
 

Journal of Energy Technology and Environment Vol. 6(4) 2024 pp. 58 - 70 ISSN-2682-583x 

58 

 

 
 

Best Fit Probability Distribution /Parameter Estimation Procedure for 

Precipitation Frequency Analysis at Some Stations in Southern Nigeria 

 

Okagbare, O. A*., Izinyon, O. C. and Agbonaye, A. I. 
Department of Civil Engineering, University of Benin, Benin City, Nigeria   

*Corresponding Author: fadaokagbare@gmail.com 

Article information  Abstract 

 

Article History 

Received  24 September 2024 

Revised   30 October 2024 

Accepted 8 November 2024 

Available online  19 Dec 2024 

 This study investigates the best-fit probability distribution model 

and parameter estimation procedure namely EV1-MOM, EV1-

MOM, GEV-LM, GPA-LM and GLO-LM suitable for at-site 

precipitation frequency analysis at rainfall gauging stations in 

Ikeja, Owerri and Port Harcourt in Nigeria. The best fit probability 

distribution - parameter estimation procedure at each station was 

selected based on a scoring and ranking scheme using the relative 

magnitudes of five goodness of fit measures namely: root mean 

square error (RMSE), relative root mean square error (RRMSE), 

mean absolute deviation index (MADI), maximum absolute error 

(MAE) and probability plot correlation coefficient (PPCC) obtained 

for the procedures. The results of the analyses indicate that the 

Generalized Extreme Value - L-Moments model (GEV-LM) 

procedure which is highest ranking is the best fit distribution model 

/ estimation procedure for Ikeja and Port Harcourt stations. While 

Extreme Value type 1 – Method of Moments (EV1 MOM) is the best 

fit distribution model / estimation procedure for Owerri station. 

They were subsequently used to predict rainfall return values for 

return periods of engineering importance (from T = 2 years to 200 

years) at the study stations. The obtained values were used to 

develop rainfall frequency curves for the stations. The rainfall 

frequency curves developed for the stations are useful for design of 

engineering infrastructure for flood mitigation at the studied 

stations and in addition, the results provide valuable insights for 

hydrological analysis and policymaking, particularly in addressing 

the escalating risk of extreme flood events in the southern Nigerian 

cities due to changing precipitation patterns and climate impacts 
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1. Introduction 

Extreme precipitation events such as heavy rainfall at the southern part of Nigeria, pose significant 

risks to human society, causing destructive floods that lead to the loss of lives, properties, and crops, 

and contributing to waterborne diseases affecting humans, plants, and animals [1]. These events are 

becoming increasingly critical due to climate change, which has heightened the frequency and 

intensity of such occurrences. Effective hazard assessment and risk management are essential to 

mitigate these impacts, necessitating a detailed understanding of extreme rainfall patterns [2].  

This knowledge is crucial for designing hydraulic structures like dams and urban drainage systems, 

which help reduce economic losses and prevent flood damage [3]. Accurate information on flood 
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magnitudes and frequencies is vital for public policy, water resources management, and agricultural 

planning, making the study of extreme precipitation events highly significant [4].  

It is known that frequency analysis of floods and extreme precipitation events involves using 

probability distributions to relate the magnitude of these events to their frequency of occurrence [5]. 

This analysis is essential for water resources planning, hydraulic design, and mitigating socio-

economic impacts associated with climate variability. Various statistical models and distributions, 

such as two- and three-parameter models, are used to estimate the magnitude and probability of 

extreme rainfall events. However, there is no consensus among hydrologists on the best distribution 

to use, as hydro-climatic regimes differ by region. The selection of suitable models and parameter 

estimation procedures remains a key area of research, with challenges arising from the random 

nature of extreme events and the lack of long-term data records, particularly in developing countries 

such as Nigeria [6]. Thus, while significant progress has been made in understanding and modelling 

these events, uncertainties persist in accurately predicting their occurrence and impact. 

The hydrological challenge lies in selecting the most appropriate probability distribution and 

parameter estimation technique from the numerous options available in the literature that are 

suitable for a specific location. Therefore, it is essential to evaluate a variety of probability 

distribution models and parameter estimation techniques to identify the most accurate method for 

estimating extreme rainfall at a given site. This research aims to investigate the use of widely 

adopted two- and three-parameter probability distribution models, along with two parameter 

estimation techniques (Method of Moments and L-Moments), for at-site precipitation frequency 

analysis at five rainfall gauging stations in Southern Nigeria. Consequently, the study seeks to 

determine the best-fitting probability distribution model and parameter estimation technique for the 

precipitation frequency analysis. 

2. Methodology 
 

2.1 Data Collection and Processing 

This study utilized time series data of annual maximum daily rainfall at rainfall gauging stations in 

Ikeja, Owerri and Port Harcourt respectively (Figure 1). Stations with at least 30 years of data close 

to the present time were selected to ensure a stable distribution for estimating future rainfall 

probabilities [7]. A record length of 25 years was suggested as sufficient for extreme precipitation 

analysis in humid regions, as the required length is related to the area's general humidity and 

physiographic conditions [8]. The annual maximum daily rainfall series was created by extracting 

the maximum daily rainfall for each year from the daily data, resulting in as many extreme values 

as the total number of years recorded. The daily rainfall data for these stations was obtained from 

the Nigeria Meteorological Agency (NIMET) and processed using the MS-EXCEL program to 

compile the annual maximum rainfall series, representing the highest rainfall received in a 

single day each year. 
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Figure 1: Map of Southern Nigeria Source: [9] 

 

2.2 Preliminary Data Analysis 

2.2.1 Descriptive Statistics 

The applicable formulae for computing descriptive statistics was utilize to compute same from 

annual daily maximum rainfall at each station (Mean, Standard deviation, Skewness, Kurtosis and 

coefficient of variation). The MS-Excel software programme was used for computations and the 

formula is as presented in Table 1. 

Table 1: Equations for Descriptive statistics 
S/N Statistics Text Applicable Formula Remark 

1 Mean �̅� = 
∑(𝑅)

𝑁
 It is the total of all the variates, divided by 

the total number of variates. 

2 Standard Deviation 
Ϭ = √

∑(𝑅− �̅�)2

𝑁
 

It is the square root of the mean-squared 

deviation of individual observations from 

their mean   Standard deviation. 

3 Variance Ϭ2=  
∑(𝑅− �̅�)2

𝑁
  

4 Skewness α = 
1

𝑁
 ∑(𝑅 − �̅�)3 Where R is a variate, 𝑅 ̅is the mean of the 

data set and N is the total number of 

variates 

5 Kurtosis K = n 
∑ (𝑅𝑖−�̅�)4𝑛

𝑖=1

(∑ (𝑅𝑖− �̅�)2𝑛
𝑖=1 )

2 Kurtosis indicates how peaked a distribution 

is, usually considered relative to a normal 

distribution. Leptokurtic is a measure of a 

normal distribution which is not very peak. 

Also isocratic is defined as a normal 

distribution that is not very peaked or very 

flat-topped 

 

2.2.2 Homogeneity Test 

The data used for precipitation frequency analysis is required to be homogeneous and independent 

[10]. Homogeneity of data assumes that the observations are from the same population. This test of 

homogeneity to be adopted for this study is that proposed in [11]. This test of homogeneity is based 

on cumulative deviations from the mean as given below:  

𝑆𝐾 =  ∑ (𝑋𝑖 − �̅�)𝑘
𝑖=1                           (1)                                           

k =1, -, -. ----- -, n 
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Where 𝑋𝑖 are the records from the series and �̅� is the mean. The initial value and the last value are 

equal to zero. To test the homogeneity of the data set, the cumulative deviations are often rescaled 

by dividing the standard deviation value (S). By evaluating the maximum (Q) or the range (R) of 

the rescaled cumulative deviation from the mean, the homogeneity of the data of a time series can 

be tested. 

𝑄 = max [
𝑆𝐾

𝑆
]                   (2) 

𝑅 = max (
𝑆𝐾

𝑆
) − min (

𝑆𝐾

𝑆
)                                       (3) 

High values of Q or R indicate the data of the time series do not come from the same population. 

The homogeneity of the annual maximum rainfall data at the stations will be tested using the 

Rainbow software. 

Rainbow is a software tool that analyses agro-meteorological and hydrological records using 

frequency analysis and tests the homogeneity of the record [12]. 

2.3 Precipitation Frequency Analysis Procedure    

The procedure utilized in the precipitation frequency analysis are as follows below. 

a. The parameters of the probability distributions (EV1, GEV, GPA, and GLO) are estimated 

using MOM, and L-Moments as designed for the study. Before computation of L-Moments, 

the Probability weighted moments (PWMs) are determined. 

b. The adequacy of fitting the different probability distribution/ parameter estimation 

procedures to data at each station, was determined by use of Goodness of Fit and Diagnostic 

tests and the best fit distribution-parameter estimation procedure was selected. 

c. By means of the selected best fit probability distribution/ parameter estimation procedure 

determines precipitation magnitudes of recurrence intervals of engineering importance (T = 

2 years, 5 years, 10 years, 25years, 50 years, 100 years, 200 years) at each station. 

d. Construct Rainfall frequency curves at each station based on the best procedure at each 

station. 

 

2.3.1 Probability Weighted Moments (PWMs) and L-Moment Equations 

PWMs are needed for calculation of L-Moments. The dataset was first arranged in ascending order 

and PWMs then computed by use of the following equations [13]. 

1) The probability weighted moments, b, are estimated for a given data set by use of the 

following equations: 

               𝑏0 =  
1

𝑁
 ∑ 𝑄𝑗

𝑁
𝐽=1    (That is the sample mean)                             (4) 

               𝑏1 =  
1

𝑁
 ∑

(𝑗−1)

(𝑁−1)
𝑁
𝐽=2 𝑄𝑗                                                                              (5)               

               𝑏2 =  
1

𝑁
 ∑

(𝑗−1) (𝑗−2)

(𝑁−1)(𝑁−2)
𝑁
𝐽=3 𝑄𝑗                                                                   (6) 

                𝑏3 =  
1

𝑁
 ∑

(𝑗−1) (𝑗−2)(𝑗−3)

(𝑁−1)(𝑁−2)(𝑁−3)
𝑁
𝐽=4 𝑄𝑗                                                             (7)        

Where 𝑄𝑗 is the jth element of a sample of annual maximum series (precipitation in the 

case of this study) arranged in ascending order and N is the sample size (the number of 

annual maxima in the record)        

2) The sample L-moments are defined as: 

                       𝑙1 =  𝑏0                                                   (8)  

                       𝑙2 =  2 𝑏1 −  𝑏0                                                  (9)  

                       𝑙3 =  6𝑏2 −   6 𝑏1 + 𝑏0                                        (10)        

                       𝑙4 =  20𝑏3  − 30𝑏2 + 12 𝑏1 −  𝑏0                   (11)         

3) The sample L-moment ratios are defined as: 
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                        𝐿 − 𝐶𝑉 =  𝑡2 =  
𝑙2

𝑙1
                 (12)     

                 𝐿 − 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  𝑡3 =  
𝑙3

𝑙2
                  (13)     

               𝐿 − 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  𝑡4 =  
𝑙4

𝑙2
                   (14)   

 

2.4 Determination of Best Fit Distribution/ Parameter Estimation Procedure  

Scoring and Ranking Scheme for Selection of Best Fitting Distribution at a Station 

The best fit distribution - parameter estimation procedure at a station was selected based on a scoring 

and ranking scheme. Ranking of the distributions at a station will be based on the relative magnitude 

of the results of goodness of fit measures through the formula presented in Table 4. The distribution 

with the lowest RMSE, lowest RRMSE, lowest MADI, lowest MAE, or highest PPCC at a station 

was considered as the best fitting distribution with respect to the test criteria [14]. The five 

performance measures were used in this study and the best procedure at a station was assigned a 

score of 5, the next best will be given the score 4 and, in that order, while the worst will be given 

the score 1. The overall score of each distribution/ parameter estimation procedure at a location 

based on all GOF test criteria will be obtained by summing the individual point scores of the 

different tests at the stations and the procedure with the highest total score at each station was judged 

as the best fit distribution model / estimation procedure for the station.  

Table 4: Summary of Goodness of Fit (GOF) Tests 
S/N Test Abbreviation Mathematical Equations 

1 Root Mean square error RMSE 
( )
( )

2

1
2















−

−
=


mn

RR
RMSE

fo

 

2 Relative Root Mean square 

error 

RRMSE 

( )

2

1
2





















−








 −

=



mn

R

RR

RRMSE
o

fiio

 

3 Mean absolute deviation index MADI 

 =

−
=

N

i
o

fo

R

RR

N
MADI

1

1

 

4 Maximum absolute error MAE ( )fo RRMAE −= max
 

 Probability plot correlation 

coefficient 

PPCC 

( )( )

( ) ( ) 2
1

22

0

0

 



−−









−−

=

fmifmi

fmifmi

RRRR

RRRR

PPCC

 

 

2.5 Application of Best Distribution /Parameter Estimation Procedure for Rainfall 

Return Levels at Stations  

The selected best fit distribution/ parameter estimation procedure at each station determined by 

scoring and ranking procedure will be used to predict rainfall return levels (𝑅𝑇) at each station.  A 

return level of rainfall (𝑅𝑇) with return period T years is the level exceeded on average once in 

every T year [5]. Estimates of  𝑅𝑇 through the formula presented in Table 5, were useful in 

expressing the degree of hazard related to extreme precipitation at a station. The return period or 

recurrence interval of interest for the scope of this study are T = 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 
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70, 75, 100 and 200 years and they would be computed by applying the best fitting procedure at 

each station. 

Table 5: Formulae for Estimating the Rainfall Return Levels (RT) 
Distributions RT 

EV1 RT = ξ – α ln (-ln F) 

GEV RT = ξ + (-ln F)-k -1 

                               F = ξ + 
α

k
(-ln F)-k -1 

GLO 
                               RT = ξ +  

𝛼

𝐾
[1 − (

{1−𝐹}

𝐹
)

𝐾

] 

GPA 
                               RT = 𝜇 +  

𝛼

𝐾
[1 − (

{1−𝐹}

𝐹
)

𝐾

] 

 

2.6 Development of Rainfall Frequency Curves 

Rainfall Frequency Curves (RFCs) which is a function of the annual 1-day maximum rainfall and 

return periods or recurrence intervals was developed using Microsoft EXCEL and was an output of 

this study. This was achieved by plotting a graph of the forecasted rainfall intensity from the best 

rainfall distribution model, against return periods of 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 75, 100 

and 200 years at each station. By linking rainfall intensity with the likelihood of occurrence over 

different time frames, these curves provide valuable insights into precipitation patterns and can help 

in assessing flood risks and designing appropriate infrastructure [11]. 
 

2.7 Model Validation Using Kolmogorov-Smirnov (K-S) Test 

The best rainfall distribution model for the ten substations was validated using Kolmogorov-

Smirnov (K-S) test with the aid of RAINBOW software [12]. The Kolmogorov-Smirnov test is a 

non-parametric test used to compare the empirical cumulative distribution function (ECDF) of a 

sample against a given theoretical distribution or to compare two samples to determine if they are 

drawn from the same distribution. The procedure to carry out this test include arranging the data in 

ascending order. The Empirical Cumulative Distribution Function was then calculated by equation 

15. 

𝐸𝐶𝐷𝐹 =  
𝑅𝑎𝑛𝑘

𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
              (15) 

The expected CDF values using the NORM.DIST function was then calculated using the Excel 

spreadsheet. The mean and the standard deviation of the data determined. The absolute differences 

between the ECDF and the theoretical CDF were calculated. The K-S statistic (D) is the maximum 

value. The critical value for the K-S test depends on the significance level and the sample size was 

then compared with the maximum value. The critical value is given by equation 16. 

𝐷𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  ≈
1.36

√𝑛
               (16) 

If the D-statistic is greater than the critical value, the null hypothesis that the data follows the 

specified distribution will be rejected. 

3.0 Results and Discussion 
 

3.1 Descriptive Statistics of Rainfall Data 

Table 6 provides an overview of the descriptive statistics for daily rainfall data collected from 

rainfall gauging stations in Akure, Calabar, Ikeja, Owerri and Port Harcourt (PH) respectively, 

with data sourced from the Nigeria Meteorological Agency (NIMET). 
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Table 6: Descriptive Statistics of the NIMET Rainfall (1965 – 2012) 

 Mean St. Dev Variance Min. Max. Range Kurtosis Skewness 

Ikeja 97.97 58.18 3385.38 0.00 237.30 237.30 0.19 0.26 

Owerri 91.89 55.37 3065.96 0.00 206.60 206.60 -0.61 -0.41 

PH 99.06 43.06 1854.19 0.00 185.30 185.30 0.84 -0.65 

 

The descriptive statistics results reveals that the mean rainfall varies, with Port Harcourt recording 

the highest average of 99.06 and Owerri the lowest of 91.89. The standard deviation ranges from 

43.06 to 58.18, signifying variability in the data. Ikeja has the highest maximum rainfall of 237.30 

and the greatest variance of 3385.38. The skewness of the rainfall distribution is generally negative, 

indicating left skewness, except in Ikeja. Kurtosis values also vary, with Port Harcourt having the 

highest of 0.84, suggesting a moderately peak, and Owerri the lowest of -0.61, indicating a 

flatter distribution. 

A normal distribution typically has skewness close to 0 and kurtosis around 3 [15]. The rainfall data 

from Ikeja exhibit skewness and kurtosis values that suggest they approximate a normal distribution 

fairly well, with only minor deviations. Meanwhile, the rainfall data from Owerri, and Port Harcourt 

show moderate deviations, characterized by noticeable skewness and varying degrees of 

peakedness and flatness. 

 

3.2 Homogeneity Test 

The homogeneity of the annual maximum rainfall data at each station was tested using the 

Rainbow software. 

The Figure 2 below shows that the annual maximum rainfall data from Ikeja station is all from the 

same population at 99% probability level only. 

 

 

Figure 2: The Homogeneity Statistics of Ikeja Rainfall Data 

 

Figure 3 below shows that the range of cumulative deviation and maximum cumulative deviation 

evaluated, could not be rejected at any of the (90%, 95%, and 99%) probability levels, 

demonstrating that the annual maximum rainfall data from Owerri station is all from the same 

population. 
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Figure 3: The Homogeneity Statistics of Owerri Rainfall Data 

 

The Figure 4 below shows that the annual maximum rainfall data from Port Harcourt station is all 

from the same population at 99% probability level only. 

 

Figure 4: The Homogeneity Statistics of Port Harcourt Rainfall Data 
 

3.3 Probability Distribution by MOM and L-Moments 

To evaluate the L-Moments, the probability weighted moments, b, were first estimated for the 

given data set at the various sub stations as presented on Table 7. Afterwards, the sample L-

Moments and ratios were estimated as presented on Table 8. 

Table 7: Sample Probability Weighted Moments of the Study Stations 
Station Sample Probability Weighted Moments 

b0 b1 b2 b3 

Ikeja 102.23 70.65 55.85 47.38 

Owerri 113.09 93.69 86.49 85.96 

Port-Harcourt 101.16 63.85 47.24 38.11 
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Table 8: L-Moments and L-Moment Ratios of the Study Stations Data 
Station Sample L-Moments L-Moment Ratios 

L1 L2 L3 L4 L-Cv (τ2) L-Cs (τ3) L-Ck(τ4) 

Ikeja 102.23 39.08 13.39 17.89 0.38 0.34 0.46 

Owerri 113.09 74.29 69.87 135.76 0.66 0.94 1.83 

Port-Harcourt 101.16 26.54 1.51 10.01 0.26 0.06 0.38 

 

From Table 8, it was observed that the L-coefficient of variation ranged between 0 and 1 for all 

stations. Additionally, the L-coefficient of skewness was less than 1 for most stations. The L-

coefficient of kurtosis ratios for Ikeja and Port Harcourt were less than 1, while Owerri were greater 

than 1. These results imply that the majority of the stations conform to the findings proposed by 

Hosking [16], who stated that the L-coefficient of skewness and kurtosis are typically less than 1, 

and the L-coefficient of variation lies between 0 and 1. 

Afterwards, the parameters of the distribution either by method of moments (MOM) and/ or by L-

Moment’s method were estimated as presented in Table 9. 

Table 9:  Probability Distribution Parameters 
  IKEJA OWERRI PH 

EV1/MOM 

α 42.87 28.08 31.58 

ε 77.48 96.89 82.93 

EV1/LMO 

α 129.81 246.80 88.17 

ε 27.30 -29.36 50.27 

GEV/LMO 

z -0.03 -0.12 0.02 

k -0.25 -0.92 0.19 

α 1.34 0.52 0.68 

ε 101.02 106.51 100.88 

GPA/LMO 

k -0.02 -0.94 0.79 

α 75.73 4.84 131.98 

ε 24.88 34.24 27.24 

GLO/LMO 

k -0.34 -0.94 -0.06 

α 36.08 9.09 26.49 

ε 93.48 43.76 100.29 

 

3.4 Statistical Goodness of Fit Measures on the Probability Distribution Model 

Table 10 show the performance or accuracy of the probability distribution model/ parameter 

estimation procedure at each station using statistical goodness of fit measures namely: root mean 

square error (RMSE), relative root mean square error (RRMSE), probability plot correlation 

coefficient (PPCC), maximum absolute error (MAE), and mean absolute deviation index (MADI) 

tests. 

Table 10: Results of goodness of fit tests 
Station Dist. Model RMSE RRMSE MADI MAE PPCC 

Ikeja EV1 MOM 11.177 0.311609 9.75126 19.18864 0.286 

EV1 LMO 33.8425 0.311609 29.5256 58.10068 0.2583 
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Station Dist. Model RMSE RRMSE MADI MAE PPCC 

GEV LMO 2.5071 0.311299 2.20081 4.0435 0.33 

GPA LMO 48.3419 0.31179 42.2384 82.1588 0.2074 

GLO LMO 77.2223 0.310981 67.8126 127.595 0.1533 

Owerri EV1 MOM 7.3195 0.311609 6.38552 12.56612 0.3058 

EV1 LMO 64.3404 0.311609 56.13318 110.4594 0.2174 

GEV LMO 21.8673 0.308432 18.8826 42.26272 0.2147 

GPA LMO 99.6846 0.30835 86.0052 193.337 0.04699 

GLO LMO 188.6477 0.30833 162.752 365.93 0.0754 

Port Harcourt EV1 MOM 8.234129 0.311608 7.18379 14.13645 0.2977 

EV1 LMO 22.98019 0.311609 20.05408 39.46258 0.2542 

GEV LMO 0.179438 0.311525 0.155492 0.32364 0.34914 

GPA LMO 4.81682 0.31026 4.1322 9.93757 0.32726 

GLO LMO 19.82348 0.311402 17.3179 33.6498 0.26173 

 

In Table 10, the analysis of goodness-of-fit for various distribution models applied to data from 

different weather stations reveals distinct performance metrics.  

Examining results from the Ikeja station, the GEV LMO model demonstrated the best fit, with the 

minimum RMSE, MADI, MAE and highest PPCC values at 2.5071, 2.20081, 4.0435 and 0.33 

respectively. The GLO LMO model yielded the least RRMSE at 0.310981. 

While at Owerri station, the EV1 MOM model demonstrated the best fit, with the minimum RMSE, 

MADI, MAE and highest PPCC values at 7.3195, 6.38552, 12.56612 and 0.3058 respectively. The 

GLO LMO model yielded the least RRMSE at 0.30833. 

Moving on to the Port Harcourt station, the GEV LMO model showcased the most favourable 

performance, with the lowest RMSE, MADI, MAE and highest PPCC values at 0.179438, 0.155492, 

0.32364, and 0.34914 respectively. The GPA LMO model had the minimum RRMSE of 0.31026. 

Table 11 presents the ranking of the models based on the scoring of the results of the different 

models. 

Table 12: Ranking of Distribution Models at Stations 
Station Dist. Model Total Rank 

Ikeja EV1 MOM 19 2nd 

EV1 LMO 15 3rd 

GEV LMO 24 1st 

GPA LMO 10 4th 

GLO LMO 9 5th 

Owerri EV1 MOM 22 1st 

EV1 LMO 15 3rd 

GEV LMO 18 2nd 

GPA LMO 11 4th 

GLO LMO 10 5th 

Port Harcourt EV1 MOM 14 3rd 

EV1 LMO 5 5th 
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Station Dist. Model Total Rank 

GEV LMO 23 1st 

GPA LMO 21 2nd 

GLO LMO 12 4th 

 

Table 12: Summary of Best Fit Probability Distribution-Parameter Estimation Procedure at 

Stations 
Station Best fit Probability Distribution-Parameter Estimation Procedure 

Ikeja GEV - LMO 

Owerri EV1 - MOM 

Port Harcourt GEV - LMO 

 

Table 12 shows that GEV LMO is the best-fit probability distribution model for the stations at Ikeja 

and Port Harcourt. While EV1 – MOM model fit best the rainfall data at Owerri station. This result 

corresponds to that of [6], who found that the EV1 and GEV distribution models are appropriate for 

the three selected stations in Southern Nigeria. Also, [17] and [18] found that the GEV distribution 

is most appropriate distribution of the monthly rainfall data in Bangladesh. 

 

3.5 Validation of the Best Distribution model for Each Stations 

The best rainfall distribution model for the three substations was validated using Kolmogorov-

Smirnov (K-S) test, and this is as seen in Table 13.  

Table 13: Model validation Result with K-S Goodness of fit Statistics 
Station 

Best Fit 

Distribution 

Model 

Test Performed 
Calculated D' 

Value 

Critical D' 

value at 5% 

significance 

level 

Decision 

Ikeja GEV LMO K-S test 0.1232 0.4301 Accept Ho 

Owerri GEV LMO K-S test 0.1579 0.4301 Accept Ho 

PH GEV LMO K-S test 0.0918 0.4301 Accept Ho 

 

The Kolmogorov-Smirnov test is a non-parametric test used to compare the empirical cumulative 

distribution function (ECDF) of a sample against a given theoretical distribution or to compare two 

samples to determine if they are drawn from the same distribution. The K-S test in Table 4.10 were 

calculated using the excel spreadsheet and the Critical (D) values at 5% significance level were 

approximated. The calculated D values range from 0.0918 to 0.1579. These values represent the 

maximum vertical distance between the ECDFs of the observed data and the theoretical distribution 

assumed by the models being tested. Since all calculated D values are smaller than the critical D 

value of 0.4301 at a 5% significance level, this indicates that there is no significant difference 

between the observed data and the theoretical distribution assumed by the models. In other words, 

the models GEV-LMO provide a good fit to the data at the 5% significance level. The critical D 

value of 0.4301 serves as the threshold for determining whether the models being tested are a good 

fit to the data. Since the calculated D values are below this critical value, it suggests that the models 

are statistically consistent with the observed data based on the Kolmogorov-Smirnov test at the 5% 

significance level. 
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3.6 Development of Rainfall Frequency Curves 

The best fit probability distribution was used to predict the rainfall intensity per the return period 

of 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 75, 100 and 200 as presented in Figure 6.  

 
Figure 5: Rainfall frequency curves for the ten substations. 

 

4. Conclusions 

 

The probability weighted moments analysis for various distribution models applied to data from 

different weather stations reveals distinct performance metrics. Notably, at Ikeja and Port Harcourt 

stations, the GEV LMO model demonstrated the best fit with the lowest RMSE, RRMSE, MADI, 

MAE, and highest PPCC values. While EV1 MOM demonstrated best at Owerri station. The 

Kolmogorov-Smirnov (K-S) test was used to validate the rainfall distribution model by comparing 

the empirical cumulative distribution function (ECDF) of a sample against a given theoretical 

distribution. The calculated K-S test values ranged from 0.09182 to 0.1579, represent the maximum 

vertical distance between the ECDFs of the observed data and the theoretical distribution assumed 

by the models being tested. Since all calculated D values are smaller than the critical D value of 

0.4301 at a 5% significance level, this indicated that there is no significant difference between the 

observed data and the theoretical distribution assumed by the models, suggesting that the GEV-

LMO and EV1 MOM models provide a good fit to the data at the 5% significance level.  
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