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In this paper, the bending attributes of a uniformly loaded three-

dimensional (3-D) plate are modelled using exact trigonometric shape 

functions; the effects of shear correction factors associated with refined 

plate theory (RPT) are obviated. As an advancement of the RPT theory, 

the equations of equilibrium of the current model were obtained from 

fundamental principles of elasticity by applying the three-dimensional 

(3-D) kinematic deformation and constitutive relations which results of 

the six stress components. The formulated 3-D kinematics and 

constitutive relations was used to obtain the energy equation which was 

later transformed into compatibility equation to determine the function 

of deflection and rotation The governing equations were obtained and 

solved in terms of trigonometry to get the exact deflection function of the 

plate. The rotation and deflection function were substituted into the 

energy equation to get the coefficients of deflection and rotation. 

Thereafter, these coefficients were substituted into the obtained 

displacement and stress equations to get the model for evaluating the 

bending of thick plates that was clamped on the first edge, free at the 

third edge, with the second and fourth edges simply supported 

respectively (CSFS). The recorded outcome confirms that the values for 

stresses and displacement obtained from this 3-D theory is more 

accurate and reliable compared to refined plate theories applied in 

previous studies. The overall average percentage differences between 

the present study and the studies by Onyeka (2021) and Gwarah (2019) 

for center deflection of a square plate was 4.8%. This showed about 95% 

confidence level for adoption of 3-D plate analogy which is required as 

the only reliable modeling theory for an exact bending solution of thick 

plates as unrealistic solutions are obtained from 2D shear deformation 

theories. 
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1. Introduction 

Thick plates are three-dimensional (3D) structural elements with extensive application in 

aeronautical, mechanical and structural engineering. [1-3]; due to their cost benefits, lightweight, 
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ability to be tailored to desired structural properties and load resistance characteristics [4]. In 

structural engineering, they are largely used in foundation footings, ship hulls, bulkheads, water 

tanks, spacecraft panels, bridge deck slabs, roof and floor slabs [5-7]. Analyzing the attributes and 

failure conditions of thick plates is necessary to ensure safer, more economical designs and to 

maximize their properties.  

The edges of thick plates have different boundary conditions which can be free, simply supported, 

or clamped. Plates can be circular, triangular, elliptical, skew or rectangular in shape. They can be 

orthotropic, anisotropic, or isotropic based on their material properties and deformation nature [8-

9]. Isotropic plates are plates with the same properties of the material at a point in all directions 

while anisotropic plates have different properties of the material at a point in all directions. When 

anisotropic plate consists of three mutually-perpendicular planes of symmetry with regard to its 

elastic properties, it is considered as orthotropic [10]. Plates are also categorized as thin, moderately 

thick, or thick according to their thickness [11-14]. The thick rectangular isotropic plate is 

considered in this study.  

Thick plates can be subjected to evenly distributed loads and transverse loads on the plates’ mid-

plane. A plate is considered to be of uniformly distributed load when it is subjected to an applied 

load at the boundary perpendicular to the mid-surface and distributed through the plate’s thickness 
[15]. The plates become elastically deformed as a result of these loadings. Without proper 

management, plate bending can result in structural failure. Hence, it is of paramount importance to 

study and analyze the bending of plates in order to obviate its failure. 

To analyze the bending of thick plates, series of theories such as the classical plate theory (CPT), 

refined plate theories (RPT), and three-dimensional (3D) elasticity theory; have been developed and 

employed. The CPT which is also known as the Kirchhoff plate theory [16], is the simplest plate 

theory. In CPT, transverse shear stresses along the thickness axis are not considered and are 

therefore not suitable for resolving thick plates. RPT comprises of the first-order shear deformation 

theory (FSDT) [17, 18] and the higher-order shear deformation theories (HSDTs) [19, 20].  

The continuous transverse shear stress along the plate thickness is considered in FSDT but it is 

inconsistent with the zero stress conditions on free surfaces, and for reliable results to be obtained, 

shear correction factor is applied. HSDTs were designed to overcome the use of correction factors 

and solve the issue of free surfaces.  Basically, the thick plate analysis is a three-dimensional 

problem and only approximations of the true 3-D equations of elasticity can result from 2-D refined 

plate theories [21-23].  

However, researchers did not do a lot of work on 3D thick plate analysis with a view to obtain the 

realistic expression for calculating the deflection and stresses of the plate through minimizations 

with respect to the rotations and deflection coefficients obtained as the result of the governing 

equation. This literature blank is worth completing and validates the necessity of this work.  

The study of the bending characteristics of thick plates can be accomplished through either 

numerical, analytical, energy approach or a blend of any [22, 24]. Numerical methods applied by 

different scholars in [25-27], often give approximate solutions to the plate bending problem and 

they include boundary element, finite difference, Galerkin, Ritz, Bubnov-Galerkin, Collocation, 

truncated double Fourier series and Kantorovich methods.    

Analytical methods as used in [15,28,29], solves the plate problems satisfying the support conditions 

of the plate in the governing equations with the various points of the surface of the plate. Method of 

integral transforms, methods of Eigen expansion, Naiver and Levy series are different forms of 

analytical method [30]. Energy method can be in analytical or numerical form, although its total 

energy is equivalent to the sum of all the strain energy and potential energy or external work on the 
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continuum [31]. This study employs an energy method in an analytical form to fix the bending of 

thick plates.  

An analytical improved plate theory is presented in this study for investigating the exact bending 

behavior of a three-dimensional plate under uniformly distributed load using trigonometric 

displacement functions and direct variation technique. Unlike most studies, this study considers the 

deflection, shear stresses along the x-y axis, x-z axis, y-z axis, the normal stresses along x, y, z co-

ordinates produced due to the applied load on the plate, and the in-plane displacement in the 

direction of x and y co-ordinates. The veracity of thick plate analysis, largely depends on the 

precision of the displacement functions and this is a major concern for engineers. Assumed 

displacement functions which often yield approximate solutions, have been used by most scholars 

to rectify the bending problem [32]. This study covers this gap in that its displacement function are 

exactly as they are derived from the governing equation using an analytical approach, including the 

application of trigonometric functions which offers a closer form solution than those of the 

polynomials [33, 34].   

 

1.2 Review of Previous Studies 

Shetty et al., [35] applied a simple plate theory in the third order displacement field, in which just 

one unknown variable displacement was used for absolute formulation of thick plates. Plates with 

simply-supported edges were considered in their study. Their result was corresponding to those of 

CPT and also consistent with the deflection outcome of FSDTs and HSDTs. But they failed to 

employ the 3D plate theory, which gives a close-form solution for typical three-dimensional thick 

plates. The authors also could not analyze thick plates with CSFS boundary condition.  

Bhaskar et al., [36] developed a finite element solution for bi-directional bending assessment of 

thick isotropic plates using MATLAB code based on a new inverse TSDT. The transverse shear 

deflection and rotating inertia effects were taken into account. The governing equations and 

boundary conditions of the theory was derived from dynamic version of the virtual work principle. 

When compared to other HSDTs, their model gave precise predictions of stresses and 

displacements. However, they failed to consider an analytical approach and CSFS thick plates. A 3-

D investigation was not captured in their analysis.  

RPT with exponential functions was used by Sayyad and Ghugal [37] to analyze the displacements 

and stresses of plates with the SSSS boundary condition. The results obtained were satisfactory 

compared with other refined plate theories even without using correction factors. A 3 D theory and 

trigonometric function were not engaged in their analysis. Their study did not take CSFS plates into 

consideration.  

Mantari and Soares [38] used HSDT to obtain a Navier-type analytical solution of the governing 

equations of simply supported plates under transverse bi-sinusoidal loads, with an assumption of 

variation for the mechanical features of the plates in the thickness axis.  Principle of virtual work 

was employed in their study and was verified to be accurate when compared with other shear 

deformation trigonometric theory. Plates with uniformly distributed loads and CSFS support 

conditions were not considered. Their study could not include all the stresses and strains in the plate 

as it neglected the strain and stress along the thickness direction, hence considered as an incomplete 

three-dimensional (3-D) analytical approach.  

Tash and Neya [39] utilized displacement potential functions to examine the bending of isotropic 

thick plates that are transversely simply supported, with thickness variations. The governing 

equations which were of quadratic and fourth order, were solved using a variable separation method 

with the exact support conditions satisfied. They verified their solution with the finite element 
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method and it proved satisfactory.  Trigonometric displacement functions were not employed and 

plates with CSFS boundary conditions were neglected.   

 

Based on Levy’s approach and two-variable RPT, Thai and Choi [40] obtained an analytical solution 

for the bending of thick rectangular plates with two simply-supported opposite edges and the other 

two edges having arbitrary edge conditions; satisfying the zero boundary conditions on the plates’ 
surfaces neglecting the shear correction factors. The predictions of CPT, FSDT, and TSDT was 

consistent with their results. Their solution is inexact as it failed to capture the entire stresses in the 

plate. There was no consideration for CSFS thick plates.  

Zhong and Xu [41] combined decoupling method to the modified Navier’s solution to study the 
bending behavior of thick plates with all edges clamped. The main governing equations applied in 

their study were based on Mindlin’s HSDT. The three coupled governing equations were modified 
to independent partial differential equations that can be solved individually employing a new 

function and analytic solutions were derived from the solutions of the decoupled equations. 

Although their approach does not need complex matrix derivations for calculating the coefficients, 

their solution is incomplete because of the absence of 3-D plate theory. Plates with CSFS boundary 

conditions were not addressed.  

Ghugal and Gajbhiye [42] conducted a bending study using RPT with Virtual work principle.  

Without using the shear correction factor associated with FSDTs, the shear and strain deformation 

effect was considered. Due to the analytical approach employed, closed-form solutions that are very 

close to exact 3-D solutions were obtained. The condition of the zero shear transverse stresses was 

satisfactory. Trigonometric functions and three-dimensional plate theory were not considered and 

plates with CSFS support conditions were not covered.  

Satisfying the zero-shear-stress condition on the plate surfaces, the displacements and stresses of a 

rectangular thick plate with different span-to-depth ratio was presented by Ibearugbulem et al. [43] 

using a variational method and the polynomial function. Their study could not include all the stresses 

in the plate and failed to apply trigonometric function. The authors didn’t cover plates with CSFS 
edge condition.  

Although Onyeka [44] adopted direct variation approach to present the effect of stress and load 

distribution analysis for plates with one clamped edge, free at the other and the two other opposite 

edges simply-supported (CSFS) using HSDT, trigonometric functions and three-dimensional plate 

theory were not considered. The author developed a model for calculating the critical lateral 

imposed load of the plate without considering all the stress components. This limitation was 

addressed in this study.  

Ezeh et al. (2018) [45] applied the direct variation energy approach to obtain displacement 

coefficients without the need for correction factor for CCCS and SSFS plates. They employed 2D 

theory with polynomial shape function for their analysis and their solutions were adequate compared 

with the outcome of previous papers. They failed to include CSFS plates and trigonometric function. 

All the six stress elements of the plate were not considered in their study.  

Onyeka and Okeke [23] used trigonometric shape functions and an exact 3-D plate theory to derive 

the exact displacement and stress solutions of a thick plate subjected to a uniform distributed load. 

The energy equation of the CCFC plate was formulated using the kinematics and three-dimensional 

constitutive relations for static elasticity theory, established on the general thick plate assumption. 

Plates with CSFS boundary condition were not taken into account.  
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The bending of SSSS 3-D thick plates was investigated by Ibearugbulem et al. [46] by means of 

analytical method with exact polynomial functions obtained from the governing equation. The total 

potential-energy functional was obtained with the six strains and stress components. When the 

values obtained from stress and deflection were set side by side with those of RPT, the coarseness 

of RPT for thick plate analysis, was divulged. Exact trigonometric function was not employed in 

their analysis and plates with CSFS support conditions were not covered.  

Onyeka and mama [21], Onyeka et al., [22], employed the variational technique using exact 

trigonometric function and 3D plate theory to analyze the bending behavior of thick plates.  In [21], 

SSSS plates were considered while [22] covered plates with CSCS support conditions. Both authors 

presented their numerical solution and compared the calculated values of deflection and stresses 

with CPT and 2D-RPT, which confirmed the inadequacy of these other theories for evaluation of 

thick plates. But they failed to address plates with CSFS boundary condition. 

Based on the 3-D theory of elasticity, Grigorenko et al., (2013) [47] employed a numerical approach 

to obtain the bending solutions of a thick plate. The method of spline collocation in two coordinate 

directions was used for their analysis. They determined the displacements and stresses in plates with 

clamped support conditions. Their numerical approach cannot evaluate the deflection value at any 

given point in the plate and they failed to take into account plates with CSFS edge condition.  

Prior studies have demonstrated that the displacement function used by most authors is assumed. 

The shape functions were not derived from the governing compatibility equation that was obtained 

from the first principle and this makes their makes their analysis unreliable. Erroneous assumptions 

as regards the kinematics of deformation were made by the 2-D theories (incomplete 3-D theory) 

used by previous researchers, which produced in exact solutions. Previous studies except [21, 22, 

46, 47], did not address exact 3-D models for the thick plate bending analysis. This gap is also 

addressed in this study.   

In this study, a 3-D plate theory was developed and applied in the thick plate carrying a uniformly 

distributed compressive load. The focus of this work is to study the exact 3-D bending analysis of 

thick rectangular plates clamped at the first edge, free at the third edge, with the second and fourth 

edges simply supported respectively (CSFS) by finding out the coefficient of deflection and shear 

deformation of the plate through the three governing equations developed using the direct 

variational energy method. 

2. Methodology 

2.1Model Formulation 

The research methodology of this study is presented by considering a rectangular plate in the Figure 

1 as a three-dimensional element in which the deformation exists in the three axis: length (a), width 

(b) and thickness (t). The analytical approach of energy method was used to obtain formulas for the 

analysis. The 3-D kinematics and constitutive relations for a static elastic theory of plate was used 

to formulate the governing equations which enables development of the formulae for the analysis. 
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Figure 1: An element of thick rectangular plate showing middle surface 

2.2 Kinematics 

The kinematics of the study was formulated by taking the assumption of the plate that the x-z section 

and the y-z section, is no longer normal to x-y plane after bendingThus, the 3-D displacement 

kinematics along x, y and z axis are obtained in line with the work of Onyeka et al. [2], as: 

𝑝 = 𝑧. ∅𝑥   (1) 𝑞 = 𝑧. ∅𝑦 (2) 

Given that:  𝑧 = 𝑘𝑡 (3) 𝛽 = a𝑡 (4) 

𝛾 = b𝑎 
(5) 

Thus, the six non-dimensional coordinates strain components were derived using strain-

displacement expression according to Hooke’s law and presented in Equation (6) - (11): 

𝑥 =  1a . 𝜕𝑝𝜕𝑢 
(6) 

𝑦 = 1aγ . 𝜕𝑞𝜕𝑣 
(7) 

𝑧 = 1t . 𝜕 ∪𝜕𝑘  
(8) 

𝑥𝑦 = 1a . 𝜕𝑞𝜕𝑢 + 1aγ . 𝜕𝑝𝜕𝑣 
(9) 

x 

a 

b 

z 

y 

t 
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𝑥𝑧 = 1a . 𝜕 ∪𝜕𝑢 + 1t . 𝜕𝑝𝜕𝑘 
(10) 

𝑦𝑧 = 1aγ . 𝜕 ∪𝜕𝑣 + 1t . 𝜕𝑞𝜕𝑘 
(11) 

 

2.3. Constitutive Relations 

The three-dimensional constitutive relation for isotropic material is given as: 

[  
   
εxεyεzγxzγyzγxy]  

   = 1
E [  

   
1 −μ −μ 0 0 0−μ 1 −μ 0 0 0−μ −μ 1 0 0 00 0 0 2(1 + μ) 0 00 0 0 0 2(1 + μ) 00 0 0 0 0 2(1 + μ)]  

   
[  
   
σxσyσzτxzτyzτxy]  

    
(12) 

The six stress components were obtained by substituting Equations 6 to 11 into Equation 12 and 

simplifying the outcome gave: 

𝑥 = [ ktγa ∗ 𝜕∅𝑦𝜕𝑣 + (1 − μ)  kta ∗ 𝜕∅𝑥𝜕𝑢 + 
1t ∗ ∂ ∪∂k ] E(1 + μ)(1 − 2μ) (13) 

𝑦 = [𝑘t ∗ 𝜕∅𝑥𝑎𝜕𝑢 + 𝑡 ∗ 𝜕 ∪𝜕𝑘 + (1 − 𝜇)kt𝛾𝑎 ∗ 𝜕∅𝑦𝜕𝑣 ] E(1 + μ)(1 − 2μ) (14) 

𝑧 = [𝑘t𝛾𝑎 ∗ 𝜕∅𝑦𝜕𝑣 + (1 − 𝜇)𝑡 ∗ 𝜕 ∪𝜕𝑘 + 𝑘t ∗ 𝜕∅𝑥𝑎𝜕𝑢] E(1 + μ)(1 − 2μ) (15) 

𝑥𝑦 = [kt𝜕∅𝑦𝑎2𝜕𝑢 ∗ kt2𝛾𝑎 𝜕∅𝑥𝜕𝑣 ] 𝐸(1 − 2)(1 + 𝜇)(1 − 2𝜇)  (16) 

𝑦𝑧 = [ 1𝑎2𝛾 𝜕 ∪𝜕𝑄 + ∅𝑦2 ] (1 − 2)𝐸(1 + 𝜇)(1 − 2𝜇) 
(17) 

𝑥𝑧 = [1𝑎 𝜕 ∪2𝜕𝑢 + ∅𝑥2 ] (1 − 2)𝐸(1 + 𝜇)(1 − 2𝜇) 
(18) 

2.4 Formulation of Energy 

The potential energy which is summation of all the external work done on the body of the material 

and strain energy generated due to the applied load on the plate is mathematically defined as: ∄ = ∈ −∋ (19) 

Given that; ∋ = 𝑤𝑎𝑏 ∩ ∫ ∫ ∁1010 𝑑𝑢 𝑑𝑣  (20) 
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And; ∈ = 𝑡𝑎𝑏2 ∫ ∫ ∫ (𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 + 𝜏𝑥𝑦𝑥𝑦 + 𝜏𝑥𝑧𝑥𝑧 + 𝜏𝑦𝑧𝑦𝑧)0.5−0.51010 𝑑𝑢 𝑑𝑣 𝑑𝑘  (21) 

Substituting Equations 22 and 25 into Equation 24 to get the energy equation as: 

∄ = Et3𝛾24(1 + μ)(1 − 2μ)∫∫[(𝜕∅𝑦𝜕𝑢 )2 (1 − 2)2  + 1𝛾 𝜕∅𝑥𝜕𝑢 ∗ 𝜕∅𝑦𝜕𝑣 + (1 − 𝜇)𝛾2 (𝜕∅𝑦𝜕𝑣 )21
0

1
0+ (1 − 𝜇)𝑡2 ∗ (𝜕 ∪𝜕𝑘 )2 𝛽2 + (1 − 2)2𝛾2 (𝜕∅𝑥𝜕𝑣 )2

+ 6(1 − 2)𝑡2 {𝑎2∅𝑥2 + (𝜕 ∪𝜕𝑢 )2 + 𝑎2∅𝑦2 + (𝜕 ∪𝜕𝑣 )2 1𝛾2 + 𝑎 (𝜕 ∪𝜕𝑢 ) 2∅𝑥+ (𝜕 ∪𝜕𝑣 ) 2𝑎 ∗ ∅𝑦𝛾 } + (𝜕∅𝑥𝜕𝑢 )2 (1 − 𝜇)] 𝜕𝑢𝜕𝑣 − 𝑤𝛾𝑎2 ∫ ∫ ∁𝑆 𝜕𝑢𝜕𝑣 1
0

1
0  

(22) 

2.5. Solution to the Equilibrium Equation 

The two compatibility equations were obtained by minimizing the total potential energy functional 

with respect to rotations in x-z and in y-z plane to give: Et3𝛾24(1 + μ)(1 − 2μ)∫∫[2(1 − μ) 𝜕2∅𝑥𝜕𝑢2  + 𝜕2∅𝑦𝜕𝑢𝜕𝑣 ∗ 1𝛾 + (1 − 2)γ2 𝜕2∅𝑥𝜕𝑣21
0

1
0+ (2a2𝑠𝑥 + 2a. 𝜕 ∪𝜕𝑢 ) 6(1 − 2)t2 ] 𝜕𝑢𝜕𝑣 = 0  

(23) 

Et3𝛾24(1 + μ)(1 − 2μ)∫∫[𝜕2∅𝑥𝜕𝑢𝜕𝑣 ∗ 1𝛾 + 2𝜕2∅𝑦𝜕𝑣2 ∗ (1 − μ)𝛾2 + 2 (1 − 2)2 𝜕2∅𝑦𝜕𝑢21
0

1
0+ (2a2∅𝑦 + 2a.𝛾 𝜕 ∪𝜕𝑣 ) 6(1 − 2)t2 ] 𝜕𝑢𝜕𝑣 = 0 

(24) 

The solution of the equilibrium differential equation gives the characteristics trigonometric 

displacement and rotation functions as presented in the Equation 25-27 as: 

∪= [1   𝑢   𝐶𝑜𝑠 (𝑢𝑐1)  𝑆𝑖𝑛 (𝑢𝑐1)] [𝑎0𝑎1𝑎2𝑎3] . [1   𝑣   𝐶𝑜𝑠 (𝑣𝑐1)  𝑆𝑖𝑛 (𝑣𝑐1)] [𝑏0𝑏1𝑏2𝑏3
] 

(25) 

∅𝑥 = 𝑐𝑎 . H0. [1   𝑐1𝑆𝑖𝑛 (𝑢𝑐1)  𝑐1𝐶𝑜𝑠 (𝑢𝑐1)] [𝑎1𝑎2𝑎3] . [1   𝑣   𝐶𝑜𝑠 (𝑣𝑐1)  𝑆𝑖𝑛 (𝑣𝑐1)] [𝑏0𝑏1𝑏2𝑏3
] 

(26) 

∅𝑦 = 𝑐𝑎β .𝐻0. [1   𝑢   𝐶𝑜𝑠 (𝑢𝑐1)  𝑆𝑖𝑛 (𝑢𝑐1)] [𝑎0𝑎1𝑎2𝑎3] . [1     𝑐1𝑆𝑖𝑛 (𝑣𝑐1)  𝑐1𝐶𝑜𝑠 (𝑣𝑐1)] [𝑏1𝑏2𝑏3] 

(27) 



 
Okeke Thompson Edozie et al. / Journal of Materials Engineering, Structures and Computation 

1(1) 2022 pp. 40-58 

48 

 

Considering a transversely loaded rectangular thick plate whose Poisson’s ratio is 0.3 under 
uniformly distributed load as shown in the Figure 2, the derived trigonometric deflection functions 

is subjected to a CSFS boundary condition to get the particular solution of the deflection functions 

is subjected to a CSFS boundary condition to get the particular solution of the deflection. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: CSCS Rectangular Plate 

Applying the initial conditions of the plate in Figure 2, the relationship between the displacement 

and shape function of the plate as: 

 ∪ = ∁.∩   (28) 

∅𝑥 = ℎ𝑎 . 𝜕∁𝜕𝑢 
(29) 

∅𝑦 = 𝑔𝛾𝑎 . 𝜕∁𝜕𝑣  (30) 

The in trigonometric form of the shape function of the plate after satisfying the boundary conditions 

is given as: ∁= (𝑆𝑖𝑛 𝜋𝑢). (𝐶𝑜𝑠 𝜋𝑣2 − 1) (31) 

Substituting Equation 28, 29 and 30 into 22, gives: 

∄ = Et3𝛾24(1 + μ)(1 − 2μ) [(1 − 𝜇)ℎ2𝑟𝑥  + 1𝛾2 [ℎ. 𝑔 + (1 − 2)ℎ22 + (1 − 2)𝑔22 ] 𝑟𝑥𝑦 + (1 − 𝜇)𝑔2𝛾4 𝑟𝑦+ 6(1 − 2)𝛽2 ([ℎ2 +∩2+ 2 ∩ ℎ]. 𝑟𝑧 + 1𝛾2 . [𝑔2 +∩2+ 2 ∩ 𝑔]. 𝑟2𝑧)− 2𝑞𝑎4𝑟𝑐 ∩𝐷∗ ] 

(32) 

Where: 

𝒗 

a 

b 

𝒖 O 

S 

C 

S 

F 
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𝑟𝑥 = ∫∫(𝜕2∁𝜕𝑢2)21
0

1
0 𝜕𝑢𝜕𝑣 

(33) 

𝑟𝑥𝑦 = ∫∫( 𝜕2∁𝜕𝑢𝜕𝑣)21
0

1
0 𝜕𝑢𝜕𝑣    (34) 

𝑟𝑦 = ∫∫(𝜕2∁𝜕𝑣2)21
0

1
0 𝜕𝑢𝜕𝑣  (35) 

𝑟𝑧 = ∫∫(𝜕∁𝜕𝑢)21
0

1
0 𝜕𝑢𝜕𝑣   (36) 

𝑟2𝑧 = ∫∫(𝜕∁𝜕𝑣)21
0

1
0 𝜕𝑢𝜕𝑣 

(37) 

𝑟𝑐 = ∫∫∁1
0

1
0 𝜕𝑢𝜕𝑣   (38) 

Minimizing Equation 32 with respect to ℎ gives: 12𝛾2 [𝑔 + ℎ(1 − 2)]𝑟𝑥𝑦 + ℎ𝑟𝑥(1 − 𝜇)  = −6(1 − 2)𝛽2[ℎ +∩]. 𝑟𝑧  (39) 

Minimizing Equation 32 with respect to 𝑔 gives: 12𝛾2 [ℎ + 𝑔(1 − 2)]𝑟𝑥𝑦 + (1 − 𝜇)𝑔𝛾4 𝑘𝑦 = + 6𝛾2 (1 − 2)𝛽2([𝑔 +∩]. 𝑟2𝑧) 
(40) 

Re-write the Equation (39) and (40) and simplifying to give: 

ℎ =∩ (𝑘12𝑘23 − 𝑘13𝑘22)(𝑘12𝑘12 − 𝑘11𝑘22) 
(41) 

𝑔 =∩ (𝑘12𝑘13 − 𝑘11𝑘23)(𝑘12𝑘12 − 𝑘11𝑘22) 
(42) 

Where; 

𝑘11 = (1 − 𝜇)𝑟𝑥 + 12𝛾2 (1 − 2)𝑟𝑥𝑦 + 6(1 − 2)𝛽2𝑟𝑧 
(43) 

𝑘12 = 𝑘21 = 12𝛾2 𝑟𝑥𝑦;  𝑘13 = −6(1 − 2)𝛽2𝑟𝑧 
(44) 

𝑘22 = (1 − 𝜇)𝛾4 𝑟𝑦 + 12𝛾2 (1 − 2)𝑟𝑥𝑦 + 6𝛾2 (1 − 2)𝛽2𝑟2𝑧  (45) 
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𝑘23 = 𝑘32 = − 6𝛾2 (1 − 2)𝛽2𝑟2𝑧 
(46) 

Minimizing Equation 32 with respect to ∩ gives: Et3𝛾24(1 + μ)(1 − 2μ) [6(1 − 2)𝛽2 ([2 ∩ +2ℎ]. 𝑟𝑧 + 1𝛾2 . [2 ∩ +2𝑔]. 𝑟2𝑧)]− 24𝑤𝑎4𝑟𝑐(1 + 𝜇)(1 − 2𝜇)Et3 = 0 

(47) 

(1 − 2)𝛽2Et3𝛾4(1 + μ)(1 − 2μ) {[∩ + ∩ (𝑘12𝑘23 − 𝑘13𝑘22)(𝑘12𝑘12 − 𝑘11𝑘22)] . 𝑟𝑧+ 1𝛽2 . [∩ + ∩ (𝑘12𝑘13 − 𝑘11𝑘23)(𝑘12𝑘12 − 𝑘11𝑘22)] . 𝑟2𝑧}= 𝑤𝑎4𝑟𝑐(1 + 𝜇)(1 − 2𝜇)𝛽3E  

(48) 

Factorizing Equations (48) and simplifying gives: ∩ 
= 2𝑞(1 + 𝜇)(1 − 2𝜇)𝛽3𝐸 { 𝑎𝑟𝑐(1 − 2) (𝑎𝑡)2 ([1 + (𝑘12𝑘23 − 𝑘13𝑘22)(𝑘12𝑘12 − 𝑘11𝑘22)] . 𝑟𝑧 + 1𝛽2 . [1 + (𝑘12𝑘13 − 𝑘11𝑘23)(𝑘12𝑘12 − 𝑘11𝑘22)] . 𝑟2𝑧)} 

(49) 

2.6 Exact Displacement and Stress Expression 

By substituting the value of ∩ in Equation 49 into Equation 28, the deflection equation after 

satisfying the boundary condition of CSFS plate is given as: ∪ = ∩ (𝑆𝑖𝑛 𝜋𝑢). (𝐶𝑜𝑠 𝜋𝑣2 − 1) (50) 

Similarly, the in-plane displacement along x-axis becomes: 𝑝
= (𝑘12𝑘23 − 𝑘13𝑘22)(𝑘12𝑘12 − 𝑘11𝑘22) { 12𝑞(1 + 𝜇)(1 − 2𝜇)𝛽2𝑘𝑟𝑐(1 − 2) (𝑎𝑡)2 ([1 + (𝑘12𝑘23 − 𝑘13𝑘22)(𝑘12𝑘12 − 𝑘11𝑘22)] . 𝑟𝑧 + 1𝛽2 . [1 + (𝑘12𝑘13 − 𝑘11𝑘23)(𝑘12𝑘12 − 𝑘11𝑘22)] . 𝑟2𝑧)} 1𝐸 𝜕∁𝜕𝑢 

(51) 

𝑝 = 12𝑞(1 + 𝜇)(1 − 2𝜇)𝛽2𝐸 ( 𝑘𝑀𝑟𝑐𝐿 ) 𝜕∁𝜕𝑢 
(52) 

Where; 

𝐿 = 6(1 − 2)𝛽2 ([1 + ℎ]. 𝑟𝑧 + 1𝛾2 . [1 + 𝑔]. 𝑟2𝑧) 
(50) 

𝑁 = (𝑟12𝑟23 − 𝑟13𝑟22)(𝑟12𝑟12 − 𝑟11𝑟22) 
(50) 

𝑀 = (𝑟12𝑟13 − 𝑟11𝑟23)(𝑟12𝑟12 − 𝑟11𝑟22) 
(50) 

Similarly, the in-plane displacement along y-axis becomes; 
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𝑞 = 12𝑞(1 + 𝜇)(1 − 2𝜇)𝛽𝐸 ( 𝑘𝑁𝑟𝑐𝐿 ) 𝜕∁𝜕𝑣 
(50) 

The six stress elements after satisfying the boundary condition are presented in Equations (57) – 

(62) as: 

𝑥 = E(1 + μ)(1 − 2μ) [ kβ . ∂2∁∂𝑢2  (1 − μ) + 𝛽4 ∗ 12𝑞(1 + 𝜇)(1 − 2𝜇)𝐸 ( 𝑟𝑐𝐿) ∂∁∂k + k𝛾𝛽 . ∂2∁∂𝑣2] (50) 

𝑦 = E(1 + μ)(1 − 2μ) [ kβ . ∂2∁∂𝑢2 + 𝛽4 ∗ 12𝑞(1 + 𝜇)(1 − 2𝜇)𝐸 ( 𝑟𝑐𝐿) ∂∁∂k + (1 − 𝜇)k𝛾𝛽 . ∂2∁∂𝑣2] (50) 

𝑧 = E(1 + μ)(1 − 2μ) [kβ . ∂2∁∂𝑢2 + (1 − 𝜇)𝛽4 ∗ 12𝑞(1 + 𝜇)(1 − 2𝜇)𝛽 ( 𝑟𝑐𝐿) ∂∁∂k + k𝛾𝛽 . ∂2∁∂𝑣2] (50) 

𝑥𝑦 = 𝐸(1 − 2)(1 + 𝜇)(1 − 2𝜇) . [ k2𝛽 . ∂2𝜕∁∂𝑢 ∂𝑣 + 𝛽2k2𝑎𝛾 . 12𝑞(1 + 𝜇)(1 − 2𝜇)𝐸 ( 𝑟𝑐𝐿) ∂2𝜕∁∂𝑢 ∂𝑣] (50) 

𝑥𝑧 = (1 − 2)𝐸(1 + 𝜇)(1 − 2𝜇) . [12 ∂∁∂u + 𝛽32 ∗ 12𝑞(1 + 𝜇)(1 − 2𝜇)𝐸 ( 𝑟𝑐𝐿) 𝜕∁𝜕𝑢] (50) 

𝑦𝑧 = (1 − 2)𝐸(1 + 𝜇)(1 − 2𝜇) . [12 ∂∁∂𝑣 + 𝛽32𝛾 ∗ 12𝑞(1 + 𝜇)(1 − 2𝜇)𝐸 ( 𝑟𝑐𝐿) 𝜕∁𝜕𝑣] (50) 

3. Results and Discussion 

This study has successfully combined the use of exact trigonometric functions, 3-D plate theory and 

direct variation approach to obtain the results of the non-dimensional values of displacements (w, 

u, and v), and stresses (σx, σy, τxy,  τxz, and τyz ) for a three-dimensional isotropic CSFS thick plate 

subjected to uniformly distributed load.  The effects of displacements and stresses on span-to-

thickness ratio of 5, 10, 15, 20, 25, 100 and 1000, are presented in Figures 3 to 6, at length-to-

breadth ratio of 1.0 and 2.0 respectively. To show the distinctiveness of this model, the outcome of 

the present study was compared with the results of same plate obtained by different scholars.  

Figures 3 and 4 shows the effect of increasing the span-to-thickness ratio (a/t) on the out-of-plane 

and in-plane displacements of the plate structure. It can be observed that the out-of-plane 

displacement values (w) decreased in the positive direction as the span-to-depth ratio increased. But 

the out-of-plane displacement values increased at each aspect ratio as the length-to-breadth ratio 

increased. The reductions were very crystal clear at a/t < 20 (thick plate region), slightly visible at 

20 < a/t < 45 (Moderately-thick plate region), but becomes very little and almost negligible at a/t ≥ 
50 (thin-plate zone). This indicates that deflection is more pronounced for thick plates than thin 

plates. This also implies that there are chances for failure in the plate structure if the plate width is 

increased. The tendency of this failure can be alleviated by reducing the plate width.  

In Figures 5 and 6, it is also observed that the in-plane displacements (u & v) increased negatively 

as the span-depth ratio increased. This implies that the effects of in-plane displacements are less on 

thick plates but more on thin plates. As the longest-breadth ratio increased from 1.0 to 2.0, this effect 

increased at each span-to-depth ratio.  0.006069 and 0.009791, 0.005513 and 0.008855 were the 

maximum and minimum values for the deflections at length-to-width ratio of 1.0 and 2.0 

respectively. Looking critically at the values obtained from this work, it can be deduced that this 

model and its exact trigonometric shape functions are quite adequate for thick plate analysis.  
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From Figures 5 and 6, it is observed that the normal stresses (σx, and σy) decreased positively as the 

span-to-thickness ratio increased for each length-to-breadth ratio. In figure 5, the shear stresses (τxz, 

and τyz) also decreased positively as the span-to-depth ratio increased; except for τxy, which increased 

negatively. In Figure 6, at a length - breadth ratio of 2.0, shear stress (τxz) decreased positively while 

the shear stresses (τxy, and τyz) increased negative. These identical properties of the material 

represented in the graphs confirms that the plates are isotropic. The figures show that the span-to-

depth ratio between 5 and 20 varies between 0.006069 and 0.005548, 0.009791 and 0.008914 

respectively with a constant decreased value of 0.000521 and 0.000877 in each case for the 

deflections in the plate structure. As they varied very much from zero, they can be considered as 

thick plates. Span-thickness ratios between 50 and 1000 with 0.005519 and 0.005513, 0.008864 and 

0.00855 as out-of-plane displacement values in Tables 1 and 2 respectively; decreased to a constant 

value of 0.000006 and 0.000009 for each. This variation in deflection which is approximately zero 

justifies their categorization as thin plates.  

   

 
Figure 3: Variation of displacements with span-to-thickness ratio for length to breadth of 1.0 

 

 
Figure 4: Variation of displacements with span-to-thickness ratio for length to breadth of 2.0 
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Figure 5: Variation of stresses with span-to-thickness ratio for length to breadth of 1.0 

 

 

 

 
Figure 6: Variation of stresses with span-to-thickness ratio for length to breadth of 2.0 

From Table 1 and Figure 7, it is confirmed that the refined plate theories which was employed by 

other scholars’ overestimate or underestimate the deflection in the plate structure which makes their 
solution unrealistic compared to 3-D solve. This implies that RPTs are quite coarse for the analysis 

of thick plate. 3-D analysis ensures accuracy and exact solution for a three-dimensional plate 

problem. These scholars failed to apply trigonometric function which gives a close-form solution 

than polynomial whose exact function tends to infinity. 

Table 1: Percentage difference between the values of non-dimensional center deflection of CSFS 

rectangular thick plates from present and past studies at different span to thickness ratio for length 

to width ratio of 1.0. 𝛽 = a/t Present 

Work 

[P.W] 

Onyeka 

(2021) 

[40] 

Gwarah 

(2019) 

[48] 

Percentage 

difference 

between 

[P.W] & 

[40] 

Percentage 

difference 

between 

[P.W] & 

[48] 

5 0.00607 0.00609 0.00672 0.2966 10.6443 

10 0.00565 0.00537 0.00593 4.9876 4.8638 

20 0.00555 0.00520 0.00573 6.3446 3.2805 
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30 0.00553 0.00516 0.00569 6.6196 2.9662 

40 0.00552 0.00515 0.00568 6.7005 2.8613 

50 0.00552 0.00515 0.00567 6.7585 2.8085 

60 0.00553 0.00514 0.00567 6.7609 2.7914 

70 0.00552 0.00514 0.00567 6.7803 2.7737 

80 0.00551 0.00514 0.00567 6.7815 2.7743 

90 0.00551 0.00514 0.00567 6.7827 2.7748 

100 0.00551 0.00514 0.00567 6.8009 2.7566 

Average Percentage difference 

5.91% 

 

3.75% 

 

Total Percentage difference 4.83% 

The present study was analogized to Onyeka (2021) and Gwarah (2019) as shown in Table 1 and 

they differed in their percentage difference by 5.91% and 3.75% respectively. These differences 

occurred on account of the polynomial 2D-RPT model employed by both authors using exact and 

assumed displacement functions respectively. The slightly higher and lower variations presented in 

Figure 3 revealed the disparity between the refined plate theories and the present theory as the 

overestimate and underestimate the deflections in the plate structure. The correctness of the close-

form solution obtained from the present work amplifies the need to apply an exact trigonometric 

function in analyzing the bending of a typical 3-D rectangular thick plate subjected to same 

boundary and loading condition. 

 

 
Figure 7: Variation of central deflection of CSFS square thick plates with span-thickness 

ratio 

The gross average percentage difference between the previous studies and this work is 4.83%.  This 

signifies that at about 95% confidence level, the values obtained in this study are equal to those of 

past studies. This confidence level certifies that the present model can be employed with conviction 

for stress and displacement analysis of CSFS thick rectangular plates.  

4. Conclusion 

The stress and bending analysis of thick rectangular plates was investigated using the 3D 

trigonometric theory and the following conclusion was reached: 

i) The 3-D model has an accurate prediction than those of RPT and CPT due to the 

consideration of all the six strains and stresses components, with the inclusion of 

modulus of elasticity and other engineering properties of the plate structure.  

0

0.002

0.004

0.006

0.008

0 20 40 60 80 100 120

D
e

fl
e

ct
io

n
 (

w
)

Span to depth ratio

Present Study Onyeka (2021) Gwarah (2019)



 
Okeke Thompson Edozie et al. / Journal of Materials Engineering, Structures and Computation 

1(1) 2022 pp. 40-58 

55 

 

ii) The efficacy of this model is validated based on the percentage difference recorded for 

square plate deflections relative to previous studies. It was confirmed that 3-D analogy 

is needed for the three-dimensional thick plate analysis as 2-D RPT provides an 

inappropriate solution.  

iii) The trigonometric displacement functions obtained from the governing equations are 

exact and consistent. With certainty, they can be applied to the analysis of any thick plate 

under equivalent loading and support conditions. 

Nomenclature 𝑘 non-dimensional parameters of z-axis 𝑢 non-dimensional parameters of x-axis 𝑣 non-dimensional parameters of y-axis 𝑡 thickness of the plate, 𝑝 in-plane displacement along x-axis 𝑞 in-plane displacement along y-axis ℎ coefficient of shear deformation along x-axis of the plate 𝑔 coefficient of shear deformation along y-axis of the plate 𝜀𝑥 normal strain along x-axis 𝜀𝑦 normal strain along y-axis 𝜀𝑧 normal strain along z-axis 𝛾𝑥𝑦 shear strain in the plane parallel to the x-y plane  𝛾𝑥𝑧 shear strain in the plane parallel to the x-z plane 𝛾𝑦𝑧 shear strain in the plane parallel to the y-z plane 𝜏𝑥𝑦 shear stress in the plane parallel to the x-y plane 𝜏𝑥𝑧 shear stress in the plane parallel to the x-z plane 𝜏𝑦𝑧 shear stress in the plane parallel to the y-z plane 

E modulus of elasticity 

µ Poisson’s ratio ∄ Potential energy of the plate ∈ Strain energy of the plate ∋ External work done on the plate ∁ Plate’s shape function 𝑤 Uniformly distributed load ∪ Deflection function of the plate ∩ Coefficient of deflection ∅𝑥 Coefficient of shear deformation along x-axis ∅𝑦 Coefficient of shear deformation along y-axis 𝑝 In-plane displacement along x-axis 𝑞 In-plane displacement along y-axis 𝛽 Span-thickness ratio 𝛼 Aspect ratio 
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