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 Scaling rules can be effectively applied to predict the behavior of 

reinforced concrete (RC) structure based on the properties of an 

identical model with scaled geometry. Physical or numerical 

modelling serves as a fundamental approach to explain the dynamics 

of engineering system. In this scientific article, optimising model 

factor for the prediction of actual behaviour of full-scale RC beam 

was investigated. Eight (8) model RC beams with scale factors 

ranging from 2 to 8 was produced and tested in bending based on 

Buckingham pi theorem. RC beam which had been investigated 

experimental by Kachlakev and McCurry [21] was used as the full-

scale beam. Results showed that scale factors 2 to 5 were adequately 

large and gave the best prediction concerning similarity with the full-

scale beam, the models proved satisfactorily yielding best results in 

terms of similarity to the actual prototype. When performing model 

tests for RC structure, the effect of the scale factors must at all times 

be taken into account and scale effect, the size effect has to be well 

thought out, and a clear difference must be reached between the two. 

As well, little variation in the material properties could alter the 

behaviour. Load-deflection curve for the prototype and model beam 

exhibits a similar trend, with an initial linear relationship 
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1. Introduction 

Physical or numerical modelling serves as a fundamental approach to explain the behavioral 

dynamics of engineering system, elements, or structures, as highlighted by Roberto & Jorge [1]. 

One such instance of a model representing a whole structure or a portion of a structure is the physical 

modelling of a structure made of reinforced concrete (RC), as outlined by Coutinho et al. [2]. The 

choice of an appropriate scale for the model is paramount, ideally maximizing its size [3]; however, 

it is constrained by practical laboratory factors [4]. Laboratory testing is a crucial component in the 

conception of a product [3], even though theoretical and numerical analytical techniques are also 

very important tools. Before being put to use, their behavior needs to be confirmed by full-scale 

laboratory testing. By doing this, safety, performance, and desired reliability can be achieved [5- 6]. 

Holmes & Sliter [7] demonstrate how using scaled models saves cost and time. The authors 

anticipate that a single model test saved up to 1/3 of the cost of a corresponding full-scale structure 

and testing project. The cost and time of fully-scale laboratory testing is reduced by at least one-

third when a model is used [7]. An entire laboratory test, including a combination of small-scale and 

https://doi.org/10.5281/zenodo.15118882.
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full-scale models, would result in higher economic and temporal efficiency as reported by Taylor 

[8]. Similitude philosophy defines the requirements of developing a model of a full-scale and 

predicting the actual behavior using the model information, which was reported by Shuai et al. [9]. 

Similitude theory relates the small scale (model) to the actual size (prototype) RC element [10]. In 

many contemporary uses, the growing level of detail in engineering problems means that numerical 

and theoretical assessments are not sufficient (and entirely inappropriate for extremely complex 

constructions) for examining if a system's behavior matches the specifications of the design [11]. 

Because of the limitations of full-scale testing, there is considerable demand for laboratory tests [4]. 

As a result, the use of similitude method has increased rapidly. In fact, this method is used broadly 

in different disciplines and applications.  

According to Zhu [12], similitude theory initially appeared in the 1800 years ego. In truth, Galilei 

& Weston [13] argued that the strength and RC element size do not reduce in the same proportion; 

the authors reported that as dimensions reduces, the strength increases. The unusual component of 

this statement is that the authors were already dealing with size effects in the 18th century. Rayleigh 

[14] is one of the first authors to discuss scientific models relative to dimensional analysis. Though 

Rayleigh [14]’s work attempted to highlight the significance of similitude procedures, particularly 

in engineering programme, as noted in Zhu [12]. Three (3) decades had passed until the publishing 

of another work that highlights the effectiveness of similitude techniques as discussed by Zohuri 

[15]. The technique of dimensional analysis was first used to solve basic and complex issues using 

a systematic approach. This led to a thorough understanding of the modelling of components with 

stress-strain properties and significant deflections. Simitses et al. [16] present a review in which 

similitudes and modelling approaches are based on dimension analysis. Yazdi & Rezaeepazhand 

[17] provide understanding into obtaining similitude criteria using both dimensional 

analysis application of governing equations. Zohuri [15] presents an overview of classical 

dimensional analysis before delving deeper into the issues, which exceed Buckingham's Pi theorem. 

Full-scale experimental testing is time consuming and costly; it can be problematic to carry out in 

some situations as reported by Jian et al. [3]; in certain instances, the value of the information 

collected is insufficient to justify the expense and time required [10]. For these factors, it is 

advantageous to develop an accurate model of the actual system, that is, a reliably model of 

predicting the full-scale that can be study at a reduced cost and time. The aim of this paper is to 

provide a strength model factor for the prediction of actual behavior of full scale reinforced concrete 

beam, which has had limited reports. The strength model represents a direct model covering 

materials similar to those used in the prototype [15], offering predictive understanding into the 

prototype's behavior under various loads until failure. To effectively model a RC structure in terms 

of strength, it necessitates the use of model concrete and model-reinforcing elements, with each 

material adhering to similitude conditions requisite for reflecting the prototype materials [18]. 

2. Material and Method 

 

2.1 Similitude Method 

 

The Buckingham pi theorem as reported by Buckingham [19] and Alessandro et al. [20] was used 

to actualize the similitude approach, the procedure concerned with the relationship between physical 

quantities in the following way: 

If y1, y2, ...... yn are quantities that are interrelated by a functional form, this relationship can be 

expressed as 

𝑓(𝑦1,   𝑦2, … … . . 𝑦𝑁) = 0                                                                                                                            (1) 
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Equation (1) can be expressed as  

   Φ(Π1,   Π2, … … . . Π𝑁) = 0                                                                                                                      (2)                                                                                           

where the pi terms are dimensionless terms of the physical variables y1 through yn 

Buckingham further revealed that by chosen, for example, variable 𝑦1,   then       

𝑦1   = 𝐾𝑦2
𝑎. 𝑦3

𝑏 . 𝑦4
𝑐  𝑒𝑡𝑐                                                                                                                            (3) 

where K = Constant, and a, b, c are to calculated. 

Considering a deformable body, the displacement u of the body will certainly involve length, 

elastic modulus E, point load, Q, and moment, M. 

𝑓(𝑢, 𝑄, 𝑙, 𝐸, 𝑀) = 0                                     𝑓(𝑦1,   𝑦2,   𝑦3,   𝑦4,   ) = 0                                                 (4) 

𝑜𝑟                                 𝑢 = Φ(Q, l, E, M)                                                                                                  (5) 

𝑜𝑟                                 𝑢 = K𝑄𝑎𝑙𝑏𝐸𝑐 𝑀 𝑑                                                                                                 (6) 

where a, b, c are constant to be calculated 

by introducing the fundamental dimensions (Length L, Time T, force F) 

𝐿 = K𝐹𝑎𝐿𝑏(𝐹𝐿−2)𝑐 (𝐹𝐿) 𝑑                                                                                                  
𝐿1 = K𝐹𝑎𝐿𝑏𝐹𝑐𝐿−2𝑐 𝐹𝑑𝐿𝑑    
𝐿1 = K𝐹𝑎+𝑐+𝑑   𝐿𝑏−2𝑐+𝑑 

Equating the indices, we have 

0 = 𝑎 + 𝑐 + 𝑑 ⟹ 𝑐 = −𝑎 − 𝑑 

1 = 𝑏 − 2𝑐 + 𝑑 ⟹ 𝑏 = 1 + 2𝑐 − 𝑑 

𝑏 = 1 + 2(−𝑎 − 𝑑) − 𝑑 

𝑏 = 1 − 2𝑎 − 3𝑑 

Substituting into (6) 

𝑢 = K𝑄𝑎𝑙1−2𝑎−3𝑑𝐸−𝑎−𝑑 𝑀 𝑑 

𝑢 = K𝑄𝑎. 𝑙1. 𝑙−2𝑎. 𝑙−3𝑑𝐸−𝑎. 𝐸−𝑑. 𝑀 𝑑 

𝑢

𝑙
= K (

𝑄

𝑙2𝐸
)

𝑎

. (
𝑀

𝑙3𝐸
)

𝑑

 

𝑢

𝑙
= K (

𝑄

𝑙2𝐸
)

𝑎

. (
𝑀

𝑙3𝐸
)

𝑑

 

Φ (
𝑢

𝑙
,

𝑄

𝑙2𝐸
,

𝑀

𝑙3𝐸
) = 0                  𝑜𝑟                  Φ(Π1, Π2, Π3) = 0                                                    (7)  

𝑤ℎ𝑒𝑟𝑒 Π1 =
𝑢

𝑙
,      Π2 =

𝑄

𝑙2𝐸
,      Π3 =

𝑀

𝑙3𝐸
 

According to Buckingham, subsequently 

Π1 = Φ(Π2, Π3 … . . Π𝑛)                                                                                                                     (8) 

then, Next, concerning the prototype (p) and its corresponding model 
Π1𝑝

Π1𝑚
=

Φ(Π2𝑝, Π3𝑝 … . . Π𝑛𝑝)

Φ(Π2𝑚, Π3𝑚 … . . Π𝑛𝑚)
 

If perfect similarity exists, all dimensionless pi variables in the prototype and model are the same. 

Therefore, 

Π1𝑝 = Π1𝑚                                                                                                                                                (9) 

 

2.2  Development of Scaling Factors 

 

In model analysis, it's typical to establish the scaling factor for a specific parameter 'i' (which 

could represent stress, E, length, 𝑙 , etc.) as the quotient of the prototype value ip divided by the 

model value im, [19], 

S𝑖 =
𝑖𝑝

𝑖𝑚
⁄                                                                                                                                            (10)  

So, when considering length ' 𝑙 ', the scaling factor 'S' is defined as follows: 



John A. TrustGod et al./ Journal of Energy Technology and Environment 

7(1) 2025 pp. 134-147 

137 

 

S𝑙 =
𝑙𝑝

𝑙𝑚
⁄                                                                                                                                             (11) 

This criterion directly governs the geometric resemblance to the prototype. Another crucial aspect, 

particularly in structural analysis, is the material property (modulus of elasticity). Using this as a 

scaling factor, 

S𝐸 =
𝐸𝑝

𝐸𝑚
⁄                                                                                                                                            (12) 

From Eq. (9) 

Π1𝑝 = Π1𝑚, 𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑎𝑛𝑠 𝑡ℎ𝑎𝑡; 

Π2𝑝 = Π2𝑚        𝑜𝑟           
𝑄𝑝

𝑙2
𝑝𝐸𝑝

=
𝑄𝑚

𝑙2
𝑚𝐸𝑚

                                                                                          (13) 

 𝑆𝑄 =
𝑄𝑝

𝑄𝑚
=

𝐸𝑝

𝐸𝑚
(

𝑙𝑝

𝑙𝑚
)

2

= 𝑆𝐸 . 𝑆𝑙
2                                                                                                 (14) 

Also, 

Π3𝑝 = Π3𝑚        𝑜𝑟           
𝑀𝑝

𝑙3
𝑝𝐸𝑝

=
𝑄𝑚

𝑙3
𝑚𝐸𝑚

                                                                                       (15) 

𝑆𝑀 =
𝑀𝑝

𝑀𝑚
=

𝐸𝑝

𝐸𝑚
 (

𝑙𝑝

𝑙𝑚
)

3

= 𝑆𝐸 . 𝑆𝑙
3                                                                                                  (16) 

 

2.3  Reinforced concrete models 

 

To determine the scaling factors, dimensional evaluation is once again necessary. In RC 

applications, it's advantageous to consider stress '𝑆𝜎 ' and length '𝑆𝑙 ' as the required scaling factors 

[9]. Once more, it's preferable to limit the parameters considered for the analysis to u, σ, Q, l, M, 

and ρ, where ρ represents the density of concrete. Consequently, the governing equation can be 

expressed as follows: 

𝑓(𝑢, 𝜎, 𝑄, 𝑙, 𝑀, 𝜌 ) = 0   
𝑢 = Φ(𝜎, Q, l, M, ρ)                    
𝑢 = K𝜎𝑎 . 𝑄𝑏 . 𝑙𝑐. 𝑀 𝑑ρ𝑒                                                                                                                           (17) 

by introducing the fundamental dimensions (Length L, force F) 

𝐿 = K(𝐹𝑙−2)𝑎. 𝐹𝑏 . 𝐿𝑐. (𝐹𝐿) 𝑑(F𝐿−3)𝑒 

𝐿 = K(𝐹𝑙−2)𝑎. 𝐹𝑏 . 𝐿𝑐. (𝐹𝐿) 𝑑(F𝐿−3)𝑒 

𝐿 = K𝐹𝑎+𝑏+𝑑+𝑒    𝐿−2𝑎+𝑐+𝑑−3𝑒 

Equating the indices, we obtain 

𝑎 + 𝑏 + 𝑑 + 𝑒 = 0 ⟹  𝑏 = −𝑎 − 𝑑 − 𝑒 

−2𝑎 + 𝑐 + 𝑑 − 3𝑒 = 1 ⟹ 𝑐 = 1 + 2𝑎 − 𝑑 + 3𝑒 

Substituting into Eq (17) 

𝑢 = K𝜎𝑎 . 𝑄−𝑎−𝑑−𝑒 . 𝑙1+2𝑎−𝑑+3𝑒. 𝑀 𝑑ρ𝑒   
𝑢 = K𝜎𝑎𝑄−𝑎. 𝑙2𝑎  𝑙 . 𝑀 𝑑𝑄−𝑑 𝑙−𝑑ρ𝑒𝑄−𝑒𝑙3𝑒 

𝑢

𝑙
= K (

𝜎. 𝑙2

𝑄
)

𝑎

  (
𝑀

𝑄𝑙
)

𝑑

(
𝜌𝑙3

𝑄
)

𝑒

 

𝑢

𝑙
= K (

𝜎. 𝑙2

𝑄
)

𝑎

  (
𝑀

𝑄𝑙
)

𝑑

(
𝜌𝑙3

𝑄
)

𝑒

 

Φ [
𝑢

𝑙
,
𝜎𝑙2

𝑄
,
𝑀

𝑄𝑙
,
𝜌𝑙3

𝑄
 ] = 0 

 𝑜𝑟     Φ(Π1, Π2, Π3, Π4) = 0                                                     

Π1 =
𝑢

𝑙
, Π2 =

𝜎𝑙2

𝑄
,      Π3 =  

𝑀

𝑄𝑙
,        Π4 =  

𝜌𝑙3

𝑄
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Likewise, it can be demonstrated that 

Π2𝑝 = Π2𝑚 

𝑆𝑄=

𝜎𝑝𝑙𝑝
2

𝑄𝑝
=

𝜎𝑚𝑙𝑚
2

𝑄𝑚
 

𝑆𝑄=

𝑄𝑝

𝑄𝑚
=

𝜎𝑝

𝜎𝑚
( 

𝑙𝑝

𝑙𝑚
)

2

= 𝑆𝜎. 𝑆𝑙
2                                                                                                            (18) 

 𝑆𝑀=

𝑀𝑝

𝑀𝑚
=

Q𝑃𝑙𝑝

Q𝑚𝑙𝑚
 

𝑆𝑀=

𝑀𝑝

𝑀𝑚
= 𝑆𝜎. 𝑆𝑙

2 (
𝑙𝑝

𝑙𝑚
) = 𝑆𝜎. 𝑆𝑙

3                                                                                                       (19) 

𝑆𝜌 =
𝜌𝑝

𝜌𝑚
=

𝑄𝑝

𝑄𝑚
( 

𝑙𝑚

𝑙𝑝
)

3

= 𝑆𝜎/𝑆𝑖                                                                                                         (20) 

 

2.4 Model and prototype beams 

 

The beam presented in Figures 1 and 2 was considered as prototype and which had been investigated 

experimental by Kachlakev & McCurry [21], Kachlakev et al. [22] and Hamid et al. [23]. The 

prototype RC beam has an effective length of 5.485 m with a cross-section of 0.305 m x 0.770 m 

with specific reinforcement details as presented in Table 1. A two-point load configuration was 

applied, with a spacing of 1.825 meters between the loads. The flexural steel bar is depicted in 

Figures 1 and 2. No reinforcement was provided; the beam was constructed and tested at the 

laboratory of Oregon State University. The beam was reported failed at 476 kN and 482 kN by 

Kachlakev et al. [22] and Hamid et al. [23], respectively. The yield stress of steel and the 

compressive strength concrete was reported was reported as 414 and 20.7MPa, respectively.  

 

2.5 Experimental Design  

 

The experimental design adopts Kachlakev et al. [22] beam by scaling down the beam with 2, 3, 4, 

5, 6, 7, and 8 scale factors. The study intends to provide a strength model factor for the prediction 

of the actual behavior of a full-scale reinforced concrete beam. The beam from Kachlakev et al. [22] 

was taken as the prototype beam. Thus, the materials considered in this investigation were Portland 

limestone cement that met EN 197-1[24] requirements and fine and coarse aggregates with specific 

gravities of 2.6 and 2.7, respectively, according to ASTM C128 [25]. To guarantee acceptable 

workability and strength development, a water-cement ratio (w/c) of 0.55 was employed, following 

Neville's [26] recommendations. The reinforcements in metric sizes of the prototype and model 

beams, as well as geometry configurations, are shown in Table 1. A total of eight (8) model beams 

with model factors of 2, 3, 4, 5, 6, 7, and 8 were produced for this investigation. 

The experimental design followed the similitude principles outlined in the research, which were 

derived using the Buckingham Pi theorem and dimensional analysis. The scaling factors for various 

parameters, such as length (SL), modulus of elasticity (SE), load (SQ), and moment (SM), were 

determined based on the relationships between the prototype and model properties. 

 

2.6 Determination of model beam dimensions 

 

The model beams were designed and produced following the similitude principles outlined in the 

research. The geometric properties, such as length, width, height, and reinforcement diameters, were 

scaled down according to the respective scale factors. For instance, model beam B (scale factor 2) 

had dimensions of 2743 mm length, 153 mm width, and 384 mm height, with reinforcement details 

as shown in Table 1. The process is demonstrated as: 



John A. TrustGod et al./ Journal of Energy Technology and Environment 

7(1) 2025 pp. 134-147 

139 

 

 

Sample B (scale factor of 2) 
𝑙𝑝

𝑙𝑚
= 𝑆𝑙 ⟹ 𝑙𝑚 =

𝑙𝑝

𝑆𝑙
=

5485

2
= 2743 𝑚𝑚 

𝑏𝑚 =
𝑏𝑝

2
=

305

2
= 153 𝑚𝑚 

∅𝑚 =
∅𝑝

2
=

16

2
= 8 𝑚𝑚 

 

The geometries of samples C, D, E, F, G, H, and I were computed as samples B. The samples A, B, 

C, D, E, F, G, H, and I are grouped as geometric properties of the prototype, which must be 2, 3, 4, 

5, 6, 7, and 8 times the models, respectively. A two-point load bending test was conducted for each 

model beam as depicted in Figure 1. The two-point bending test proposed for the model beams 

follows the recommendations of ASTM C78/C78M [27] for examining the load-deflection behavior 

and failure loads of RC beams, which is a widely accepted testing method. The loads and 

corresponding defections were recorded for each model beam during the testing. 

 

 

 
 

                               Figure 1: Typical steel reinforcement locations [21] 
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                  Figure 2. Finite element modeling parts in ABAQUS [23] 

 

 

Table 1 Beam Configuration 
Sample 

ID 

Scale 

Factor 

Beam dimensions Reinforcement  

L (mm) b (mm) h (mm) Bottom Top 

A 1 5485 305 768 3#22+2#19 2#16 

B 2 2,743 153 384 1#20+1#12 2#8 

C 3 1,828 102 256 1#12+1#10 2#5 

D 4 1,371 76 192 1#10+1#6 2#4 

E 5 1,097 61 154 1#8+1#5 2#3 

F 6 914 51 128 1#6+1#5 2#3 

G 7 784 44 110 1#5+1#4 2#2 

H 8 686 38 96 #6 2#2 

 

 

3. Results and Discussion 

 

The model beams were loaded to failure at the Civil Engineering Laboratory, Niger Delta 

University. The capacity, mode of failure, and deflection results of beams are given in Table 2. 

Figures 3 down to 7 show load-defection curves for model and prototype beam, both beams 

exhibited the same trend, which is similar to those reported by Hamid et al. [23]. 

 

3.1 Load-deflection plot  

 

The load-deflection plots presented in the study provide critical insights into the behaviour of the 

reinforced concrete beams under flexural loading, allowing for a comprehensive analysis of the 

scaling accuracy and the prediction capabilities of the proposed methodology. The deflection was 

observed and recorded at the midpoint of the bottom surface of the model beams, as this location is 

expected to experience the maximum deflection due to the applied load. The initial occurrence of 

cracking is marked by a change in the slope occurring at around 78.3 kN for the prototype, as 

reported by Kachlakev & McCurry [21], 18.4 kN, 8.2 kN, 4.3 kN, 2.89 kN, 1.92 kN, 1.45 kN, and 

1.15 kN for samples B, C, D, E, F, G, and H, respectively, as shown in Figures 3 to 7. This change 
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in slope is a clear indication of the transition from the uncracked state to the cracked state, marking 

a significant point in the structural behaviour of the beams. 

 

Figure 3(a) presents the load-deflection curve for the prototype beam, as reported by Kachlakev and 

McCurry [21], while Figure 3(b) shows the load-deflection curve for the model beam with a scale 

factor of 2 (Sample B). Both curves exhibit a similar trend, with an initial linear relationship between 

load and deflection, followed by a nonlinear region as the beam approaches its ultimate capacity. 

Figures 4(a) to (b), 5(a) to (b) and 6(a) to (b) show the load-deflection curve for the model beams 

with a scale factor of 3, 4, 5, 6, 7, and 8, respectively. The curve exhibits a linear response up to the 

maximum load of 57.27, 29.7, 19, 13. 17, 9.5, and 7.1 kN, followed by a gradual decline in load-

carrying capacity as the deflection increases. This behavior is consistent with the expected response 

of a reinforced concrete beam, where the initial linear response represents the elastic stage, and the 

gradual decline represents the post-yield, plastic deformation stage. The differences in the maximum 

loads and deflections between the model beams are in line with the scaling factors applied, as 

discussed earlier. 

3.2 Comparison of Scale Ratios 

 

Table 3 and Figure 7 revealed that the scale factors of 2, 3, 4, 5, and 6 adequately gave the best 

prediction concerning similarity with the prototype. It is clear that prototype and model beams 

behave almost the same; the error recorded (less than 5%) is presented in Table 3. These findings 

were similar to those of Noor & Boswell [28]. The study also revealed that when performing model 

tests for RC structure, the effect of the scale ratio must at all times be taken into account. In addition 

to the scale effect, the size effect has to be well thought out, and a clear difference must be reached 

between the two. The findings are similar to those of Marcilio & Roberto [10]. As well, little 

variation in the material properties could alter the behavior [29]. 

 

The results observed and presented in Tables 2 and 3 confirmed the importance of model testing for 

RC structures, which is in line with Holmes & Sliter [7]. Explicitly, the models scaled down by 2, 

3, 4, 5, and 6 scale factors, exhibiting a commendable degree of reliability for the prototype RC 

beam. This finding holds a significant implication for the similitude technique, stressing the 

necessity of careful consideration for scale factors during the model study. 

 

Table 2: Direct measured results 
Sample ID Scale 

Factor 

First crack 

load 

kN 

Deflection 

at first 

Load (mm) 

Failure load 

kN 

Deflection 

at failure 

Load (mm) 

Failure 

mode 

A 1 78.3 1.5 476 24.5 Shear  

B 2 18.4 0.65 118.8 12.12 Flexural  

C 3 8.2 0.45 52.78 8.14 Flexural 

D 4 4.3 0.32 29.7 6.10 Flexural  

E 5 2.89 0.29 19.0 4.8 Flexural  

F 6 1.92 0.22 13.17 4.00 Flexural  

G 7 1.45 0.2 9.5 3.35 Flexural  

H 8 1.15 0.14 7.1 2.92 Flexural  
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(a)                                                                    (b) 

Figure 3: Load-deflection curve (a) the Prototype beam [21]; (b) model beam scale down by a scale factor of 2 

 

 
(a)                                                                                                    (b) 

Figure 4: Load-Deflection Curve. (a)  model beam scales down by a scale factor of 3: (b) model beam scale 

down by a scale factor of 4. 

 
(a)                                                                                                   (b) 

Figure 5: Load-Deflection Curve. (a) model beam scales down by a scale factor of 5; (b) model beam scale 

down by a scale factor of 6 
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                                            (a)                                                                                         (b) 
Figure 6: Load-Deflection Curve. (a) model beam scale down by a scale factor of 7; (b) model beam scale down 

by a scale factor of 8. 

 
 
                      Figure 7 Load-deflection curve for the prototype and the predicted prototype beams  

 

Figure 7 illustrates the load-deflection relationship of the beams, comparing both the prototype and 

the predicted prototype, beams based on the scaled-up results from the model beams. Overall, the 

predicted prototype results closely align with Kachlakev & McCurry's [21] data, demonstrating 

strong agreement in the load-deflection plot. Notably, the predicted load-deflection curve based on 

the 1:2 scale model beam (B) showed the closest agreement with the experimental results reported 

by Kachlakev et al. [22] and Hamid et al. [23] for the prototype beam (A). The ultimate load 

predicted from the 1:2 scale model was 472 kN, which is within 1% and 2% of the experimentally 

reported values of 476 kN [22] and 482 kN [23], respectively. The closeness of the 1:2 scale model 

predictions to the actual prototype behavior can be attributed to the relatively larger scale factor 

used, minimizing the size effect discrepancies. As the scale factor increased (i.e., smaller model 

sizes), the predictions deviated further from the prototype behavior, likely due to the amplified size 

effect and other scaling inaccuracies. 

 

These findings support the applicability of the similitude theory and the proposed methodology for 

predicting the behavior of full-scale reinforced concrete beams using scaled-down models. 

However, it is evident that the scale factor plays a crucial role in the accuracy of the predictions, 

with larger scale factors (closer to the prototype size) yielding more reliable results. 
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Having obtained enough information on the model and prototype beams, we can evaluate the 

viability of using the failure load of the model beams to predict the prototype beam, using Equation 

(18). The ultimate capacity of the prototype beam, as reported in Table 2, was 476 kN and 482 kN, 

respectively, in the two previous studies. This aligns with the findings from the model beam with a 

scale factor of 2, 3, 4, 5, 6, 7, and 8, which had an ultimate capacity of 118.8, 57.27, 29.7, 19, 13. 

17, 9.5, and 7.1 kN kN, respectively. Applying the scaling factor of 2, 3, 4, 5, 6, 7, and 8 (as per 

Equation 18), the expected ultimate capacity of the model beams corresponding to the prototype 

would be as presented in Table 3.  

 

Table 3: Predicted values 
Samples 

group 

 

Scale 

Factor 

(𝑺𝒊) 

𝑺𝒒𝒖𝒂𝒓𝒊𝒏𝒈 𝒕𝒉𝒆 

𝑺𝒄𝒂𝒍𝒆 𝒇𝒂𝒄𝒕𝒐𝒓 

(𝒔𝒊
𝟐) 

Failure load of 

the Model 

beams 

𝑸𝒎 (𝒌𝑵) 

Equation (18) 

𝑸𝑷(kN) 

      (𝑸𝑷 = 𝒔𝒊
𝟐 × 𝑸𝒎) 

Error 

% 

Predicted 

deflection at 

failure Load 

(mm) 

A - - - 476.3 - 24.50 

B 2 4 118.8 475.2 0.23  24.24 

C 3 9 52.78 475.02 0.27   24.42 

D 4 16 29.7 475.2 0.23   24.41 

E 5 25 19.0 475.0 0.27    24.0 

F 6 36 13.17 474.12 0.46    24.0 

G 7 49 9.5 465.5 2.27   23.45 

G 8 64 7.1 454.4 4.60    23.36 

 

 

 
                                     (a)                                                                                (b) 

Figure 8: (a) Prototype vs predicted prototype beam by a scale factor of 2; (b) Prototype vs 

predicted prototype beam by a scale factor of 3  

  

 
(a)                                                                                      (b) 

Figure 9: (a) Prototype vs predicted prototype beam by a scale factor of 4; (b) Prototype vs predicted prototype 

beam by a scale factor of 5   
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                                               (a)                                                                                     (b) 
Figure 10: (a) Prototype vs predicted prototype beam by a scale factor of 6; (b) Prototype vs predicted 

prototype beam by a scale factor of 7   

 

 
      Figure 11:  Prototype vs predicted prototype beam by a scale factor of 8   

 

Figures 8, through 11 describe a comparison between the prototype beam outlined by Kachlakev & 

McCurry [21] and Hamid et al. [23] and those predicted through model tests. The figures presented 

show an acceptably agreement between the prototype beam and predicted beams in all models. This 

confirms the accuracy of the similitude method adopted for model testing. As shown in Figures 8, 

9, 10, and 11, a significant number of the data points are located around the trendline, indicating 

comparable predicted model beams and the capacity of the prototype, which conform to the findings 

of Noor & Boswell [28]. This indicates a close relationship between the two results. However, a 

few data points show slight variances, presumably due to mild test errors. The coefficient of 

determination (R2) was obtained to be 0.9999, 0.9999, 0.9965, 0.9926, 0.9904, 0.9902, and 0.9901, 

demonstrating around 99.99%, 99.99%, 99.65%, 99.26%, 99.04%, 99.02% and 99.01% predictive 

ability for model factors 2, 3, 4, 5, 6, 7 and 8 respectively, as clearly shown in the figures.  

 

4. Conclusion 

 

This article presents a model factor determination from a prototype RC beam. The scale factors 2, 

3, 4, 5, 6, 7, and 8 were investigated and validated with existing experimental data in the literature. 

Similitude has proven to be a stimulating and valuable tool in engineering. The following 

conclusions are drawn from the results presented and discussed in section 3.0. They are: 
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i. scale factors 2 to 5 were adequately large and gave the best prediction concerning similarity 

with the full-scale beam called prototype, the models proved satisfactorily yielding best 

results in terms of similarity to the actual prototype;  

ii. the study revealed that when performing model tests for RC structure, the effect of the Scale 

factors must at all times be taken into account; 

iii. scale effect, the size effect has to be well thought out, and a clear difference must be reached 

between the two. As well, little variation in the material properties could alter the behaviour. 

iv. load-deflection curve for the prototype beam, as reported by Kachlakev & McCurry (2020) 

[21] and model beams exhibit a similar trend, with an initial linear relationship. 
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