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 In this study, Central Composite Design (CCD) was used to 

develop a Design of Experiment (DOE) for predicting thermal 

conductivity, allowing for the selection of weld input variables 

based on the ranges found in literature. The TIG welding input 

variables employed were the welding current, with values ranging 

from 199.77-250.23A, voltage ranging from 20.98-26.0 V, and gas 

flow rate spanning from 11.98-16.0 L/min. The design matrix 

deployed had six (6) centre points, six (6) lateral points, and eight 

(8) factorial points resulting in twenty (20) experimental runs. 

Thermal conductivity generated by DOE was computed using the 

neural network computing technique within the most suitable 

range. Thermal conductivity was shown to be influenced by the 

procedure's input variables, including welding electrical current, 

electrical voltage, and gas circulation rate, for both experimental 

and ANN simulations. The coefficient structure of the regression 

curve revealed R = 0.9919 for training progress, R = 0.8982 for 

verification outcomes, and R = 0.9979 for training validation 

development. This resulted in a broader Pearson correlation 

coefficient (R) of 0.8768, demonstrating the reliability of ANN for 

determining the proportion of weld dilution. The artificial neural 

system (ANN) model was utilized to estimate its value of proportion 

dilution employing identical parameters as inputs derived from the 

central composite design to assess the accuracy of the network it 

had been trained on 
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1. Introduction 

Tungsten Inert Gas (TIG) welding also referred to as Gas Tungsten Arc Welding (GTAW) uses non-

consumable electrodes to generate an arc suitable for agglutinating two or more metals together, 

while being shielded by inert gas such as argon or helium to protect the molten weld pool from 

atmospheric contaminants [1, 2]. Therefore, the tendency of atoms to bond is the fundamental basis 

of welding [3]. However, the selection of proper input variables to obtain the desired output response 
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has always been a topic of concern, not only in TIG welding applications, but in general welding 

techniques, as improper input variables can affect the overall weld quality. In recent times, a number 

of techniques have been employed in the selection of welding input variables. Some of the 

techniques for selecting proper welding variables is by optimization of the process parameters, using 

conventional numerical techniques, algorims, statistical design of experiment as well as 

computational networks such as Artificial Neural Network (ANN), fuzzy logic [4, 5]. 

 

Using hybrid fuzzy deep neural network, Kesse et al. [6] developed an Artificial Intelligence (AI) 

based TIG welding algorithm for the prediction of bead geometry for TIG welding processes. The 

AI TIG welding method was used to simulate a sample set that was used experimentally. Comparing 

the findings to the data collected during the experiment, the results demonstrated a 92.59% predicted 

accuracy. 

 

Mechanical properties of Ni-base super alloy grade GH99 as employed by Korat and Sama [7] was 

agglutinated by GTAW technique. AI based algorithm was employed for predicting the GTAW 

input variables which included welding speed, current and impulse frequency as well as the output 

response such as tensile strength, yield strength and elongation. ANN was trained with feed-forward 

back propagation learning algorithm to simulate and optimize the sequence for quality weld joints. 

There was significant correlation between the predicted and experimental output results, which 

indicated that ANN can be utilized as an effective tool for computing TIG welding condition. 

 

Saldanha et al. [8] analysed weld-bead and heat affected zones (HAZs) in TIG welding using 

artificial neural networks. Data used in the ANN training sequence and the feed-forward neural 

networks with back propagation training technique were collected via the design of experiments 

(DOE). Results of the ANN output response showed low error in both memorization and 

generalization capability, indicating that ANN is an effective tool for developing accurate models 

for welding process. Ohwoekevwo et al. [9] modelled and predicted the percentage dilution in AISI 

1020 low carbon steel welds produced from tungsten inert gas welding using Artificial Neural 

Networking (ANN) approach. The regression determined exhibited R of 0.9992 as the training test 

outcomes, R of 0.99865 being the evaluation progress, and R of 0.85285 as the training test progress. 

This resulted in a total Pearson correlation coefficient (R) of 0.90007, showing that ANN is an 

effective approach for estimating the extent of weld dilution. There was correlation in the 

experimental and ANN results, as coefficient of determination (r2 value) of 0.9876 was obtained. 

 

The mechanical properties (Ultimate Tensile Strength (UTS), modulus of elasticity (E), elongation 

and strain (e) for twenty samples of AISI 4130 Low carbon steel plate were modelled and optimized 

by Owunna et al. [10], using ANN approach and TIG welding technique. There was proximity 

between the ANN predicted and experimental results which were generated for twenty (20) weld 

runs. 

 

Regression analysis was carried out by Kumar and Saurav [11] based on full factorial DOE and 

forward-reverse modelling by controlling the five welding processes such as welding speed, wire 

feed rate, percentage of cleaning, work-piece to electrode gap and welding current using ANN. It 

was observed that the regression analysis predicted the responses accurately in some test scenarios, 

however, the present model could not be revised to the former. However, back propagation neural 

networks predicted the responses accurately and produced better results.  

 

Regression analysis was carried out by Dutta and Pratihar [5] based on full factorial DOE and two 

ANN based methodologies (back-propagation algorithm and genetic-neural system). This was 

followed by comparing the methodologies after testing their performances on 36 test cases that were 



 

Ohwoekevwo, J. U et al / Journal of Materials Engineering, Structures and Computation 
2(3) 2023 pp. 92-105 

94 

 

randomly developed. For the test scenarios, it was shown that both ANN-based approaches were 

more adaptable than traditional regression analysis. For instance, the Genetic-neural (GA-NN) 

system was observed to outperform the backpropagation neural network (BPNN) in most of the test 

cases. Initially, slightly better performance was observed for BPNN compared to the genetic-neural 

system initially, but significant improvement was later recorded for the genetic-neural system after 

about 60,000 iterations. 

 

Tomaz et al. [12] employed a five-factor five-level central composite design (CCD) matrix to 

conduct GTAW experiments. Two tubular wires were made from UTP AF Ledurit 60 and UTP AF 

Ledurit 68, with AISI 1020 steel blank serving as the substrate. In order to establish the ideal welding 

settings and simulate the GTAW process, the ANN algorithm was used in combination with a 

genetic algorithm (GA). Optimal welding parameters such as welding current of 222 A, welding 

speed of 25cm/min, nozzle deflection distance of 8 mm, travel angle of 25° and wire feed pulse 

frequency of 8 Hz were obtained, with R2 of all the data higher than 0.65. 

 

Abhulimen and Achebo [13] employed ANN in the prediction and optimization of TIG weld 

parameters of mild steel pipes. The Levenberg-Marquardt method and the feed-forward back 

propagation learning technique were used to create the neural network model. The obtained neural 

network model was shown to predict tensile and yield strength with a mean square error of 34.2, 

maximum and minimum absolute errors of 22 MPa and 0.09 MPa, according to the results. With 

generated average absolute variance of 15.35% and calculated average percentage error of 3.5, the 

largest and lowest relative errors were 18% and 0.02%, respectively. 

 

Reference from various literature in this study revealed that several welding mechanical properties 

have been predicted accurately using ANN approach, but the prediction of thermal conductivity 

using this approach is still a gap yet to be filled, considering that very little have been done in that 

area. In this study, backpropagation neutral network based modelling and optimization of thermal 

conductivity of mild steel welds agglutinated by TIG welding technique have been employed to 

examine the correlations and accuracies, and possibly determine its effectiveness for application in 

actual case scenarios.  

 

2. Materials and Method 

Ten millimetre (10 mm) plate was obtained from Universal Steel Rolling Mill, Ogba-Ikeja, Lagos, 

Nigeria, and analysis for mechanical properties and chemical composition, which revealed that the 

material is AISI 1020 low carbon steel was determined in the same company using the mass 

spectrometer. The mechanical properties and composition of AISI 1018 mild steel plate are 

presented in Table 1.  

Table 1: Properties and composition of AISI 1020 mild steel plate 

Mechanical properties  Chemical compositions  

Melting Point 1738 K C 0.094±0.043 

Thermal expansion coefficient 1.5e-005 /Kelvin Si 0.210±0.043 

Yield strength 351.571 N/mm^2 Mn 0.310±0.73 

Tensile strength 420.507 N/mm^2 P 0.056±0.40 

Elastic modulus 200000 N/mm^2 Cu 0.094±0.109 

Poisson's ratio 0.29 Al 0.002±0.004 

Mass density 7900 g/cm^3 S 0.022±0.114 

Shear modulus 77000 N/mm^2 Cr 0.214±0.073 
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For twenty (20) samples, the 10 mm steel plate was cut into 60x40x10 mm (long x width x width) 

dimensions as indicated in Figure 1. Before welding the samples, the surface of the specimen was 

smoothed and the rust was removed using Emery paper (coarse: P24 grit size with 715 m and fine: 

P80 grit size with 201 m). The surface of the samples to be welded was then cleaned with acetone 

to remove any surface contaminants.  

 

Figure 1. AISI 1020 low carbon steel plate with 10 mm thickness 

The welding specimen (workpiece) was fastened to a G-clamp and chamfered (2 mm depth) with 

45 degrees at the outermost point to create a V-groove angle using a vertical milling machine. A 

vertical milling machine was used to provide the milling angle. In order to avoid distortion during 

the welding process, the plates were securely secured during welding. The plate's chamfered area 

was TIG welded, and the chaffered area was filled with a 2% thoriated tungsten electrode. In order 

to safeguard the welding area from impurities, this was accomplished by using a Dynasty 210 DX 

welding machine and 100% Argon as the torch gas. Owunna et al.'s [14] research investigating the 

utilization of SEM/EDS in fractographic investigation of TIG welded AISI 1020 fusion zones at 

distinct welding current steps and Owunna and Ikpe's [15] study on the hardness characteristics of 

AISI 1020 low carbon steel weldments made by tungsten inert gas welding both used a similar 

methodology. Table 2 presents the TIG welding parameters used during the welding procedure, and 

Figure 2 displays examples of the steel plates that were welded. 

 
Figure 2. Mild steel welded samples 
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Table 2: Material specifications and welding parameters 

S/N Material Specification   Welding Parameters 

i.  Welding Type  GTAW 

ii.  Work piece  AISI 1020  

iii.  Work piece Thickness 10 mm approx 

iv.  Spec of Filler-material ER 70 S-6 

v.  Joining type V-groove 

vi.  Joining Preparation Abrasive Clean  

vii.   Gap of joint dimension 2 mm approx 

viii.   Current D.C.E.N (Direct Current Electrode Negative) 

ix.  Width(wrt pulse) 0.8 Seconds 

x.  Filler *Rod Angle* 15o 

xi.  Torch Angle 45o 

xii.  Frequency(@fixed) 60Hz fixed 

xiii.  Torch spec TIG Torch 

xiv.  Tungsten spec 2% thoriated 

xv.   Size of Tungsten 3/1326” (Diameter x 25.4 mm) 

xvi.   Gas used Argon  

xvii.  Heat Input  10.75 KJ/min approx 

xviii.  Mass of Filler Rod 78.5 Kg/m2 

xix.  Designated Machine Dynasty 210 DX 

xx.  Work piece Clamp G-clamp  

xxi.  Vertical milling Type V-groove angle operations 

 

The welding temperature was measured at several spots along the workpiece's surface using K-type 

thermocouples as the arc traveled through it. Additionally, the welding flame moved across the plate 

at a constant speed of 1.72 m/s while being 2.5 mm away from the workpiece. To prevent any 

systematic mistake in the experiment, the welding trials were conducted in accordance with the 

Central Composite Design Matrix (CCD) in Table 3 and in a random sequence. Design of 

Experiment (DOE) was employed to generate the data required by applying specific experimental 

limits, while also using numerical computational sequence to predict the response at any given point 

within the experimental boundaries.  

Table 3: Central composite design matrix (CCD) 

std Weld 

Runs 

Block Current Voltage  Gas flow Rate 

12 1 Block 1 250.23 23.5 13.5 

16 2 Block 1 225 26 14.5 

10 3 Block 1 250.23 24.5 14.5 

19 4 Block 1 240 25 16 

6 5 Block 1 225 25 16 

13 6 Block 1 240 20.98 13.5 

9 7 Block 1 199.77 24.5 13.5 

18 8 Block 1 210 25 16 

15 9 Block 1 199.77 26 11.98 

14 10 Block 1 250.23 20.98 13.5 

3 11 Block 1 240 22 11.98 

11 12 Block 1 225 24.5 11.98 

5 13 Block 1 210 22 16 

7 14 Block 1 199.77 23.5 14.5 

20 15 Block 1 210 20.98 14.5 

8 16 Block 1 225 22 13.5 

2 17 Block 1 199.77 26 11.98 

17 18 Block 1 240 20.98 13 

4 19 Block 1 210 22 16 

1 20 Block 1 250.23 22 11.98 
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According to the ASTM E1530 standard, the DTC 300 is a guarded heat flow meter that measures 

thermal conductivity across a wide temperature range. It used one calorimeter module for measuring 

thermal conductivity in the bottom stack (using three user-interchangeable stack modules) and a 

side guard furnace for edge heat retention. To reduce contact resistance at the sample surfaces, a 

pneumatic load was applied to the sample and test stack together with a thermally conductive 

interface material. The DTC 300 (see Figure 3) is perfectly suited for measuring thermal 

conductivity because of its adaptability and broadened analytical range. 

 

 
Figure 3. DTC 300 equipment for measuring the weld thermal conductivity 

 

2.1. Prediction of Thermal Conductivity Using ANN 

Artificial neural networks (ANN) are computational tools designed to simulate a set data for 

performing specific tasks such as data classification and pattern recognition. Neural networks 

consist of input, output and hidden layers of units that transverses the input into ideal data that the 

output layer can use. 

 The Algorithms work well for discovering trends that are too complicated for human developers to 

understand and feeding them to systems for recognition. In order to get the best possible set of 

values, neural network models are thought of as straightforward computational models that describe 

a function by modifying parameters, connexion weights, or the kind of architecture, such as the 

number of neurons or their connections. Each artificial neuron's results is calculated through a 

nonlinear variation in the sum of its inputs, and each artificial neuron's signal at each point of 

connection between them is a real number. 

'Edges' are the connections between artificial neurons. Artificial edges and neurons frequently have 

a weight that changes as learning advances. Artificial neurons could have a threshold that must be 

crossed in order for the signal to be transmitted. Signals move from the first layer, known as the 

input layer, to the last layer, known as the output layer, perhaps after passing through the layers 

more than once in order to transform the input data into the necessary set of information. 

The Feedforward Multilayer Perceptron (MLP) design, in which data only flows in one way from 

input to output, is the ANN classifier used in this work. As seen in Figure 4, an MLP is made up of 

layers of processing units connected by weighted connections in a directed graph. The input 

variables, such as spectral bands and output classes, are comprised of the first and last layers. The 

internal depiction of neuronal pathways is provided by the intermediate layers, sometimes referred 

to as hidden layers. 
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Figure 4. Profile of conventional neural network layout 

 

 The researchers who trained the network may then assign identifiers to the output and utilize 

backpropagation to fix any errors found both during and after the process. A built-in tool in 

MATLAB called the ANNs Toolbox offers functions and applications for modeling robust and 

complicated nonlinear situations that are difficult to represent using traditional techniques. A 

predictive model, such as an artificial neural network (ANN), was used in this study to predict the 

response variables outside the realm of experimental. Using a feed forward back propagation 

approach, a neural network for forecasting thermal conductivity was trained. 

The output layer employs the linear (purelin) transfer function, but the input layer of the network 

uses the hyparbolic targent (tan-sigmoid) transfer function to compute the layer output from the 

network input (Owunna and Ikpe, 2019). The mean square error of regression (MSEREG) was used 

to track network performance, with the number of hidden neurons set at 10 per layer. An analysis 

update interval of 500, a learning rate of 0.01, a momentum coefficient of 0.1, a goal error of 0.01, 

and a maximum training cycle of 1000 epochs were all employed. 

The training, validation, and testing data sets were separated from the input data during the network 

creation process. In this study, 60% of the data was utilized for network training, 25% for network 

validation, and the remaining 15% was tested for network performance. An ideal neural network 

design was created using these methods, and since the same input variables were used, the same 

network architecture was created to predict the output response variables (thermal conductivity). 

The network setup interphase for this study's prediction of thermal conductivity is shown in Figure 

5. Figure 5 depicts the neural network establishing interphase for predicting weld variables, which 

served as the foundation for the neural network's design setting interphase. 

 
Figure 5. Network settings interphase for predicting thermal conductivity 
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Figure 5 shows the the default setting on ANN interphase, the feed forward backprop was chosen 

amongst other network type to yield the best results.  Current, voltage and gas flow rate information 

in Table 2 were trained in ANN to predict the output response (thermal conductivity). Figure 6 

presents the designed architecture for the neural network used to predict thermal conductivity. 

Figure 7 present the command button used for training the network. The input and targets are the 

factors and responses needed to predict, the output and errors are the results from the ANN trained 

prediction exercise. 

 
Figure 6. Artificial neural network architecture for predicting thermal conductivity 

 
Figure 7. ANN training/retraining environment for thermal conductivity 

Figure 8 present the neural network diagram for predicting the thermal conductivity. The Epoch 

training process undertook 13 iterations at a performance range of 1.34 with a validation check of 

1. 
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Figure 8. Network training diagram for predicting thermal conductivity 

The trained network's performance curve is shown in Figure 9. At epoch 12, the highest possible 

validation outcome was attained. The iteration procedure employed a total of 13 epochs, with epoch 

12 being the best overall with the best validation performance of 46.3052 

 

 

Figure 9. Performance curve for trained network to predicting thermal conductivity 
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3. Results and Discussion 

Figure 10 displays the training state, which displays the gradient function, the training gain (Mu), 

and the validation check. There was no indication of excessive combining from the execution of the 

plot. Additionally, a similar tendency was seen in the training, validation, and testing curve 

behavior, which was to be expected given that the initial data set had already been normalized before 

usage. A key metric used to assess a network's training accuracy is lower mean square error. Figure 

10 depicts the training state, which includes the slope function, training gain (Mu), and validation 

check for the percentage of weld thermal conductivity. It demonstrates that there were 13 training 

epochs. The association between the welding input parameters (welding current, voltage, and 

welding gas flow rate) and the expected result response (thermal conductivity) is displayed in the 

regression figure as seen in Figure 11. 

 
Figure 10. Neural network gradient plot for predicting thermal conductivity 

Figure 11 present the training with correlation coefficient of 0.99195, validation with correlation 

coefficient of 0.89827 and testing with correlation coefficient of 0.99795 to give an overall 

correlation coefficient (R) of 0.87684 which signifies a robust prediction for the thermal 

conductivity.  The network has been effectively trained, and may be utilized for projecting the 

thermal conductivity beyond the realm of testing, according to computed values of the correlation 

coefficient (R) as seen in Figure 11. 
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Figure 11. Plot of training (Regression plot) cum validation and testing for thermal 

conductivity 

Using the same set of input parameters (electrical current with respect to welding operations, 

voltage, welding and gas flow rate) derived from the core composite design, the network was then 

used to anticipate its own values for percentages of weld thermal conductivity in order to assess the 

network's dependability.  A regression plot of outputs was then created and can be shown in Figure 

12 based on the observed and projected values for thermal conductivity. 

 

 
Figure 12. Plot of observed values with respect predicted thermal conductivity 

Figures 12 illustrate the 0.9884 coefficient of determination (R2) value that was attained. It was 

concluded that the trained network can be utilized to forecast the weld thermal conductivity beyond 

y = 1.0846x - 9.2186
R² = 0.9884
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the experimental limit because the R2 value was near to 1. The link between the experimental and 

ANN projected findings for thermal conductivity is shown in Table 4. 

Table 4: ANN predicted results for thermal conductivity 
Weld 

runs 

Current Voltage  Gas flow 

rate 

EXP thermal 

conductivity 

(W/m.k) 

ANN predicted thermal 

conductivity (W/m.k) 

1 240 20.98 13.5 70.75 68.75 

2 210 22 16 68.73 65.74 

3 250.23 23.5 13.5 81.75 78.74 

4 210 25 16 66.76 64.74 

5 250.23 20.98 13.5 79.75 76.04 

6 210 20.98 14.5 63.75 60.74 

7 225 24.5 11.98 74.20 71.75 

8 210 22 16 72.65 69.74 

9 225 26. 14.5 78.23 76.74 

10 225 25 16 73.0 70.69 

11 199.77 23.5 14.5 71.75 67.75 

12 210 22 16 59.75 55.68 

13 250.23 24.5 14.5 77.75 74.83 

14 199.77 26 11.98 58.8 55.61 

15 250.23 22 11.98 78.72 75.74 

16 225 22 13.5 57.75 51.74 

17 199.77 26 11.98 55.84 49.99 

18 240 25 16 76.69 73.74 

19 240 20.98 13 71.78 67.69 

20 199.77 24.5 13.5 63.75 59.96 

 

Artificial neural networks (ANNs) were used as a predictive model to forecast response variables 

outside the realm of investigation. For the neural network modeling, sixty (60) experimental data 

were produced by copying the design matrix from the CCD. Prior to normalization, the experimental 

data were checked for weight variation, which could lead to overexertion. The correlation between 

the input variables (voltage, current, and gas flow rate) and the objective variable (thermal 

conductivity) is depicted in the regression plot.  

The network was used to forecast its own value of thermal conductivity using the same input 

parameters derived from the central composite design in order to assess the trained network's 

dependability. A regression plot of outputs was subsequently created and is shown in Figure 12 

based on the recorded and projected values of thermal conductivity. R2 values of 0.9884 for the 

coefficient of correlation are shown in Figure 12. According to the best numerical optimization 

using ANN, welding material with an average thermal conductivity of 49.99 W/m.k and an R2 value 

of 0.9884 was generated at a current of 199.77 amps, voltage of 26 volts, and gas flow rate of 11.98 

L/min. 

 For the same category of experimental welding inputwelding input, minimum thermal conductivity 

of 55.84 W/mk was obtained. Considering the optimal solution for input variables responsible for 

the predicted output response, this comparably indicated a difference of 5.85 W/m.k between the 

predicted and the experimental. The present study has succeeded in developing, predicting and 

optimizing welding input variables for better weld quality. Applying welding inputs such as welding 

current ranging from 199.77-250.23 A, voltage ranging from 20.98-26.0 V and gas flow rate ranging 

from 11.98-16.0 L/min, the experimental results and results obtained from AAN models developed 

for twenty welding runs to determine thermal conductivity was also obtained. Both experimental 

and ANN results graphically maintained the same trend as shown in Figure 13.  
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Figure 13. Series plot showing the prediction accuracy of ANN in comparison to 

experimental for thermal conductivity 

4. Conclusion  

In this study, back propagation neutral network based modelling and optimization of thermal 

conductivity of mild steel welds Agglutinated by Tungsten Inert Gas welding technique was 

successfully employed. It was observed that application of ANN was able to predict the output 

welding response accurately beyond the boundaries of experiment capacity, with coefficient of 

determination (R2) value of 0.9884 for thermal conductivity. In practical sense, an increase in 

welding current will also lead to increase in thermal conductivity while voltage and gas flow rate 

will only produce moderate thermal conductivity. This is because the change in weld dilution and 

thermal conductivity of a welded joint is caused by the change in welding temperature gradient 

which is a function of welding current and material thermal cycle across the weldment and heat 

affected zone. However, this was not the exact case, as the combination of different welding input 

variables would interact with one another to produce weld quality that is different from the use of 

only one input variables. The interactions between welding parameters-the welding current with 

voltage can be observed to have a remarkable impact on the thermal conductivity, as high welding 

current and voltage input resulted in a high thermal conductivity, but can expose the material to 

thermally induced stress distortions at excessively high welding current and voltage. The study 

revealed that ANN is an effective tool that can be employed in the prediction and optimization of 

welding output responses particularly thermal conductivity which has been successfully 

demonstrated in this study.   

 

Nomenclature 

AI   Artificial Intelligence  

GA-NN                Genetic-neural 

GA   Genetic Algorithm 

SEM   Scanning Electron Microscopy 

MLP    Multilayer Perceptron 

DTC   Dutch Thermoplastic Component 

MSEREG   Mean Square Error of Regression 

MATLAB  Matrix Laboratory  

EXP   Experiment 

EDS   Energy Dispersive Spectroscopy 
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BPNN   backpropagation neural network 

ANN    Artificial Neural Network 

AISI         American iron and steel institute 

CCD   Central Composite Design 

DOE   Design of Experiment 

3D      Three dimension 
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