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In this study a predictive, model was developed for percentage 

dilution of mild steel welds using the artificial neural network expert 

system. Predicting responses beyond experimentation boundaries is 

a disadvantage to some other expert systems like the response 

surface methodology. The same percentage dilution data collected 

from the central composite experimental design was used for the 

ANN model. The data was normalized, trained and tested. The neural 

network architecture comprises, three (3) inputs, which is the 

current voltage and gas flow rate and one output which is percentage 

dilution, ten (10) neurons in the hidden layers and two (2) neurons 

in the output layer. Lavenberg-Marquardt algorithm was used for 

the data training. A performance evaluation plot showed that both 

the test data set and the validation data set have similar 

characteristics. The predicted values showed high correlation to the 

observed data.  
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1. Introduction 

Gas tungsten arc welding (GTAW) is known to be the best quality means for metal fabrication. 

Different grades of steel product can be constructed using this method for higher quality weld at 

minimum cost [1]. The different process parameters of Gas Tungsten Arc Welding (GTAW) affect 

the weld quality, an increase in the welding current has a positive influence on the deposition rate 

and hardness of the weld [2]. TIG welding process have been matched by some other heavy 

industrial welding processes  such as MIG/MAG, SAW, Beam Weldings,  because of the increasing 

demand of increased productivity[3]. Tensile strength happens to be a sensitive property to look out 

for in a welded structure, a predictive study was done using two different methods like response 

surface methodology and artificial neural network on friction stir welded AA7039 aluminium alloy 

[4 ].A  combination of Artificial neural network and a non-linear model was used to form a hybrid 

model to predict weld metal composition. 

 [5]. The artificial neural network model was used to investigate the correlation between the welding 

parameters and the mechanical properties of friction stir welding [6]. The distortion phenomenon of 

flux core arc welding was analyzed using artificial neural network 

A sensitivity analysis was done, which underlined main factors influencing distortion. It was 

observed that the percentage composition of carbon influenced the size of distortion produced 
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during the FCAW welding process [7] The mechanical properties of steel namely impact strength 

and hardness of the simulated HAZ in pipeline was modeled using the ANN algorithm to predict It 

was found that the three ANN models successfully predicted the mechanical properties. 

Furthermore, it was mentioned that the use of ANNs resulted in large economic benefits for 

organizations through minimizing the need for expensive experimental investigation and/or 

inspection of steels used in various applications [8]. The finite element method was used control the 

weld distortion and thermal deformation in a gas metal arc welding process 

 [9]. The affiliation between welded joint strength and welding parameters, such as, welding 

temperature, welding pressure and welding time was examined. The influence of process parameters 

on the joint strength was verified and best technical parameters were obtained.  It was established 

that the developed static model was in reasonable agreement with the actual data [10].  

 

2. Methodology 

 In this study an optimal experimentation to maximize penetration area was conducted. Gas tungsten 

arc welding process was used to join the weld specimen made of low carbon steel. The first step 

taken was to cut the mild steel coupons, sand paper and bevel the edges. Using the optimal 

experimental matrix as a guide, five set of welded samples was made for each experimental run 

which amounted to a total of one hundred weld samples. 

 

 2.1. Identification of Range of Input Parameters  

The input factors used in this research study are shielding gas flow rate, current, and speed and 

voltage. The range is captured in Table 1. 

 

. Table1: Range of input process parameters 

Independent Variables Range and Levels of Input Variables 

Lower Range (-1) Upper Range (+1) 

Welding Current (Amp) X1 180 240 

Welding Voltage (Volt) X2 18 24 

Gas flow rate (Lit/min) X3 11 14 

 

2.2. Method of Data Collection   

20 sets of experimental was conducted, considering current voltage and gas flow rate and percentage 

dilution as the output parameter. The input parameters and output parameters make up the 

experimental matrix, and the responses recorded from the weld samples were used as the data. 

Table2 shows the central composite design matrix. 

 

Table 2: Experimental data 

Run Current Voltage Gas flow %Dilution 

1 110 20 11 54 

2 110 21 12 54 

3 110 22 13 56.7 

4 110 23 14 56.4 

5 120 20 11 56.22 

6 120 21 12 56.17 

7 120 22 13 56.55 



Erhunmwunse B.O and Ikponmwosa-Eweka O     / Journal of Energy Technology and Environment  

Vol. 3(3) 2021 pp. 63-71 

65 

 

8 120 23 14 56.21 

9 130 20 11 56 

10 130 21 12 54 

11 130 22 13 57 

12 130 23 14 56 

13 140 20 11 56 

14 140 21 12 55 

15 140 22 13 57 

16 140 23 14 57 

17 150 20 11 56 

18 150 21 12 56 

19 150 22 13 54 

20 150 23 14 57 

 

2.3. Experimental procedure 

 Mild steel plate was used as the base material for the single-pass surface welding with a direct 

current of reverse polarity. The samples were grinded, sand cleaned and etched to get a fine edge 

because sample has to be free from grease and dirt.100 pieces of mild steel   coupons was produced 

for this experiment using 100% argon gas as the shielding gas. In this process the tungsten non 

consumable electrode having diameter 3 mm was used alongside a 2 mm diameter filler metal 

ER309Lthe responses were measured and recorded respectively. Input data employed in the 

training, validation and testing were obtained from series of batch experiments based on the central 

composite design of experiment under varied welding current, welding voltage and gas flow rate. 

The data were randomly divided into three subsets to represent the training (60%), validation (25%) 

and testing (15%).  

 

3 Results and Discussion   

In this study, an attempt is made to develop an artificial neural network model to predict percentage 

dilution. Table 3 shows a section of the normalized form of the data which has three input variables 

representing current, voltage and gas flow rate and one output variables: % dilution. 

  

Table 3: Normalized form of the data 

Current Voltage Gas Flow Rate % Dilution  

0.50000 0.00000 0.50000 0.00000 

0.20273 0.79762 0.20238 0.00000 

0.50000 0.50000 0.50000 0.90000 

0.50000 0.50000 0.50000 0.80000 

0.50000 0.50000 1.00000 0.74000 

1.00000 0.50000 0.50000 0.72333 

0.00000 0.50000 0.50000 0.85000 

0.20273 0.20238 0.20238 0.73667 

0.79727 0.79762 0.79762 0.66667 

0.50000 1.00000 0.50000 0.00000 

0.50000 0.50000 0.50000 1.00000 

0.50000 0.50000 0.00000 0.66667 
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0.79727 0.79762 0.20238 0.66667 

0.79727 0.20238 0.20238 0.33333 

0.50000 0.50000 0.50000 1.00000 

0.50000 0.50000 0.50000 1.00000 

0.20273 0.79762 0.79762 0.66667 

0.20273 0.20238 0.79762 0.66667 

0.79727 0.20238 0.79762 0.00000 

0.50000 0.50000 0.50000 1.00000 

 

The aim of normalization was to reduce the weight of the input and output variables to lower range 

of between 0 and 1 so as to allow for effective network training and accurate modelling and 

prediction. The parameters used in normalizing the input and output data is presented in Figure 1. 

 

 

Figure  1: Parameters used in normalizing the raw data input 

It has training and test performances of 0.900063 and 0.799922 respectively with associated low 

training and test errors of 0.021067 and 0.031933 relatively. Accordingly, our model network will 

have the following architecture Network type: MLP,Number of Hidden layer: 1,Number of Neurons 

in hidden layer: 10,Training Algorithm: Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Quasi-

Newton, Error function: Sum of Squares (SOS),Hidden activation function: Hyperbolic tan (Tanh), 

Output activation function: Identity It is worth mentioning however that the above architecture is 

only a basis or starting point for our model. . The network properties are presented in Figure2. 

A learning rate of 0.01, momentum coefficient of 0.1, target error of 0.01, analysis update interval 

of 500 and a maximum training cycle of 1000 epochs was used. The network generation process 

divides the input data into training data sets, validation and testing. For this study, 60% of the data 

was employed to perform the network training, 20% for validating the network while the remaining 

20% was used to test the performance of the network. Using these parameters, an optimum neural 

network architecture was generated as presented in Figure 3.  
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Figure 2: Network properties used for ANN modelling for predicting %dilution 

 

 

 
Figure 3: Artificial neural network architecture 

 

The network training diagram generated for the prediction of percentage dilution using back 

propagation neural network is presented in Figure 4. 

 

The gradient function was calculated to be 1.20e-08 with a training gain (Mu) of 1.00e-9. Validation 

check of six (6) was recorded which is expected since the issue of weight biased had been addressed 

via normalization of the raw data. A performance evaluation plot which shows the progress of 

training, validation and testing is presented in Figure 5. 

 

From the performance plot of Figure 5, no evidence of over fitting was observed. An error value of 

0.0700 at epoch 4 is an evidence of a network with strong capacity to predict the %dilution. The 

training state, which shows the gradient function, the training gain (Mu) and the validation check, 

is presented in Figure 6. 
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Figure 4: Network training diagram for predicting %dilution 

 

 

 
Figure 5: Performance curve of trained network for predicting %dilution 

 

 
Figure 6: Neural network training state for predicting %dilution 
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The regression plot which shows the correlation between the input variables (current, voltage and 

gas flow rate) and the target variable (%dilution} coupled with the progress of training, validation 

and testing is presented in Figure 7. 

 

 
Figure 7: Regression plot showing the progress of training, validation and testing 

 

The regression plot shows the actual network outputs plotted in terms of the associated target values.  

The training, validation and test samples show very high correlation coefficient values of 0.9584, 

0.99217 and 0.93074 respectively. To test the reliability of the trained network, the network was 

thereafter employed to predict its own values of %dilution using the same sets of input parameters 

(current, voltage and gas flow rate) as presented in Table 4. 

 

Table 4; ANN Predicted values for percentage dilution 

 

Current Voltage 
Gas Flow 

Rate 

% Dilution 

Exp. 

% Dilution 

ANN 

1 110 20 11 54.00 53.99687 

2 110 21 12 54.00 53.98468 

3 110 22 13 56.70 57.00267 

4 110 23 14 56.40 57.00267 

5 120 20 11 56.22 55.06727 

6 120 21 12 56.17 56.17808 

7 120 22 13 56.55 56.54974 

8 120 23 14 56.21 56.69308 

9 130 20 11 56.00 56.41465 

10 130 21 12 54.00 54.00363 
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11 130 22 13 57.00 57.00267 

12 130 23 14 56.00 56.03793 

13 140 20 11 56.00 55.99614 

14 140 21 12 55.00 55.04318 

15 140 22 13 57.00 57.00267 

16 140 23 14 57.00 57.00267 

17 150 20 11 56.00 55.57249 

18 150 21 12 56.00 55.79745 

19 150 22 13 54.00 53.99503 

20 150 23 14 57.00 57.00267 

 

Based on the observed and the predicted values of %dilution a plot showing the difference between 

the percentage dilution experimental value and the ANN predicted values is shown in Figure 8. 

 

 
Figure 8: Plot of percent dilution from experiment and neural network 

4. Conclusion  

In this study an approach using artificial neural network to develop a predictive model to maximize 

the percentage dilution in TIG welding has been achieved. The neural network architecture 

comprises, three (3) inputs, ten (10) neurons in the hidden layers and two (2) neurons in the output 

layer. The predictions made shows high correlation with experimental data. A performance 

evaluation plot showed that both the test data set and the validation data set have similar 

characteristics. There is no evidence that over fitting occurred.  
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