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 This paper presents an agent-based model for scheduling job in a 

rigid machine setup. The model involved three sequential machines 

through which every job must pass followed by one out of three 

finishing machines used one per finishing type. For the type of 

product that is produced, the raw material must pass through the 

first three machines only in one order. Thus, the model developed 

took this sequential order into consideration. A well-crafted 

scheduler agent that carries out bunching of sorted jobs either in 1 

or 2- or 3-days’ bunch(es) per finishing type and selects the best 

out of the three approaches. This scheduling technique allows a 

certain product type to be scheduled for 1 or 2 or 3 days before 

changing to another product type. The result of ten different 

monthly orders scheduled with bunching factor 2 had earliest 

release dates for eight out of the ten different orders and bunching 

factor 3 had earliest release dates for two orders while bunching 

factor 1 had none. The agent-based job shop scheduling model was 

validated with D.G. Kendall, classical method for poisson arbitrary 

distribution with nonpreemptive discipline where the agent-based 

model (ABM) compared favorably with the classical model. The 

comparative result shows that the modelled agent-based job shop 

scheduling had 2.4% improvement to the existing classical model 

and should be applied in an industrial set up for makespan 

minimization in a rigid machine setup. 
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1. Introduction 

This work explores the well-known n-by-m Job Scheduling Problem (JSP), in which n jobs must 

be processed exactly once on each of m machines.  Each job i (1 i  n) is routed through each of 

the m machines in a predefined order 𝜋i where 𝜋i(j) denotes the jth machine (1  ̡   m) in the routing 

order.  The processing of job ¡ on machine 𝜋i(ʲ) is denoted Oij and is called an operation.  The 

scheduling objective is makespan minimization, which means to minimize the completion time of 

the last operation of any job [1] and [2]. Scheduling, understood to be an important tool for 

manufacturing and engineering, has a major impact on productivity of a process. In manufacturing, 

the purpose of scheduling is to minimize the production time and cost, by telling a production 

facility what to make with which staff and on which machine [3] and [4].  Existing deterministic 

shop floor schedulers work well for situation where n job must pass through m machine in any order 

while in the case study company, the n job must pass through the m machine in a given sequence 

which makes the job shop scheduling more complicated. The production process requires three 

machines in sequential order through which every raw material input must be processed and one-
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out-of three finishing machines used one per type of product. This is so because the production 

arrangement cannot be in parallel as the order must first be processed in machine one (1) before 

moving over to machine two (2). The same process has to be done on machine two (2) before 

machine three (3) in sequential order [4]. 

 

Yih and Thesen [5] formulated the scheduling problem as semi-Markov decision problems and used 

a non-intrusive knowledge acquisition method to reduce the size of the state space. The idea was to 

identify and update dynamically the states and transition probabilities that are used by an expert 

system to solve real time scheduling issue. However, the reduced state-space and the estimated 

parameters cannot fully represent the original problem but an approximation. It is possible for a 

state to appear which is not included in the reduced state space during the operation if the simulation 

process does not exhaust all the possible states which can result from user decisions. 

 

The works of [5] and [6] modeled the job shop scheduling problem by means of a multi-agent 

reinforcement learning and attached to each resource an adaptive agent that makes its job 

dispatching decisions independently of the other agents and improves its dispatching behavior by 

trial and error employing reinforcement learning algorithm. Gabel and Riedmille [7] gave some 

suggestions of state feature selection, but did not consider whether these features are memoryless. 

The embedded Markov chain is also not mentioned in their work. 

 

Tao et al in [7] and [8] modeled a real-time job shop scheduling based on simulation and Markov 

decision processes. The main task is to decide which job in a queue should be processed next. The 

model uses two algorithms, simulation-based value iteration and simulation-based Q-learning were 

introduced to solve the scheduling problem from the perspective of a Markov decision process. The 

real-time job shop scheduling model is a sequential decision-making optimization technique. The 

system contains five (5) machines and produces two (2) products with two (2) operation flows. The 

operation flow in this model is not constrained to pass through each machine in series. 

 

In this work, scheduler agent that uses a carefully crafted algorithm to schedule incoming orders for 

production has been developed. Scheduler agent carries out bunching of jobs either in 1 or 2 or 3 

days per finishing type and selects the best out of the three approaches. Bunching is a scheduling 

technique adopted in this model to schedule an order in a queue. This technique allows a certain 

product type to be produced for 1 or 2 or 3…. n days before changing to another product type.  

 

Thus, either a finishing type is done for only one day before changing to another order in sequence 

which typically is of another finishing type, or one finishing type is produced for 2 or 3 continuous 

days before changing over to another finishing type. The bunching is not fixed at 1 or 2 or 3 days 

for each finishing type but the best performing bunching type is selected for each set of orders being 

scheduled. 

  

Hence a production scheduling and control that performs reactive (not deterministic) scheduling and 

can make decision on which job to process next based solely on its partial (not central) view of the 

plant becomes necessary.  This requirement puts the problem in the class of agent-based model 

(ABM) where each job must be processed on three machines in series and the semi-processed 

product is passed on a one-of-three parallel finishing machine.  Hence, this work adopts bunching 

technique to minimize the makespane. 

 

2. Methodology 

As part of the schedule Agent list of intentions, is the execution of the algorithm called Run Schedule 

Algorithm (RSA) intentions that satisfy all constraints.  The production agent uses the projected 
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distributions (worked out with Markov Chain) which is intention of the production agent to initiate 

the production process.  The agent continues to run this process in the background while reacting to 

disturbances from the factory floor.  For example, when a new order arrives, when a job or operation 

is preempted or a machine becomes unavailable, the agent updates the schedule and re-iterates the 

process.  

 

Also, when backtracking is detected based on constraint checking, the agent adapts by either running 

another schedule from its schedule list or dumping the entire schedule and then re-computing the 

sequence.  The objective of the algorithm is to schedule N jobs on M machines while taking 

stochastic conditions into effect so that the makespan MS is minimized. 

 

The process scenario adopted for scheduling of jobs here uses three sequential machines followed 

by one out of three finishing machines. In this algorithm, jobs of varying sizes and levels are 

scheduled on the first three machines sequentially, then the output or the semi-processed product is 

passed on to any of the finishing (fourth) machine on a one out of three bases depending on the type 

of order. The algorithm allows for bunching of job in either three or two or one day, where the best 

bunch is selected except where the need for preferential consideration as in the case of government 

Job is highly needed, human/machine interaction will be invoked. Each complete run of the 

algorithm terminates once all jobs have been scheduled. A detailed description of the algorithm is 

given in section 2.1. 

  

The proposed model seeks to obtain an agent-based scheduler that is optimized for handling job 

shop scheduling that ensures efficient and profitable manufacturing automation. The activities 

carried out to achieve the aim of the research work are: 

i. The orders gotten from the customers for thirty (30) days are grouped into three different 

finishing types. 

ii. Each finishing type is sorted in ascending order of job size with respect to the finishing 

type before scheduling. 

iii. Bunching of each finishing type of job with a bunching factor (Bf) of 1 or 2 or 3 was 

used to schedule the job. 

iv. Selecting the best bunching factor for each order, this means the bunching factor that 

gives the earliest finishing time for all the orders. 

v. Test running the carefully crafted algorithm on ten (10) separate orders. 

vi. Scheduling with the best bunching factor (Bf) for each of the ten different orders and 

that lead to the latest finishing dates at the bottom of the table. 

 

2.1 Schedule Algorithm 

A carefully worked out procedure used to achieve the set objectives is as follows: 

a. The system sorts the entire order into three parts according to the type of finish desired of 

each. All the orders of finishing type one is together, finishing type two are together and 

finishing type three are together after the sorting. 

b. Each finishing type is again sorted in ascending order of size of order in kilograms. 

c. Thereafter the scheduler agent schedules the orders as follows; the first of type one is 

followed by the first of type two, followed by the first of type three. Then the second of type 

one follows in the schedule and after that, the second of type two and the second of type 

three, and so on. 

d. Because the machine must be kept as busy as possible, slacks are introduced into each 

finishing type to ensure that the production of that type occupies only full days. Thus, once 

the machines start producing a particular finishing type, it must continue with that type 
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throughout the working day before it can change to another type at the beginning of the next 

day if need be. 

e.  Simulate a schedule with bunching factor of 1, this means one type of finish is done each 

day, example: 

Day 1 = finishing type 1 

Day 2 = finishing type 2 

Day 3 = finishing type 3 

Day 4 = finishing type 1 and so on. 

f. Simulating the scheduling using a bunching factor of 2 that is; 

Finishing type 1 = first two days 

Finishing type 2 = days 3 and 4 

Finishing type 3 = days 5 and 6 

Finishing type 1 = days 7 and 8 and so on. 

g. Simulate the scheduling using a bunching factor of 3 this means; 

Finishing type 1 = days 1, 2 and 3 

Finishing type 2 = days 4, 5 and 6 

Finishing type 3 = days 7, 8 and 9 

Finishing type 1 = days 10, 11 and 12 and so on. 

h. Select the bunching factor that yields the earliest finishing date for the order and use that 

bunching factor for scheduling the order. 

 

2.2. Software Sub-System Model 

The flow chart showing the agent-based model for job shop scheduling and control is presented in 

Figures 1 and 2. It presents the order agent activity flow chart and the scheduler agent activity flow 

chart.  

Figure 1 is the activity flow chart for the order agent. The Order Agent receives all incoming orders 

and on request passes the order records to the scheduler. 

Figure 2 shows the activity flow chart for the scheduler agent. The scheduler follows this established 

algorithm to schedule the orders for production.  

 

 
Figure 1: Order agent’s activity flow chart 
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Figure 2: Scheduling agent’s activity flow chart 

3. Results and Discussion 

3.1 Scheduling of Job Order Using Bunching Factors 1, 2 & 3  

Bunching technique was adopted in this model to schedule job for processing. Bunching of the 

whole order queue with bunching factor (Bf) of 1 or 2 or 3 to determine the best bunching that gives 

the earliest finishing time or minimum makespan for all the orders. Table 1 shows the schedule 

result for ten (10) different orders, scheduled using Bf1, Bf2 and Bf3.  

Because of the stochastic nature of the order arrival, the best bunching factor may change with each 

order, for example, in an empirical study involving ten (10) different sets of orders as shown in 

Table 1. 

To present the concept in a more comprehensive way, consider order one (1) in Table 1, the table 

shows that all the orders that need finishing type one (1) will be finished in 100 days using bunching 

factor 1, but 98 days using bunching factor 2 and 102 days using bunching factor 3. Also, all the 

orders that require finishing type 2 will be completed in 50 days using bunching factor 1, or 52 days 

using bunching factor 2 and 51 days using bunching factor 3. Similarly, all the orders requiring 

finishing type 3 will be completed in 84 days using bunching factor 1 and 2 but will take as much 

as 90 days if bunching factor 3 were used. In this scenario the best bunching factor is the one with 

the least number of days for completing the last job in a given order queue. Because the different 

finishing types in one set of orders do not have the same number of jobs, a finishing type may finish 
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before others. For example, for order number 1 using bunching type (Bf1), finishing type 1 was the 

last to be processed up to the 100th day, finishing type 2 finished on the 50th day while finishing type 

3 finished on the 84th day.  In order 1 therefore, a bunching factor of 2 that finished the work in an 

order queue in 98 days is superior to bunching factor 1 that finished the work in an order queue in 

100 days. The bunching factor of 3 gave the worst-case scenario for this order requiring 102 days 

to complete the order. Thus, the best is bunching factor 2 as shown in Table 1. 

Consider another example from table 1 where bunching factor 3 is the best out of the three possible 

bunching factors. Consider order number 7, the latest finishing time to complete the order for 

bunching factor 1 is 157 days, that of bunching factor 2 is 152 days but the bunching factor 3 will 

get the work done in 147 days. Thus, the bunching factor to use when scheduling order number 7 is 

bunching factor 3.  The bunching factor of two (2) gave the best result in eight out of the ten (10) 

sets of orders while the bunching factor of three (3) gave the best result in two (2) out of the ten (10) 

sets of orders. The bunching factor of one (1) is consistently the worst-case scenario in all the ten 

(10) sets of order.  

 

 

Table 1:   Schedule result for Ten (10) Different order with Bf1, Bf2 & Bf3 

ORDER FINISHING 
TYPE 

Bf1  (days) Bf2 (days) Bf3 (days) BEST 

1 

1 100 98 102 

2 2 50 52 51 

3 84 84 90 

2 

1 118 116 120 

2 2 95 94 96 

3 57 60 63 

3 

1 134 128 129 

2 2 59 58 60 

3 87 90 90 

4 

1 97 92 93 

2 2 59 58 60 

3 93 90 99 

5 

1 166 164 156 

3 2 8 10 6 

3 84 84 90 

6 

1 40 38 39 

2 2 101 100 105 

3 102 102 108 

7 

1 157 152 147 

3 2 131 130 132 

3 42 42 45 

8 

1 97 92 93 

2 2 44 46 42 

3 147 144 153 

9 

1 115 110 111 

2 2 68 70 69 

3 66 66 72 

10 1 118 116 120 2 
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2 59 58 60 

3 69 72 72 
 

The result of 10 different set of orders (table 1) shows that bunching factor two (Bf2) has the smallest 

finishing times for orders 1,2,3,4,6,8,9 and 10; bunching factor three (Bf3) just had a better result 

in 5 and 7 while bunching factor one (Bf1) had none. A careful application of this bunching 

technique will help save time and cost in every industry that receives stochastic order. This is 

achieved in the reduction of days required to complete as set of orders using bunching techniques 

and which therefore reduces time and production cost. The graphs of Figure 3 and 4 were used to 

illustrate the performances of the three bunching factors. 

 

 
      

    

 

The release dates for orders received in one month and then scheduled is shown in Figure 1. 

Referring to Table 1, the orders are scheduled using three different bunching factors (Bf1, Bf2 and 

Bf3) for the three finishing types. From the bar chart, the finishing type 1 has Bf1 as 100 days, Bf2 

as 98 days and Bf3 as 102 days; finishing type 2 has Bf1 as 50 days, Bf2 as 52 days and Bf3 as 51 

days, while finishing type 3 has Bf1 as 84 days, Bf2 as 84 days and Bf3 as 90 days. The result shows 

that Bf2 had the earliest due date to complete the last operation, with the latest due date for the last 

release as 98 days while Bf1 has 100 days and Bf3 has 102 days. Similar thing happened in the 

second order of figure 4, with Bf2 having earliest due date for the complete process as 116 days 

while Bf1 uses 118 days and Bf3 uses 120 days to complete the process. 

 

3.2. Model Validation using D.G. Kendall queuing System 

For the purpose of validation and testing of the agent-based job shop scheduling model, a classical 

method for poisson arbitrary distribution with nonpreemptive discipline by Kendall in [10] was 

used. 

The mathematical model by D.G. Kendall is stated thus; (𝑴𝒊/𝑮𝒊/𝟏) ∶ (𝑵𝑷𝑹𝑷/∝/∝), the symbol 

NPRP is used with the Kendall notation to represent the nonpreemptive discipline; Mi and Gi stand 

for poisson and arbitrary distributions [11]. 

Let Fi(t) be the CDF of the arbitrary service time distribution for the ith queue (i=1, 2… M), and let 

Ei{t} and Vari{t} be the mean and variance, respectively; let 𝜆𝑖 be the arrival rate at the ith queue 

per unit time. Define Lq(k), Wq(k), Ws(k) and Ls(k as;  
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Figure 4: Bar chart of Order 2 as Bf varies 

from 1 – 3  

 

Figure 3:  Bar chart of Order 1 as Bf varies 

from 1-3   



 
T. T. Chiagunye et al. / Journal of Energy Technology and Environment 

3(4) 2021 pp. 121-131 

128 

 

Ls= expected number of customers in system 

Lq= expected number of customers in queue 

Ws = expected waiting time in system 

Wq = expected waiting time in queue 

Except that they now represent the measures of the kth queue. 

The Model was evaluated using Equations 1 and 6 

𝑊𝑞(𝑘) =  
∑ 𝜆𝑖(E𝑖

2{𝑡}+ 𝑉𝑎𝑟𝑖{𝑡}𝑛
𝑖=1

2(1−𝑆𝑘−1)(1−𝑆𝑘)
           …   1 [10] 

Lq(k)=  𝜆𝑘Wq(k)      …   2 

Ws(k)= Wq(k) + Ek{t}      …   3 

Ls(k) = Lq(k) + Pk      …   4 

Where Pk = 𝜆𝑘Ek{t}      …   5 

           Sk = ∑ 𝑃𝑖 < 1𝑘
𝑖=0                 K=1, 2… M  …   6 

 S0≡ 0 

Where,  E𝑖
2{𝑡}= mean 

𝑉𝑎𝑟𝑖{𝑡}= variance 

S = time interval 

𝜆𝑘 = constant service rate per a day 

Pk = probability distribution. 

Using sorted order approach, the values for the first order (first month) are given as follows and 

which was obtained from the case study of the job order comparison: 

SL1=  16 27 32 43 51 60 70 96 101 

SL2 = 13 13 20 22 29 51 62 104 

SL3 =  13 36 38 40 50 54 59 82 83 85 88       102   107 

Where SL1 is finishing type 1 

           SL2 is finishing type 2 

          SL3 is finishing type 3 

Therefore, the mean for SL1 is 
16 + 27 + 32 + 43 + 51 + 60 + 70 + 96 + 101

9
 

   Mean =
496

9
= 55.11 

𝜆1 =  
𝑚𝑒𝑎𝑛

3
=  

55.11

3
= 18.37 

For SL2 

Mean = 
13+13+20+22+29+51+62+104

8
=  

314

8
 

Mean = 39.25 

𝜆2 =  
39.25

3
= 13.08 

For SL3 

Mean = 
13+36+38+40+50+54+59+82+83+85+88+102+107

13
 

Mean = 64.38 

𝜆3 =  
64.38

3
= 21.46 

But Pi = 𝜆𝑖𝐸𝑖{𝑡𝑖} 

∴ 𝑃1 =  𝜆1𝐸{𝑡} = 18.37 (
1

15
) = 1.2247 

P2 = 13.08 (
1

19
) = 0.6884 
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P3 = 21.46 ( 
1

30
) = 0.7153 

Where 15kg, 19kg and 30kg are the maximum production capacity for product type 1, 2 and 3 per 

normal production day respectively. 

S1 = P1 = 1.2247 

S2 = P1 + P 2 = 1.2247 + 0.6884 = 1.9131 

S3 = P1 + P2 + P3 = 1.9131+0.7153 = 2.6284 

The due date for the complete schedule for order 1 is 2.6284 X 30 = 78.852 

For the second order (order 2) 

SL1 = 
22+23+23+25+34+39+45+46+51+56+71+75+83

13
 

Mean = 45.61 

∴ 𝜆1 =  
45.61

3
= 15.21 

For SL2 

Mean = 
30+30+35+38+55+60+63+78+101+104

10
 

Mean = 59.4 

𝜆2 =  
59.4

3
= 19.8 

For SL3 

Mean = 
47+62+72+79+87+98+109

7
=  

554

7
 

Mean = 79.14  ∴ 𝜆3 =
79.14

3
= 26.38 

P1=𝜆1𝐸{𝑡1} = 15.21 (
1

15
) = 1.014 

P2 = 19.8(
1

19
) = 1.042 

P3 = 26.38(
1

30
) = 0.879 

S1 = P1 = 1.014 

S2 = P1 + P2 = 2.056 

S3 = P1 + P2 + P3 = 2.052+0.879 = 2.935 

The Due date for the complete schedule for order 2 is 2.935 x 30 = 88.06 

The complete value of the last release date for a queue of ten different orders using D.G. Kendall 

model is shown in Table 2, in comparison to that of agent-based job shop scheduling model.  

 

Table 2: Comparison for the last release date for the proposed ABM and D. G. Kendal classical 

model 

Order No Release Date (Days) for 
Agent Model  

Release Date (Days) for 
Classical Model 

1 79 78.85 

2 89 88.06 

3 93 92.92 

4 81 87.38 

5 86 85.338 

6 80 88.51 

7 112 106.59 

8 95 103.67 

9 82 82.72 

10 82 85.82 
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Table 2 presents the latest completion time for that of agent-based model and the classical model by 

D.G. Kendall. The result of the agent-based model shows a better result in comparison to that of 

classical model [4]. The graph of figure 5 shows the comparison of agent-based model to that of 

classical model. 

 

 
 

 

Figure 5: The comparison between Agent Model against Classical Model 

 

Figure 5 shows clearly the performance of the ABM model, with the latest due date for the complete 

job out performing that of the classical model in orders 4,6,8,9 and 10 while it still relatively close 

to that of classical method in other once, as can be seen in order 1 that has the agent-based model 

result as 79 days while classical model had 78.85 approximately 79 days. The classical model seems 

better in order 7 with about 106 days against ABM’s 112 days. This implies that the model 

developed achieves a better result up to 2.4% improvement which is makespan minimization 

(minimizing the time for the completion of a set of orders) as shown when evaluated with a classical 

model [4]. 

 

4. Conclusion 

This developed model introduced an important technique (Bunching) that can choose, out of the 

several factors, the best factor that will give the minimum makaspan for scheduling a given set of 

orders. The developed model has a human/machine interaction that can adjust to the best schedule 

algorithm to take care of important jobs requiring preferential treatment. This made the model 

flexible and a better option for scheduling stochastic processes when compared to existing models 

which used classical model. 
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