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This study investigates the effects of Dufour on unsteady heat and 

mass transfer Couette flow in free convective vertical channels in 

the presence of buoyancy distribution effects due to ramped and 

isothermal temperature. Fitting dimensional quantities were used 

to convert the coupled non-linear dimensional partial differential 

equations of the flow into non-dimensional non-linear partial 

differential equations. Finite element method (FEM) was employed 

to solve the non-linear time dependent momentum, energy and 

concentration equations under appropriate initial and boundary 

conditions. The expressions of velocity, temperature, 

concentration, skin friction; Nusselt number as well as Sherwood 

number subject to isothermal and ramped temperature boundary 

conditions were gained. Selected set of graphical results illustrate 

that the thermo—physical parameters control the flow and are in 

good agreement with the previous literatures. From the outcome of 

the results, it was noticed that increasing the porosity parameter K, 

ratio of mass transfer parameter N, buoyancy effect term parameter 

, Eckert number   and Dufour number 𝐷𝑓 intensifies the 

velocity profiles while reverse is the case with the increase of 

magnetic parameter M and Prandtl number . Similarly 

increasing the porosity parameter K, ratio of mass transfer 

parameter N, buoyancy effect term parameter , enhances the 

temperature profile and reverse is the case with the increase of, 

Prandtl number . Also concentration profiles get enhanced with 

the increase of Schmidt 𝑆𝑐 number..The skin friction at both y = 0 

and y = 1 gets intensified with the increase Dufour number 𝐷𝑓́  and 

buoyancy parameter  for both ramped and isothermal 

temperature. 
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1. Introduction 

In most real-world practical settings such as condensation, evaporation and chemical reactions the 

heat transfer process is mostly complemented by the mass transfer activity. This is attributed to its 

usefulness in understanding number of technical transfer processes mostly found in chemically 

processed industries such as polymer and food processing Siva et a.l  [1].  The heat transfer produced 

by concentration gradients is called Dufour effect. Dufour effect was discovered in 1873 by 
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Physicist called Dufour and he was correspondingly referred the Dufour. Shankar and Rajashekar 

[2] investigated on the effects of viscous dissipation and diffusion thermo on an unsteady MHD 

flow with an inclined oscillating plate started impulsively and found that, the velocity get reduced 

with increase in Dufour number and phase angle. The temperature profiles rise with the increase in 

Dufour number, Prandtl number and Schmidt number. Similarly, Rajakumar et al. [3] investigated 

Dufour effects, radiation absorption, chemical reaction, and viscous dissipation effects on unsteady 

magneto hydrodynamic free convective Casson fluid flow through a semi-infinite vertical 

oscillatory porous plate of time dependent permeability with hall and ion-slip current in a rotating 

system and found that as the Dufour effect parameter increases the velocity and temperature get 

enhanced. 

The effects diffusion thermo and thermo diffusion on unsteady MHD natural convection heat and 

mass transfer flow past an accelerated vertical porous plate in the presence of thermal radiation, 

variable temperature and also variable concentration were investigated by Chandra and Raju [4] and 

discovered that, the fluid velocity enhances with the increasing values of Soret number and Dufour 

number. The temperature of the fluid enhances with the increase of Soret and Dufour effects. Also 

increasing values of Soret number results in rising of the concentration, but it falls down under the 

influence of Schmidt number and Dufour number. Skin friction gets reduced for increasing values 

of both Soret and Dufour numbers. Similarly, Reddy et al. [5] studied the heat absorption, thermal-

diffusion and diffusion- thermo effects on unsteady viscous incompressible MHD flow along semi-

infinite inclined permeable moving plate with variable temperature and mass diffusion embedded 

in a porous medium and found that, an increase in the Dufour number enhances thermal boundary 

layer and the velocity increases with the increase in Dufour number, Soret number, Grashof number 

and solutal Grashof number. Similarly, skin-friction and nusselt get enlarged when Dufour number 

and Soret number increase, while Sherwood number falls as Dufour number and Soret number 

increase. Bilal et al. [6] analyzed the effect of mixed convection flow of an Oldroyd-B fluid is 

investigated in the presence of convective boundary condition and Soret and Dufour effects. 

Emmanuel et al. [7] investigated the effect of thermal diffusion and diffusion thermo on heat and 

mass transfer over a vertical porous surface with convective heat transfer and found that combined 

effects of thermal diffusion and diffusion thermo and the other embedded parameters can help 

control flow kinematics and enhances both the heat and mass transfer process. Also Sasikumar and 

Govindarajan [8] studied the Soret effects on MHD Oscillatory flow with heat source in presence 

chemical reaction in an asymmetric wavy channel filled with porous medium is carried out and 

discovered that fluid velocity increases with increase in Soret number. Similarly, Gbadeyan et al. 

[9] studied free convective heat and mass transfer of an incompressible electrically conducting fluid 

in a finitely long vertical wavy channel, considering Soret, Dufour and chemical reaction effects in 

the presence of constant heat source or sink and concluded that mean velocity and temperature get 

reduced with increase in Dufour number and Soret number. Additionally, Idowu and Falodun [10] 

analyzed the effects of Soret and Dufour on MHD heat and mass transfer of a viscoelastic fluid pass 

over a semi-infinite vertical plate and concluded that fluid velocity and temperatures increased with 

increase in Dufour parameter. Also increase in Soret number leads to increase of fluid velocity and 

concentration 

Reddy et al. [11] studied the influence of an unsteady magnetohydromagnetic natural convection 

on the Couette flow of electrically conducting water at 40 C (Pr = 11.40) in a rotating system. The 

primary velocity, secondary velocity and temperature of water at 4o C as well as shear stresses and 

rate of heat transfer have been obtained for both ramped temperature and isothermal plates and it 

was found that The primary velocity of the fluid increases with the increase of Gr and decreases 

with the increase of M2, Ω2 and Pr. The secondary velocity of the fluid increases with the increase 

of Gr and decreases with the increase of M2 and Pr. 
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Additionally, Shagaiya and Daniel [12] investigated the theoretical influence of buoyancy and 

thermal radiation on MHD flow over a stretching porous sheet. It was found that when the buoyancy 

parameter is increase the fluid velocity increases. The hydrodynamic boundary layer and thermal 

boundary layer thickness increase as a result of increase in radiation. Shagaiya and Simon [13] 

analyzed influence of buoyancy and thermal radiation on MHD flow over a stretching porous sheet 

and found that when the buoyancy parameter increases, the fluid velocity increases and the thermal 

boundary layer decreases. Adamu and Bandari [14] studied the effect of thermal and solutal 

buoyancy parameters on the nanofluid flow heat and mass transfer characteristics due to a stretching 

sheet in the presence of a magnetic field and discovered that The axial velocity of the fluid increases 

with an increase of both thermal and solutal buoyancy parameter while the thermal conductivity of 

the fluid decreases 

Prabhakar [15] analyzed the effects viscous dissipation on unsteady heat and mass transfer free 

convection past an infinite vertical porous plate under the influence of a uniform magnetic field. 

The present research study adopted and extended the Prabhakar model by incorporating diffusion-

thermo effects and buoyancy distribution effects on unsteady heat and mass transfer Couette flow 

in free convective vertical channels due to ramped and isothermal temperature. Finite element 

method was employed to solve the governing coupled non-linear differential equations. The 

expression of velocity temperature and concentration as well as shear stress have been obtained for 

both and continuous ramped temperature isothermal plates 

 

2.       Formulation of the Problem 

Consider an unsteady free convective flow of an incompressible electrically conducting viscous 

dissipative fluid in finite vertical plates. 

 

 Figure 1: Geometry of the Problem 

Let the x*-axis be chosen along the plate in the vertically upward direction and the y* axis is chosen 

normal to the plate. A uniform magnetic field of intensity H0 is applied transversely to the plate. 

The induced magnetic field is neglected as the magnetic Reynolds number of the flow is taken to be 

very small. Initially, the temperature of the plate  and the fluid 𝑇𝑤
∗  are assumed to be the same. 

The concentration of species at the plate 𝐶𝑤
∗  and 𝐶0

∗ are assumed to be the same. At time t*>0, the 

plate temperature is changed to 𝑇𝑤
∗ , which is then maintained constant, causing convection currents 

to flow near the plate and mass is supplied at a constant rate to the plate. Under these conditions the 

*T
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flow variables are functions of time t* and space (channel width) y* alone. By employing the 

Boussinesq approximation, the governing equations describing momentum, energy and mass 

transfer equations in the presence Soret effect, and other controlling parameters of the three 

problems take the following form: 

Momentum equation 

                    (1) 

Heat Transfer equation  

                                                                           (2) 

Mass Transfer equation 

                                                                                                                   (3) 

The corresponding initial and boundary conditions are:  

Case I:  Isothermal Temperature       Case II:  Continuous Ramped Temperature 
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3.   Method of the Solution 

The method employed to solve the coupled non-linear system of partial differential equations was 

finite element method (Galerkin’s approach) and the summarized fundamental steps of the method 

are as follows:

 

Step 1: Discretization of the Domain into Elements: This is the first and most important step in 

the Finite Element Method (FEM) as the basic concept of the FEM is to divide the structure or 

solution region into subdivisions called finite elements (Finite Element Mesh). In this step the 

number, type, size, and arrangement of the elements are to be decided.  

Step 1: Derivation of Element Equations:  Derivation of the element equations could be achieved 

through the following: 

i. A typical element is picked from the mesh and then you construct variational formulation of 

the problem over that element. 

ii. An approximating solution of the variational problem over that element is assumed, and by 

substituting it in the system, the element equations are generated. The function employed to 

represent the solution within each element is called shape, basic or interpolating function the 

function. 

iii. The element matrix, which is also known as the stiffness matrix is constructed by using the 

element interpolation functions.   

Step 3: Assembly of Element Equations:  Assemble element equations to obtain the overall 

elements equations. Since the structure is composed of several finite elements, the individual 

element stiffness matrices and load vectors are to be assembled in a suitable manner. 

Step 4: Imposition of Boundary Conditions:  The physical boundary conditions are imposed on 

the assembled equation appropriately. 

Step 5: Solution to Assembled Equations:  The assembled equations finally obtained can be solved 

by any of the numerical techniques such as the Gauss elimination method, LU decomposition 

method.

       

 

Now on the substitution of equations (5) into (1) - (4), the following governing equations in non-

dimensional form are obtained. 
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Now (6) to be solved under the boundary conditions (9) using above mentioned method over the 

element    

                                              

(10)

 

Equation (3.5) is reduce to 

                                                                      

(11) 

 
Applying integration by part to equation (11) yield; 
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Where  and prime and dot denotes differentiation with respect to  and 

respectively. Assembling the equations for the two consecutive elements  and 

 the following is obtained 

     

 (16)
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difference schemes reads 
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Here  and h and k are the mesh size along y direction and time direction respectively. Index 

refers to space and refers to the time. In equations (6), (7) and (8), taking  and using the 

initials and boundary conditions (9), the following system of equations is obtained

 
         

Where 
 
matrices are of order n and  are column matrices having n components. The 

solution of the system of equations are obtained using Thomas algorithm for velocity, temperature 

and concentration. For various parameters the results are computed and presented graphically the 

skin friction, Nusselt number and Sherwood number are important physical parameters for this kind 

boundary layers flow. With known values of velocity, temperature and concentration fields,  

The skin-friction at the plate is given by non-dimensional form 
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The rate of heat transfer coefficient can be obtained in the terms of Nusselt number in non-

dimensional form, given as  
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The rate of mass transfer coefficient cab be obtained in terms of Sherwood number in non-

dimensional form given by 
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3.1 Velocity Profiles 

 

Figure 2: Effect of M on velocity profile 

 

Figure 3:  Effect Pr on velocity profile 

 

Effect 4: of K on velocity profile 
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Figure 5:  Effect of N on velocity profile 

 

 Figure 6:  Effect  on velocity profile 

 

Figure 7:  Effect of Ec on velocity profile 
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Figure 8: Effect of Sc on velocity profile 

 
Figure 9:  Effect Df on velocity profile 

Figure 2 illustrates the behavior of velocity for different values of Magnetic parameter M for both 

isothermal and ramped plate. From that figure it is noticed that as Magnetic parameter M increase 

the fluid velocity gets reduced at all point of the flow field. This is true since magnetic parameter 

produce resistive force, which acts opposite direction to the fluid motion. Similarly figure 3 displays 

the control Prandtl number Pr on fluid velocity for both isothermal and ramped plate. From that 

figure it is revealed that as Prandtl number Pr rises the fluid velocity also diminishes at all point of 

the flow field.  

Figure 4 shows the effect control of porosity parameter K on fluid velocity for both isothermal and 

ramped plate and it is also observed that an increase porosity parameter K leads to raise in fluid 

velocity at all point of the flow. Similarly figure 5 demonstrates the influence of the ratio of mass 

transfer parameter N on the fluid velocity for both isothermal and ramped plate. It is shown that the 

fluid velocity gets enhanced by increasing the values of the ratio of mass transfer parameter N for 

both isothermal and ramped plate. Likewise figure 6 demonstrate the influence of buoyancy term 

 on the fluid velocity for both isothermal and ramped plate. It is also clearly observed that the 

fluid velocity significantly get enhanced to for both isothermal and ramped plate by rising the values 

of buoyancy term .   

Figure 7 displays the effect of Eckert number Ec on the fluid velocity for both isothermal and ramped 

plate. It is observed that the fluid velocity slightly gets enhanced by increasing the values of Eckert 

number Ec increases the fluid velocity for both isothermal and ramped plate. Similarly figure 8 
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displays the effect of Schmidt number Sc on the fluid velocity for both isothermal and ramped plate. 

It is seen that the fluid velocity slightly gets enlarged by increasing the values of Schmidt number 

Sc for both isothermal and ramped plate. In a similar way figure 9 displays the effect of Dufour 

number Df on the fluid velocity for both isothermal and ramped plate. It is also observed that 

increasing the values of Dufour number Df leads to slight raise in the fluid velocity for both 

isothermal and ramped plate.  

 

3.2 Temperature Profiles 

 

Figure 10: Effect Pr  on temperature profile 

 

 
Figure 11:  Effect of K  on temperature profile

 
Figure 12: Effect  on temperature profile
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Figure 13:  Effect N on temperature profile 

Figure 10 depicts the influence of Prandtl number Pr on fluid temperature for both isothermal and 

ramped plate. It is revealed from that figure the fluid temperature gets reduced by increasing the 

values of Prandtl number Pr. While figure 11 depicts the influence of porosity parameter K on fluid 

temperature for both isothermal and ramped plate. It is also revealed from the figure that figure the 

fluid temperature increases by increasing the values of porosity parameter K. Similarly figure 12 

depicts the effect of buoyancy effect parameter 𝑟𝑡 on fluid temperature for both isothermal and 

ramped plate. It is clearly seen from that figure the fluid temperature gets intensified by increasing 

the values of buoyancy effect term 𝑟𝑡. In a similar way figure 13 shows the effect of ratio of mass 

transfer parameter N on fluid temperature for both isothermal and ramped plate. It is also clearly 

seen from that figure the fluid temperature gets significantly boosted by increasing the values of 

ratio of mass transfer parameter N for both isothermal and ramped plate. 

 

3.3 Concentration Profile 

 

Figure 14:  Effect Sc on Concentration profile 
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Figure 15:  Effect of Ec on Concentration profile 

Figure 14 and figure 15 displays the effect of Schmidt number Sc and Eckert number Ec on the 

fluid concentration for both isothermal and ramped plate. It is seen that the fluid concentration 

does not decrease or increase by increasing Schmidt number Sc or Eckert. 

 

3.4 Skin Friction Profile 

 

 Figure 16:  Effect of Df and 𝑟𝑡 on skin friction due to isothermal temperature 

 

Figure 17:  Effect of Df and 𝑟𝑡 on skin friction due to ramped temperature 



 
B. Y. Isah and F. Abdullah/ Journal of Energy Technology and Environment 

3(4) 2021 pp. 104-120 

118 

 

Figure 16 and 17 display the Dufour number Df and buoyancy parameter  on the fluid skin 

friction for both isothermal and ramped temperature and it is clearly seen in both figures that skin 

friction in figures (a) and (b) gets significantly enhanced with increase Dufour number Df and 

slightly enhanced with increasing buoyancy parameter . 

 

3.5 Nusselt Number  

 

Figure 18:  Effect of Df and 𝑟𝑡 on Nusselt number due to isothermal temperature 

  

Figure 19:  Effect of Df and 𝑟𝑡 on Nusselt number due to ramped temperature 

Figure 18 and 19 display the effect of Dufour number Df and buoyancy parameter  on fluid 

Nusselt number for both isothermal and ramped temperature and it is clearly seen that the Nusselt 

number in figures 18 and 19 (a) gets reduced by increasing Dufour number Df and it slightly 

increase by increasing buoyancy parameter  . While in figures 18 and 19(b), fluid Nusselt 

number gets intensified with increase Dufour number Df and there is no noticeable increase or 

decrease by increasing buoyancy parameter  buoyancy parameter . 
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3.6 Sherwood Number 

 

Figure 20:  Effect of Df and 𝑟𝑡 on Sherwood number due to isothermal temperature 

 

Figure 21:  Effect of Df and 𝑟𝑡 on Sherwood number due to ramped temperature 

Figure 20 and figure 21 displays the effect of Dufour number Df and buoyancy parameter  on 

fluid Sherwood number for both isothermal and ramped temperature and it is clearly seen that 

there is no any noticeable increase or decrease in Sherwood number in both figures by increasing 

either Dufour number Df or buoyancy parameter . 

 

4.   Conclusion 

 

The Dufour effects of electrically conductive fluid of unsteady heat and mass transfer Couette in the 

presence of buoyancy distribution effects due to ramped and isothermal temperature was 

investigated. From the study, the following conclusions were drawn: 

i. The velocity profile gets enlarged with increase of Dufour number Df, porosity parameter 

K, ratio of mass transfer parameter N, buoyancy effect term parameter rt Eckert number Ec, 

Schmidt number Sc and decreases with increase of Magnetic parameter M, Prandtl number 

Pr for both ramped and Isothermal temperature 

ii. The temperature profile gets magnified with increase of Porosity parameter K, ratio of mass 

transfer parameter N, buoyancy effect term parameterrt  and decreases with the increase of 

Prandtl number Pr for both ramped and Isothermal temperature  
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iii. The concentration profile gets enhanced slightly with increase of Schmidt number Sc and 

it neither increase nor decrease with increase of Eckert number Ec for both ramped and 

Isothermal temperature 

iv. At both y=0 and y=1, the skin friction is significantly enhanced with increase of Dufour 

number Df  and slightly increase with increase of buoyancy parameter rt  

v. At y=0 the Nusselt number decreases with increase of Dufour number Df and slightly 

increase with increase of buoyancy parameter rt  . At y=1 the Nusselt number gets enhanced 

with increase of Dufour number Df and there is no noticeable increase or decrease with 

increase of buoyancy parameter rt   

vi. At both y=0 and y=1, there is no noticeable increase or decrease in Sherwood number with 

increase of Dufour number Df and buoyancy parameter rt  .                                    
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