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 The constantly growing population of the world and its accompanying 

energy utilization as well as the search for cleaner and sustainable 

energy sources for various activities of mankind has pioneered various 

research work in the field of biofuels over the years. This study compared 

the effects of both acid and alkaline pretreatment methods on 

lignocellulosic biomass (cassava bagasse) by comparing their yields of 

fermentable sugar for the production of biobutanol. The Response 

Surface Methodology (RSM) tool was used to ascertain the optimum 

conditions for both pretreatment methods by optimizing the input 

variables which are acid/alkaline concentration, temperature, and time 

of pretreatment. Using a central composite design (CCD), the maximum 

fermentable sugar yield obtained from the acid pretreatment was 798.52 

mg/L at 117.35 ℃, 30.98 minutes, and 2.1 % (w/w) H2SO4, while that of 

the alkaline pretreatment was a sugar yield of 1382.36 mg/L, at 115.41 

℃, 32.84 minutes and an alkaline concentration of 2.32% (w/w) NaOH. 

Overall, the results show that both pretreatment methods are effective 

for cassava bagasse but with alkaline having a higher yield. 
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1. Introduction 

The ever-increasing population of the world, accompanied by its energy demands which are mainly 

met by the use of fossil fuel resources has put humanity on the brink of an extreme energy and 

environmental crisis [1]. Governments, as well as the scientific community, have been prompted to 

look for an alternate source of energy due to the rapidly depleting fossil fuels and their detrimental 

effects on the environment [2]. Apart from the exhaustion of fossil fuels, other worldwide 

environmental concerns such as global warming, the greenhouse effect, and climate change need to 

be addressed [3]. As a result, the world needs sustainable, alternative energy to replace fossil fuels. 

Under this circumstance, the current demand for petroleum fuels may be offset by the profitable 

production of biofuels. Biofuels are an eco-friendly alternative to non-renewable fossil fuels due to 

their lower carbon emissions [4-5]. 
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The term “biofuel” simply means any fuel that comes from biomass, which includes animal waste 

and plant or algal matter. Biobutanol represents a promising biofuel that outperforms bioethanol in 

terms of energy content, octane number, low water solubility, and low corrosivity. Biobutanol can 

be made from a range of raw materials or renewable agricultural residues and crops using the 

acetone-butanol-ethanol (ABE) fermentation process by anaerobic bacteria [6]. 

 

Lignocellulosic biomass represents one of the best sources that can be effectively harnessed to serve 

as an alternative source of energy for mankind [7]. Lignocellulosic biomass is a plant composite 

which consists of lignin, cellulose and hemicellulose as parts of its cell wall structure. The cellulose 

and hemicellulose can easily be broken down into sugar monomers [8], which can further be utilized 

as a substrate for the fermentation process for biofuel production, while lignin is generally regarded 

as the glueing material that binds all the constituents of the lignocellulosic biomass together [9]. 

Lignocellulosic biomass such as wheat straw, cassava bagasse, corn cob, rice straw are readily 

available as they are usually generated from forestry and agricultural activities and are also generally 

considered as waste productions which are dumped indiscriminately in the environment [10]. In 

terms of landmass cultivated, Cassava (Manihot spp) is ranked seventh (7th) in the world’s most 

significant food crop, serving as the primary source of food for about 800 million people, especially 

in the poorest tropical regions like Sub-Sahara Africa [11]. However, the industrial processing of 

cassava crops generates a substantial amount of solid waste known as bagasse, which is typically 

discarded without proper treatment, posing significant environmental concerns. 

 

Being a carbohydrate-rich product, cassava bagasse has been discovered as a promising potential 

carbon source for the biological synthesis of value-added products like bioethanol and biobutanol 

[12] . There are three major processes involved in converting these lignocellulosic biomasses into 

these value-added products: pretreatment, enzymatic hydrolysis, and fermentation [13]. Enhancing 

the yield and efficiency of the lignocellulosic biomass bioconversion requires pretreatment. The 

complex coexistence of cellulose, hemicellulose, and lignin in lignocellulosic biomass poses a 

challenge to its natural conversion into valuable products. In this sense, pretreatment is essential to 

breaking up the intricate nature of lignocellulosic biomass in order to produce value-added products 

in a sustainable manner [14]. 

 

The main goals of pretreatment processes are to increase the surface area of the biomass, dissolve 

hemicellulose and/or lignin, decrease biomass particle sizes, and free carbohydrates from their lignin 

bonding. The behaviour and physicochemical characteristics of every lignocellulosic feedstock 

vary. Therefore, it is vital to apply appropriate pretreatments that are based on the inherent properties 

of each raw material [15]. Various physical, chemical, and biological processes have been used for 

the pretreatment of lignocellulosic biomass. Some of the most widely used pretreatment methods 

are alkaline, acid, steam explosion, ozonolysis, liquid hot water, ammonia fibre explosion, CO2 

explosion, and wet oxidation. To maximize the yield of fermentable sugar during hydrolysis, it's 

critical to optimize the factors that affect its yield. 

Response Surface Methodology (RSM) is widely used to identify correlations between input and 

response variables in multi-factor regression analysis of experimental results. It has been discovered 

that the response surface approach, which is based on statistically designed trials, is highly helpful 

in multivariable process optimization [16]. 

 

The aim of this study therefore is to compare the effects of both acid and alkaline pretreatment 

methods on cassava bagasse by comparing their optimum yields of fermentable sugar for the 

production of biobutanol, using H2SO4 and NaOH for acid and alkaline pretreatment respectively. 

RSM was used to carry out the experimental design making use of a three-factorial Central 

Composite Design (CCD) approach to carry out optimization studies to determine the optimum 
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pretreatment conditions (acid/alkaline concentration, temperature, and time) of both the acid and 

alkaline methods. 

 

 

2. Materials And Methods 

 

2.1 Feedstock collection and preparation 

Drying, grinding, and sieving were all part of the preparation stage. Cassava bagasse was collected 

from an agro-based farm at Isihor, Edo State, Nigeria. The sample was sun-dried for a total of 30 

days to decrease moisture and enhance size reduction. The biomass was certified dried when the 

observable weight change in 24 hours was less than 1%. The dried biomass sample was ground and 

sieved after drying to achieve a uniform surface area of 1.5 mm to aid contact between the biomass 

and the reagents for pretreatment. The sample was then stored in airtight bags and kept in a clean 

and dry environment. 

 

2.2 Estimation of hemicellulose content 

5 mg was measured from the sieved cassava bagasse biomass sample with an analytical weighing 

scale and placed in a round bottom flask. 250 ml of 0.5 M NaOH solution was added to the sample 

inside the round bottom flask. The solution was then heated for 60 minutes and then allowed to cool. 

The pH of the cooled solution was then neutralized after several rounds of diluting with distilled 

water. The neutral solution was decanted and filtered. The filtrate was then placed in a crucible and 

allowed to dry in an oven for 24 hours. The dried mass was ascertained with an analytical weighing 

balance. 

 

2.3 Estimation of lignin content 

5 mg was measured from the sieved cassava bagasse biomass sample with an analytical weighing 

scale and placed in a round bottom flask. Added to it was a 1 M H2SO4 solution. The mixture was 

then heated for 30 minutes in a water bath. The resulting carbonized mixture was then allowed to 

cool for 1 hour. The pH of the cooled solution was then neutralized after several rounds of diluting 

with distilled water. The neutral solution was decanted and filtered. The filtrate was then placed in 

a crucible and allowed to dry in an oven for 24 hours. The dried mass was obtained using an 

analytical weighing balance. 

2.4 Pretreatment of cassava bagasse feedstock 

Experiments on feedstock pretreatment were conducted with a constant solid-to-liquid ratio of 5% 

wt/vol, while the acid/alkaline concentration, temperature, and pretreatment time changed between 

1% and 3% vol/vol, 100 oC and 130 oC, and 15 and 45 minutes, respectively. The solutions were 

heated in an autoclave (with screw-capped pyrex bottles) at different time ranges as stipulated by 

the design of the experiment. The samples were then removed and allowed to cool. After cooling, 

the samples were placed in a beaker and neutralized and the solutions were then separated using a 

Buchner funnel [16]. 3 ml of the filtrate was taken with a syringe and placed in a test tube, 1 ml of 

Dinitro Salicylic acid (DNS) solution was added and the resulting solution in the test tube was boiled 

for 5 minutes until a colour change was observed. A UV spectrophotometer set at a wavelength of 

540 nm was then used to measure the absorbance of the solution which was in turn used to determine 

its sugar content making use of the standard glucose curve. 

 

2.5 Design of experiment 

This work was done using a Central Composite Design (CCD) with three factors as its input for 

optimization. Three independent variables: acid concentration/alkaline concentration (A), time (B), 

and temperature (C) were used at varied conditions for the pretreatment of cassava bagasse to get 

the  optimum  levels  for  pretreatment.  Using  Response  Surface  Methodology  (RSM)  for 
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optimization, total sugar yield was selected as the response parameter for optimization. Table 1 

below shows the coded and actual levels represented as A, B, and C. Different iterations of the 

experimental design were carried out. The Design Expert 13.0 software was used to implement the 

experimental design. The F-value and p-value were used to ascertain the importance of the model. 

The different R2 values were used to study the efficiency of the regression model while the statistical 

significance of the model was tested using the Analysis of variance (ANOVA). 

 

Table 1: Coded and actual values of factors 

Variables Units Symbols Coded and 

actual levels 

-1 0 1 

Acid 
concentration/alkaline 

concentration 

% A 1 2 3 

Time Min B 15 30 45 

Temperature ◦C C 100 115 130 

 

3.0 Results and Discussion 

 

3.1 Compositional analysis of cassava bagasse 

Table 2 presents the results of the characterization analysis conducted on cassava bagasse, 

demonstrating the varying percentages of cellulose, hemicellulose, and lignin content in response to 

different concentrations of alkaline solutions. Cellulose, constituting the primary structural element 

in plant cell walls, is highly crystalline, providing substantial resistance to enzyme hydrolysis. 

Hemicellulose acts as a pivotal link between cellulose and lignin, enhancing the rigidity of the 

cellulose-hemicellulose-lignin network. 

The relative ease of hydrolyzing cellulose and hemicellulose compared to lignin underscores the 

preference for higher concentrations of cellulose and hemicellulose in the quest for optimal 

fermentable sugar production. Thus, pretreatment methods resulting in lower lignin composition are 

considered more favourable. According to the data in Table 2, the lignin content was measured as 

3%, 6.3%, and 3.3% for alkaline concentrations of 0.5% NaOH, 0.1% NaOH, and 0.1% KOH, 

respectively. 

 

Table 2: Composition of cassava bagasse from the characterization analysis 
Alkaline 

Concentration 

Cellulose (%) Hemicellulose (%) Lignin (%) 

0.5% NaOH 70 16.7 3 

0.1% NaOH 35 32.7 6.3 

0.1% KOH 53.7 16 3.3 

3.2 Modelling and optimization of total sugar yield for acid pretreatment 

 

3.2.1 Appropriate model determination and model fit statistics 

Different models were used to interpret the relationship between the independent variables and the 

response parameter. The quadratic model offered the most accurate and statistically viable 

correlation between the input levels and the response. Table 3 shows the model summary statistics 

and from the adjusted and predicted R2 values of the quadratic model which was the highest of the 

different models examined, it can adequately be concluded that the quadratic model provides a 

sufficient description of the relationship between the response variable and the input variables. 
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Table 3: Model summary statistics 
Source Std. Dev. R² Adjusted R² Predicted R² PRESS  

Linear 207.08 0.0345 -0.1465 -0.3221 9.395E+05  

2FI 229.22 0.0389 -0.4047 -1.3746 1.688E+06  

Quadratic 57.23 0.9539 0.9124 0.8849 81778.03 Suggested 

Cubic 67.31 0.9617 0.8789 0.9335 47271.57 Aliased 

Table 4: Model fit statistics 
Std. Dev. 57.23 R² 0.9539 

Mean 531.42 Adjusted R² 0.9124 

C.V. % 10.77 Predicted R² 0.8849 

PRESS 81778.03 Adeq Precision 12.8517 

 

Table 4 presents a predicted R² value of 0.8849, which aligns reasonably well with the adjusted R² 

value of 0.9124, with a difference of less than 0.2. Additionally, Adequate Precision evaluates the 

signal-to-noise ratio, where a ratio above 4 is considered favourable. The model’s Adequate 

Precision ratio is 12.8517, indicating a sufficient signal. 

3.2.2 Analysis of variance (ANOVA) for response surface quadratic model 

Table 5: Analysis of variance (ANOVA) for response surface quadratic model 
Source Sum of Squares df Mean Square F-value p-value  

Model 6.779E+05 9 75321.23 22.99 < 0.0001 significant 

A-Acid conc. 4858.48 1 4858.48 1.48 0.2512  

B-Time 1419.33 1 1419.33 0.4333 0.5252  

C-Temp 18272.76 1 18272.76 5.58 0.0398  

AB 366.50 1 366.50 0.1119 0.7449  

AC 2140.43 1 2140.43 0.6534 0.4377  

BC 572.65 1 572.65 0.1748 0.6847  

A² 4.297E+05 1 4.297E+05 131.17 < 0.0001  

B² 1.195E+05 1 1.195E+05 36.49 0.0001  

C² 2.140E+05 1 2.140E+05 65.33 < 0.0001  

Residual 32756.62 10 3275.66    

Lack of Fit 5608.82 5 1121.76 0.2066 0.9458 not significant 

Pure Error 27147.80 5 5429.56    

Cor Total 7.106E+05 19     
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The model is significant, according to the model's F-value of 22.99. Model terms are significant if 

the P-value is less than 0.0500. Significant model terms in this instance are C, A², B², and C². The 

lack of Fit F-value of 0.21 indicates that the difference between the pure error and the lack of fit is 

not significant. Table 5's ANOVA and test of significance results for the model indicate that the 

model was significant due to its low p-value (<0.05). 

 

3.2.3 Regression analysis 

To fit the response to the model, regression analysis was used, and the yield of fermentable sugar 

as Y, A – Acid concentration, B – reaction time, and C- reaction temperature. Equation 1 articulates 

the relationship between the response (the fermentable sugar yield) and the independent factors in 

terms of actual factors. 

 

Y = -7353.83547 + 570.60642A + 19.73821B + 123.69756C + 0.451230AB +1.09047AC 

+0.037603BC – 172.67156A2 – 0.404755B2 – 0.541600C2 (1) 

 

The regression model formulated shows cassava bagasse fermentable sugar yield as (Y) as a 

function of Acid concentration (A), Time (B), and Temperature (C). 

 

3.2.4 Response surface plots 
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Figure 1: 3D plots showing the interaction between (A) Acid concentration and reaction time 

(B) Temperature and acid concentration (C) Temperature and reaction time 

 

3.2.5 Numerical optimization and model validation 

Utilizing the created model, the design space was explored and factor choices aligned to maximize 

the yield of fermentable sugar were identified. The ideal settings, which included a pretreatment 

temperature of 117.35 oC, a time of 30.98 minutes, and an acid concentration of 2.1 % (w/w) H2SO4, 

were selected from among the many solutions—more than 100 in total—based on the greatest 

desirability score. The result of this combination was a fermentable sugar yield of 798.52 mg/L. To 
determine the success of this study, the optimum values of the input variables were taken to the lab 

and used to conduct a three-time repeating experiment. the average yield of fermentable sugar was 

800.05 mg/L. The response model's validity was confirmed by the close correlation seen between 

the experimental yield (800.05 mg/L) and the predicted yield (798.52 mg/L). 

3.3 Modelling and optimization of total sugar yield for alkaline pretreatment 

3.3.1 Appropriate model determination and model fit statistics 

A comparative analysis was performed between the quadratic, cubic, linear, and two-factor 

interaction (2FI) models to determine which model best characterized the connection between the 

input and the output. The quadratic model turned out to be the most appropriate. The quadratic 

model has the largest anticipated and adjusted R2 value, according to the model summary statistics 

findings displayed in Table 6. The response's relationship with the independent variables is best 

described by the quadratic model. 

Table 6: Model summary statistics 
Source Std. Dev. R² Adjusted R² Predicted R² PRESS  

Linear 387.79 0.1319 -0.0309 -0.2369 3.428E+06  

2FI 392.66 0.2768 -0.0569 -0.7732 4.915E+06  

Quadratic 71.98 0.9813 0.9645 0.9253 2.071E+05 Suggested 

Cubic 73.48 0.9883 0.9630 0.8678 3.664E+05 Aliased 
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Table 7: Model fit statistics 
Std. Dev. 71.98 R² 0.9813 

Mean 873.03 Adjusted R² 0.9645 

C.V. % 8.24 Predicted R² 0.9253 

PRESS 207100 Adeq Precision 21.1740 

Table 7 shows there is less than 0.2 difference between the adjusted R² and the predicted R², 

indicating a satisfactory agreement. The Adeq Precision which calculates the signal-to-noise ratio 

should be ideally higher than 4. In this case, a value of 21.174 shows sufficiency. 

 

3.3.2 Analysis of variance (ANOVA) for quadratic model 

Using the Central composite design of experiment and the 3D response surface graphs, the impact of the various 

parameters on the yield of fermentable sugar was investigated. The model response was fitted using regression 

analysis. A is for alkaline concentration, B is for reaction duration, C is for reaction temperature, and Y is the 

yield of fermentable sugar. 

 

Table 8: Analysis of variance (ANOVA) for response surface quadratic model 
Source Sum of Squares df Mean Square F-value p-value  

Model 2.720E+06 9 3.022E+05 58.33 < 0.0001 significant 

A-Alkaline conc. 3.283E+05 1 3.283E+05 63.37 <0.0001  

B-Time 29762.28 1 29762.28 5.74 0.0375  

C-Temp 7408.21 1 7408.21 1.43 0.2593  

AB 1.477E+05 1 1.477E+05 28.51 0.0003  

AC 2398.74 1 2398.74 0.4630 0.5117  

BC 2.517E+05 1 2.517E+05 48.59 <0.0001  

A² 8.978E+05 1 8.978E+05 173.31 <0.0001  

B² 7.011E+05 1 7.011E+05 135.33 <0.0001  

C² 7.391E+05 1 7.391E+05 142.67 <0.0001  

Residual 51805.60 10 5180.56    

Lack of Fit 20869.15 5 4173.83 0.6746 0.6619 not significant 

Pure Error 30936.45 5 6187.29    

Cor Total 2.772E+06 19     

The model is considered significant with an F-value of 58.33, indicating that there is only a 0.01% 

chance that such a large F-value is due to random noise. Model terms are deemed significant when 

their P-values are below 0.0500. In this case, the significant terms are A, B, AB, BC, A², B², and C². 

If a term's P-value exceeds 0.1000, it is not considered important. Reducing the model by removing 

unimportant terms (while maintaining hierarchy) may improve its performance. Based on pure error, 

the Lack of Fit F-value of 0.67 implies that the Lack of Fit is not statistically significant, with a 

66.19% probability that this value is due to noise. A minor Lack of Fit is desirable, as it indicates 

the model is suitable. 
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3.3.3 Regression analysis 

Equation 2 describes the relationship between the response (the fermentable sugar yield) and the 

variables that are independent in terms of actual factors. Regression analysis was used to fit the 

response to the model, with the yield of fermentable sugar as Y, A - Alkaline concentration, B - 

Reaction time, and C - Reaction temperature. 

 

Y = -10539.02483 + 748.92700A – 46.85358B + 203.98563C + 9.05844AB +1.15440AC 

+0.788399BC – 249.59893A2 – 0.980283B2 – 1.00652C2 (2) 
3.3.1 3.3.4 Response surface plots 
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Figure 2: 3D plots showing the interaction between (A) Alkaline concentration and reaction 

time (B) Temperature and alkaline concentration (C) Temperature and reaction time 

3.3.5 Numerical optimization and model validation 

Utilizing the created model, the design space was explored and factor choices aligned to maximize 

the yield of fermentable sugar were identified. The ideal settings, which included a pretreatment 

temperature of 115.41 oC, a time of 32.84 minutes, and an alkaline concentration of 2.32 % (w/w) 

NaOH, were selected from among the many solutions—more than 100 in total—based on the 

greatest desirability score. The result of this combination was a fermentable sugar yield of 1382.36 

mg/L. To determine the success of this study, the optimum values of the input variables were taken 

to the lab and used to conduct a three-time repeating experiment. the average yield of fermentable 

sugar was 1383.02 mg/L. The response model's validity was confirmed by the close correlation seen 

between the experimental yield (1383.02 mg/L) and the predicted yield (1382.36 mg/L). 

 

4. Conclusion 

The primary focus of this research was the comparative optimization of acid and alkaline 

pretreatment methods on cassava bagasse by comparing their optimum yields of fermentable sugars 

and their optimum conditions for pretreatment. The acid pretreatment gave an optimum sugar yield 

of 798.52 mg/L at optimum dilute acid pretreatment conditions of a reaction time of 30.98 minutes 

at a temperature of 117.35 ◦C and with an acid concentration of 2.1 % (w/w) H2SO4. The alkaline 

pretreatment gave a sugar yield of 1382.36 mg/L at optimum levels of a reaction time of 32.84 

minutes at a temperature of 115.41 ◦C and with an alkaline concentration of 2.32 % (w/w) NaOH. 

The alkaline pretreatment condition gave more yield of fermentable sugar when compared with the 

acid despite both being taken through the same range of input conditions. However, both types of 

pretreatments are efficient for cassava bagasse pretreatment. 
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