Process Standard Deviation 0.3571 0.6522 

(LCL, UCL)mm (39.163, 41.332) (38.21, 42.208) 

Cp 1.84 1.00 

Cpk 1.62 0.90 

Cpm 1.54 0.98 

PPM (Total) 0.46 3365.22 

 

These PCIs have indeed confirmed their ability to reveal how efficiently a manufacturing process 

functions [2], [22], [30] by revealing the abilities of Machines A and B and will enable users to 

understand how to deploy them in service based on the tolerance limits they are capable of working 

within and, in the process, help reduce scrap [9]. Whenever tolerance limits greater than ±2mm 

are required, machine B can be put in service, and when the limits are tighter, machine A can be 

used to cut elements required for construction or manufacturing. This will help improve the 

precision of the elements required and also reduce scrap generation.  

 

 

4.       Conclusion 

 

This study emphasizes how crucial it is for manufacturing companies to conduct capability studies 

on their equipment before usage for improved precision and scrap reduction. This case study was 

carried out in a manufacturing/construction company and examined using the Cp, Cpk, and Cpm 

indices by carrying out a comparison between two machines to test their ability to produce 

elements within a specified tolerance limit, which will impact positively on the finished product. 

The investigation and validation of the cutting process for both equipment were tested for stability 

using the I-MR chart, and the normal distribution of the cutting process was confirmed using 

probability plots, which is a requirement for process capability studies [9]. The process capability 

indices for machine A were all superior to those of machine B, which informs us that for a given 

tolerance limit, machine A has superior precision and will yi eld much less scrap than machine B. 

However, machine B can also be used satisfactorily when much wider tolerance limits are 

acceptable for the job being carried out. 
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