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 To provide accurate forecasts of a gas turbine blade failure and 

operational condition, the intricate relationship between 

centrifugal force and gas turbine blade failure has to be 

understood and established using advanced expert modeling 

approaches. The present research has explored the use of 

Artificial Neural Networks (ANN) to simulate and forecast a 

gas turbine blade failure induced by centrifugal forces. A 

multilayer feedforward neural network was trained using 

operational data such as speed of rotation, blade material 

properties and induced blade stress values. The results gotten 

from the blade modelling using the ANN showed that the ANN 

comparatively outperforms traditional approaches in terms of 

the blade failure and operational condition prediction 

accuracy, making it a valuable tool for enhancing turbine 

performance and operational sustainability. The ANN was a 

choice expert analytical modelling tool for the blade due to its 

ability to handle nonlinear interactions and big datasets. It was 

therefore concluded that it is a significant machine learning 

tool for predicting failures in mechanical systems such as the 

gas turbine blade. 
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1. Introduction 

 

Gas turbines are vital components in modern power generating, aviation, and industrial 

applications, where operational efficiency and dependability are critical to overall system 

performance and safety. These turbines rely on blades that are subjected to intense mechanical 

stresses while in operation, particularly centrifugal forces that grow with rotational speed. 

Centrifugal force is a major factor to blade failure, causing material deformation, fatigue, and 

ultimately catastrophic failure. Predicting and preventing these breakdowns is critical to ensuring 
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the turbine's integrity and lifetime. 

 

The complicated nature of gas turbine blade behavior under such high-stress settings makes it 

difficult to effectively anticipate blade failure using existing approaches. While traditional 

engineering techniques like finite element analysis (FEA) and stress-strain calculations can 

provide useful insights into material behavior and stress distribution, they frequently fall short of 

addressing the dynamic, nonlinear, and multifactorial nature of blade failure. As a result, there is 

a rising interest in using advanced computational approaches, specifically Artificial Neural 

Networks (ANN), to model and predict gas turbine blade failures more accurately. 

 

Artificial Neural Networks (ANN), a form of machine learning technique, have shown 

considerable promise for simulating complicated systems where standard methods may fail. ANNs 

can learn from big datasets, find hidden patterns, and make predictions based on historical data, 

which is especially valuable when the underlying causes of failure are unknown or too complex to 

describe analytically. In the context of gas turbine blades, ANN-based algorithms can be trained 

to recognize patterns associated with centrifugal force-induced failures, taking into account 

material qualities, rotational speed, temperature, and blade materials properties. The purpose of 

the present research was to create and implement an expert analytical system based on artificial 

neural networks for modeling and predicting gas turbine blade failure caused by centrifugal forces.  

 

The suggested system will be able to forecast prospective blade failures using a dataset of historical 

failure incidences as well as operational factors, allowing for timely maintenance interventions 

and improving turbine reliability. The findings of this study are projected to make a substantial 

contribution to the field of turbine maintenance by providing an intelligent, data-driven approach 

for predicting blade failures, reducing downtime, and improving overall operational efficiency. 

The following sections will go over the fundamentals of centrifugal force and its effect on gas 

turbine blades, evaluate existing predictive models, and present a thorough approach for 

developing and implementing the ANN-based expert system for forecasting turbine blade failure. 

The study will also compare the performance and accuracy of the ANN model to previous 

prediction methodologies, resulting in a comprehensive tool for engineers and maintenance 

personnel. 

Chowdhury et al [1-5] carried out a critical review on gas turbine cooling performance and failure 

analysis of turbine blades. Highlights of the research included the followings;  

i.  Review of appropriate coating methods and blade-cooling systems for gas turbines. 

ii. Identifying the gas turbine blade failures with possible causes and remedies. 

iii. Selection of suitable blade materials for proper functioning of the gas turbines. 

iv. Review of working fluids and fuels for economic and environmental requirements. 
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The authors highlighted the need for the research on one of the most important turbo-machineries 

(gas turbine) which they asserted can be a pathway for further improvement of the performance 

and efficiency of the gas turbine, and the prevention of gas turbine failures by identifying the root 

causes from previous failure case studies. 

Swain et a l [2] Carried out a review on the failure analysis of gas turbine blades. To overcome 

those imminent failures, the development of materials was also discussed by the authors. The 

authors emphasized in their research the importance of coating in gas turbine blade. After the brief 

investigation of the failure analysis and materials developed, they asserted that it was observed 

that there are some properties to be developed to obtain an optimum gas turbine blade. A 

significant assertion from the work was that the pathway of the development of the gas turbine 

performance go through an increase in engine’s efficiency, reliability, lifespan, capacity and a 

decrease in fuel consumption and expenses. Some beneficial inputs in an efficient gas turbine are 

the initial are high temperature inlet gas, high pressure turbine feeding, and the use of more 

resilient materials and method of manufacturing. 

Rao et al [3] carried out research on failure analysis of a 100MW gas turbine blade in a gas turbine 

engine used for marine applications. The gas turbine blade that was under examination was 

operated at elevated temperatures in corrosive environmental where it was exposed to attack such 

as oxidation, hot corrosion and sulphidation etc. Scientific investigation carried out on the gas 

turbine blade included visual inspection, determination of material composition, microscopic 

examination and metallurgical analysis. The metallurgical examination revealed that there was no 

micro-structural damage due to blade operation at elevated temperatures within its designed 

temperature conditions. However; it was observed that the blade might have suffered both 

corrosion (including HTHC & LTHC) and erosion. LTHC was prominent at the root of the blade 

while the regions near the tip of the blade were affected by the HTHC. It was concluded by the 

authors that the turbine blade failure might be caused by multiple failure mechanisms such as hot 

corrosion, erosion and fatigue. Hot corrosion could have reduced the thickness of the blade 

material and thus weakened the blade. This reduction of the blade thickness decreased the fatigue 

strength which ultimately led to its failure. 

Rani et al [4] performed a failure analysis on the first stage of a gas turbine using the blade tip 

cracking determination of a gas turbine, to localize and isolate further degradation of the blade 

coating blades, based on several tests and investigations to confirm the presence of a combined 

effect of degradation due to failure of the turbine blades 

Zhang Zhixin et al [5] carried out research on the failure analysis of a first stage turbine blade 

made of directionally solidified GTD111 super alloy and repaired by welding process. The authors 

asserted that failure of a turbine blade made of DS GTD111 and repaired by welding process was 

investigated by fracture surface investigation and metallurgical observation. The methods 

employed to investigate the fracture surface and the metallurgical structure by them included 

optical microscope (OM), scanning electron microscopy (SEM) and energy dispersive X-ray 
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spectrometry (EDS) analysis. They asserted that the spallation of the top coating of TBC near the 

fracture surface accelerated the formation of cracks. Based on the metallurgical observation, it 

was found that the bond coating of TBC did not play any positive role in promoting the initiation 

and propagation of the cracks. Findings of the research outcomes included the followings; 

i. The fracture surface of the turbine had penetrated the welding zone and entered the 

directional solidification zone. 

ii. The degradation of the grain boundary in the welding zone appeared to be the primary 

cause of numerous secondary cracks in the turbine blade. 

iii. The bond coating of TBC did not play any positive role in promoting the initiation and 

propagation of the cracks. 

 

Darcía-Martínez et al [6] carried out failure study of an aircraft engine high pressure turbine (HPT) 

first stage blade. The authors asserted that in machineries like jet engines, almost 50% of failures 

were located in the damage of turbine blades and discs. In respect of that, the authors research was 

to study and determine the root cause of the failure of a high-pressure temperature blade in a 

turbofan engine. Visual observation of the blades indicated that initially, one blade was fractured. 

Subsequently, detachment of the airfoil from the single fractured blade and its impact with the rest 

of the blades of the first turbine disc trigged a catastrophic damage to them and affected later stages 

blades. Turbine blades rotate at tens of thousands of revolutions per minute (RPM), which often 

exposes the blade to stresses from fluid and centrifugal forces that may cause yielding failure, 

creep, or fracture [7-10]. This work aims to predict gas turbine blade failure induced by centrifugal 

force using artificial neural network. 

2. Methodology 

The methodology consists of the following steps: 

2.1 Data Collection and Preprocessing 

 

Operational data, including rotational speed, material properties, and stress distributions, was 

collected from simulations or real-world operations. The dataset was normalized to ensure 

consistency and improve model training. 

2.2 ANN Architecture and Model Development 

 

A multilayer feedforward neural network was designed, consisting of an input layer (operational 

parameters), one or more hidden layers (to capture nonlinear interactions), and an output layer 

(failure probability). The network was trained using supervised learning techniques, employing 

backpropagation and an optimization algorithm like Adam to minimize error. 
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2.3 Model Training and Validation 

 

The dataset was divided into training, validation, and testing subsets. The model was trained 

iteratively, with its performance evaluated using metrics such as mean squared error (MSE) and 

R². Hyperparameters such as the learning rate and number of hidden neurons were tuned to 

optimize performance. 

2.4 Performance Evaluation 

 

The trained ANN is tested on unseen data to assess its predictive accuracy. Sensitivity analysis was 

conducted to determine the contribution of individual parameters to failure prediction. The results 

were compared with traditional methods to demonstrate ANN’s advantages. 

The model summary is shown in Figure 1. 

                  

    

                                                               Figure 1. Model Summary 

3. Results and Discussion 

 

The improved second order method of gradient also known as Levenberg Marquardt Back 

Propagation training algorithm was selected as the best learning rule and was therefore adopted in 

designing the network architecture. To determine the exact numbers of hidden neuron, different 

numbers of hidden neurons were selected to create a trained network using Levenberg Marquardt 

Back Propagation training algorithm. From the Figure above, the Levenberg Marquardt Back 

Model 
Summary 
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Propagation training algorithm having 10 hidden neurons was used to train a network of three (3) 

input processing elements (PEs) and one (1) output processing elements. The number of hidden 

neurons was set at 10 neurons per layer and the network performance was monitored using 

coefficient of determination (r2) and MSE. The input layer of the network used the hyparbolic 

tangent (tan-sigmoid) transfer function to calculate the layer output from the network input while 

the output layer used the linear (purelin) transfer function. The network generation process divided 

the input data into training data sets, validation and testing. For this study, 70% of the data was 

employed to perform the network training, 15% for validating the network while the remaining 

15% was used to test the performance of the network at a maximum training cycle of 1000 epochs 

was used. Using these parameters, an optimum neural network architecture was generated as 

presented in the Figure 2.  

                                                                 
Figure 2. Artificial Neural Network Architecture 

A performance evaluation plot which shows the progress of training, validation and testing is 

presented in the Figure 3. 

 

Figure 3. Performance curve of trained network for predicting centrifugal force 
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From the performance plot of the Figure 2, it was observed that there was no evidence of 

over fitting. In addition, similar trend was observed in the behaviour of the training, 

validation and testing curve which was expected since the raw data were normalized before 

use. Lower mean square error was a fundamental criterion used to determine the training 

accuracy of the network. The best validation performance of 36038.3771 at epoch 9 was 

evidence of a network with strong capacity to predict the centrifugal force. The training 

state, which showed the gradient function, the training gain (Mu) and the validation check, 

is presented in the Figure 4. 

 

 
 

Figure 4. Neural network training state for predicting centrifugal force 

 

Back propagation is a method used in artificial neural networks to calculate the error contribution 

of each neuron after a batch of data training. Technically, the neural network calculates the gradient 

of the loss function to explain the error contributions of each of the selected neurons. From Figure 

4 the computed gradient value of 20698.2749 at epoch 15 indicated that the error contributions of 

each selected neuron were very minimal. Momentum gain (Mu) is the control parameter for the 

algorithm used to train the neural network. The training gains and its value must be less than unity. 

Momentum gains of 100 showed a network with high capacity to predict the centrifugal force. The 

regression plot which showed the correlation between the input variables (temperature, pressure 

and speed) and the target variable (centrifugal force) coupled with the progress of training, 

validation and testing were presented in the Figure 5. 
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Figure 5. Regression plot showing progress of training validation and testing 
 

Based on the computed values of the correlation coefficient (R) as observed in the above 

Figure, it was concluded that the network has been accurately trained to predict the 

centrifugal force as R has an overall value of 0.97302.  

4. Conclusion 

The findings of the Artificial Neural Networks (ANN) model revealed its suitability for 

forecasting turbine blade failure caused by centrifugal forces. The ANN successfully caught 

nonlinear correlations and complicated patterns between operational factors and failure 

probability, resulting in a high forecast accuracy. The sensitivity study made clear how important 

centrifugal force-related factors—specifically rotational speed—are in determining blade failure. 

The model is a priceless tool for real-world applications in turbine maintenance and design 

optimization because of its versatility with regard to big datasets and its ability to learn from 

intricate interactions. The study does, however, also recognizes the computational resources 

needed for ANN implementation as well as its requirement of extensive and high-quality data for 

efficient training. Notwithstanding these drawbacks, ANN is a strong and dependable method for 

failure prediction that greatly advances predictive failure and maintenance frameworks. 
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