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 Game Engines are modern off-the-shelf, sophisticated simulation 

software that have proven beneficial when developing simulation 

testbeds for intelligent control of UVs. They readily provide the 

required physics, modeling, and rendering capabilities thereby 

reducing vehicle development time. In this paper, Unity 3D Game 

Engine is used to design and simulate an underwater environment 

for testing navigation of underwater vehicles. Various underwater 

scenarios were developed to test the functionality of the underwater 

environment by creating C# scripts and utilizing the internal physics 

properties of the Unity software. A virtual autonomous underwater 

vehicle was designed and deployed into the simulated environment 

to test the performance of the environment. Patrol scripts as well as 

obstacle avoidance scripts were written in C# programming 

language to condition the underwater vehicle in the simulated 

environment. The results showed that the underwater environment 

can test for navigation and patrol of Autonomous Underwater 

Vehicles. 
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1. Introduction 

Unmanned Underwater Vehicles (UUVs) are all types of underwater robots which are operated with 

minimum or without the intervention of a human operator. This phrase is used to describe both 

Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs). Remotely 

operated vehicles are teleoperated robots that are deployed primarily for underwater installation, 

inspection and repair tasks [1]. They have been used extensively in offshore oil industries due to 

their advantages over human divers in terms of higher safety, greater depths, longer endurance and 

less demand for support equipment [1]. During operation, the ROV receives instruction from an 

operator onboard a surface ship or other mooring platform through a tethered cable or acoustic link. 

AUVs on the other hand operate without the need of constant monitoring and supervision from a 

human operator. As such these vehicles do not have the limiting factor in its operation range from 

the umbilical cable typically associated with the ROVs. This enables AUVs to be used for certain 

types of missions such as long range oceanographic data collection where the use of ROVs is 

deemed impractical. They also find application in military purposes such as mine countermeasures, 

antisubmarine warfare and payload delivery [2]. Autonomous underwater vehicles (AUVs) are 

unmanned, self-propelled vehicles that are typically deployed from a surface vessel (shown in 

Figure 1) and can operate independently of that vessel for periods of few hours to several day [3]. 

These vehicles are required to execute different types of missions without the interaction of human 
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operators while performing well under a variety of load conditions and with unknown sea currents 

[4]. AUVs are typically categorized as either “cruising” or “hovering” vehicles depending on the 

shape and manoeuvrability of the vehicle, with the latter having high manoeuverability as a result 

of having several propellers [5]. These vehicles can also be equipped with a range of sensors such 

as chemical sensors, photo cameras, sonars, magnetometers, and gravimeters [5].   

 

 

Figure 1: Autonomous Unmanned Vehicle (Source: The UK Natural Environment 

Council (NERC) Autosub6000 AUV [3]. 

Recent times have marked an increase in sub-sea exploration and marine research and thus 

necessitates development of autonomous underwater vehicles with particular emphasis on 

autonomy, navigation, object detection, energy sources and information systems [6]. Testing pools 

are usually not feasible due to space, cost and maintenance requirements. Water bodies such as 

lakes/ponds are usually remote and provide little control over the conditions. Conducting 

experiments and evaluations on a real physical system is not economically viable due to the 

possibility of physical strain and damage to the vehicle, high costs associated with manufacturing 

among other factors. Simulation modelling is the ideal solution in these circumstances especially in 

developing countries like Nigeria. This involves development of a virtual prototype of a physical 

system and analyzing its performance in the real world. Game Engines are numerous off-the-shelf 

platforms that have capable physics engines, rendering, and modeling facilities. As the name 

implies, these software systems are created for the design and development of modern 3D video 

games. Examples include Unity [7], Torque3D [8], Polycode [9] and CryEngine3 [10]. These range 

from well-maintained rendering and physics libraries to full toolkits that feature Graphic User 

Interface (GUI)-driven game world and object creation editors. Using these, a game designer can 

concentrate on the game itself and leave the physics and rendering to the engine. This concept can 

be applied to the test of navigation and patrol functions of underwater vehicles. 

 

1.2 Overview of Underwater Simulators 

There have been many simulators developed over the years for AUV development, including those 

facilitating intelligent control development. An early example was the DIS-Java-VRML simulator 

from the Naval Postgraduate School, which had sophisticated physics and rendering capabilities, 

making use of hardware help from Silicon Graphics workstations. It was one of the first to use both 

standardized communication (Distributed Interactive Simulation [DIS] protocol [11] and a 

standardized modeling language (Virtual Reality Markup Language VRML) [12]. While it was a 

very advanced simulation for its time, it also was written entirely from the ground up and it relied 

on specialized hardware, and its age clearly shows, at least visually. Its descendant, the AUV 

Workbench [13] while more modern, also required substantial resources for maintenance and 

continuous modernization. Over the years more beneficial simulators began to evolve. The use of 
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game engines for traffic and land vehicle simulation was carried out by [14]. [15] worked on GEAS. 

GEAS is a simulator for research in intelligent control of autonomous agents, especially AUVs. 

GEAS focuses on simulation at the level appropriate for high-level mission control software. It runs 

on a server machine, which may or may not be the same machine as the AUV controller (but usually 

will not be). Unity supports TCP sockets, and so GEAS can communicate with a server process that 

listens to a port for incoming connections. Authors in [16] presented URSim (Unity Ros Simulator), 

an open-source hybrid underwater simulator based on modular software framework - ROS (Robot 

Operating System) and a cross platform real-time game engine- Unity3D.  It is an improvement on 

the above-named Simulators. The simulation described in this paper employs the URSim open-

source framework as a background. However, it is unique in that it replaces the default capsule in 

URSim with a custom built Autonomous Underwater Vehicle along with a custom patrol C# script 

for navigation. The environment itself comprises four custom underwater scenes. 

 

1.3 Unity 3D Game Engine 

Any coherent simulation system can be developed using a graphics rendering mechanism for 

creating a virtual environment with realistic 3D models and a computational back end system where 

the corresponding data is processed and respective commands are issued. Unity 3D, a game engine 

used to develop half of the world’s games was the first choice for the virtual environment 

development. It acts as the face of the whole system, providing a platform to create a visually 

realistic environment where the UUV’s algorithms and control structures can be tested and 

experimented with. Unity 3D [17] is a cross-platform game engine primarily used to create games. 

Its powerful graphics rendering, physics engines and intuitive development tools make it the 

preferred choice for developing realistic, efficient and easily deployable simulations. Unity provides 

a robust physics engine to simulate real world physics in the form of rigid body kinematics, fluid 

dynamics and collisions. The Unity Asset Store with wide variety of ready-made plugins and assets 

that can be imported to accelerate development. Unity is backed by a large, active community of 

developers that has been growing since 2005, providing support and making it more approachable 

for new developers. Games and simulations developed in Unity can be deployed on most platforms 

including Windows, MacOS and Android. The Unity engine supports C# (pronounced “C sharp”) 

as the programming language and provides several APIs to simulate real world physics. The 

development environment provided by Unity and its intuitive work-flow makes it easier for 

developers to get started with developing games and simulations. Drag and drop mechanisms make 

it easy to import and position objects, add components and attach scripts. The aesthetic 

specifications of game environments can be controlled using materials, shaders and textures in 

Unity. Ready-made environment packages and a vast asset store aid the development process. 

Overall Unity provides ease and flexibility to design user virtual environments which can mirror a 

variety of realistic scenarios. 

2. Methodology 

The methodology adopted for modelling the simulation environment is broken into three steps 

namely: Underwater 3D Environment modelling, Vehicle Design and Modelling, Hydrodynamic 

forces and collisions. 

 

2.1.  Underwater 3D Environment  

The underwater environment of the simulation system has been developed keeping in mind the 

various capabilities of Underwater Vehicles in different underwater missions. There are four major 

sandboxing environments that have been created in this standing simulation. Each sandbox (test-
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beds) is unique in its own way. In order to create the underwater environment certain properties had 

to be configured appropriately namely: Main Camera, Right Perspective Camera, Non-Player 

Character, Floor, Directional Light, Top Camera, Locator Sphere, Pointers Patrol, Environmet, 

ColliderLevels, Water, Projectors, CaveLevelWalls. 

Scripts for various configuration in C# programming language are contained in the Appendix 

Section. 

 

2.1.1 Sandbox One 

The environment developed as shown in Figure 1 acts a virtual test-bed for wholesome evaluation 

of the vehicle’s capabilities and performance. It includes the simple horizontal terrain aimed at 

training the robot to execute a simple point-to-point navigation without patrol functions. Rocks and 

clear sea bed paths have been placed for obstacle avoidance training, a piping network for leakage 

detection and a geo-relative game object (Locator Sphere) with clear shaders has also been placed 

for target acquisition related tasks respectively. 

 

 

Figure 1: Sandbox one, simple point-to-point voyage 

2.1.2 Sandbox Two 

Unlike the previous sandbox, this one has a different pipping system with an attached patrol script 

(shown in appendix) for training in terms of leakage checks across serval points in the pipping 

system. The pipping network covers a much larger sea bed frame and wider placed seabed rocks for 

a more patrol-friendly environment. 

 

 

Figure 2: Sandbox two, larger piping network and patrol 
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2.1.3 Sandbox Three 

This testbed as shown in Figures 3a and 3b carries more advanced navigational approach to design. 

Its centers on maneuvering capability training for the underwater vehicle. Red and green hoops 

(circular gates) have been sunk into the ground for a training session where by the UV will 

autonomously navigate through green hoops and evades red loops during voyage. This test simply 

points to the test for best voyage/navigation algorithm, to which collision avoidance and mapping 

training can be ascertained. Modulation and recurrent retaining of the UV via the navigation bake 

function provided by Unity3D enables the use of Artificial intelligence algorithms to surf through 

explicit options and concurrently helps in sensor functions whilst deciding which hoop is acceptable 

for navigation. 

 

 

Figure 3a: Sandbox three, orthographic view of green-red hoop testbed 

 

Figure 3b: Sandbox three, perspective view of Colour-difference hoop 

2.1.4 Sandbox Four 

As a hectic task, this sandbox was driven with complexity. It features a 3-level navigational course. 

It is primarily an underwater cave system that houses three lateral layers of navigable rock paths. 
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Unlike, the other sandboxes; this fourth testbed was created to prove different depth navigation for 

an autonomous underwater vehicle. 

 

 

Figure 4: Sandbox four, Underwater Cave System. 

 

2.2 Vehicle Design and Modelling 

2.2.1 Vehicle Design 

The vehicle design was carried out using Fusion 360 Software. The approach encompassed certain 

objectives to fulfill a simple system for the vehicle design and mission requirements which included:  

1. To select suitable component parts from already existing technology. 

2. To ensure the weight of the vehicle and propulsion parts relative to power and energy kept low. 

3. Ease of a control system for the vehicle. 

4. A high efficiency of the control and propulsion system of the vehicle in operation. 

5. To design for a high degree of freedom (mobility) of the vehicle in water. 

6. The choice of propulsion system to run noiselessly in operation. 

7. Should the propulsion system fail, the vehicle should be positively buoyant so it can rise to the 

surface for retrieval. 

To better understand the performance characteristics of the design the approach here reduces the 

engineered system to a form of an equivalent spheroid (a prolate spheroid, neutrally buoyant with 

the same length and mass as our AUV design). For this assumption, the following holds true  

…………………………………(1)
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=Equivalent model diameter(m) 
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=Mass(kg) 

=Water density(kg/m3) 

=Length(m) 

For the AUV in water at an assumed temperature of 20℃, its    

 

 

At 20℃ 

 

 

 

 

 

Figure 5: Length of the AUV in mm from the CAD workspace 

By defining the equivalent spheroid by its mass and slenderness ratio For 1.1> <15 an error 

of less than 1% can be approximated for the wet surface area. 
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…………………………………. (2) 

 

Where 

=Wet surface area of equivalent model(m2) 

=A constant for geometrically similar spheroids operating in the same fluid 

………………………………(3) 

 

 

 

 

At this point, it is suitable to assume a low running speed for the AUV operation in order to calculate 

the ideal drag this equivalent spheroid would face. While the following holds true, they are but a 

guide to understand our AUV operation in water. 

With 
 

The International Tow Tank Conference plot of frictional resistance cf versus Reynolds number 

gives the following relationship 

…………………………………(4)

 
……………………………………. (5) 
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=A Skin friction number  

Re= Reynolds number 
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Re=31477.0459 

  

For simplicity, consideration will be on the viscous drag experienced by the submerged AUV and 

thus, 

𝐶𝐷 = 𝐶𝑣 = 𝐶𝑓(1 + 𝑘). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6) 

For which the form factor (1+k) predicted empirically can be estimated by 

…………………………………(7)

 

Where 

=Drag coefficient of the towed system

 

 

 

 

. 

Testing the designed model is very essential to avoid wrong building and misbehavior during 

voyage. The modelling task is divided into two categories namely Kinematics and Dynamics. Fig. 

6 shows a six degrees of freedom (6DoF) model of the vehicle. The vehicle is modelled to control 

heave (motion along z-axis), roll (rotation about x-axis), pitch (rotation about y-axis), yaw (rotation 

about z-axis), surge (motion along x-axis) and sway (motion along y-axis).  

 

2.2.2 Dynamics 

We further divide the dynamics of the vehicle based on two possible motions - Translational Motion 

and Rotational Motion. Unity physics engine account for several forces like hydrostatic, lift, drag, 

thrust, external forces acting on the vehicle simulating the motion. 

 

2.2.3 Kinematics 

To demonstrate the kinematics, two reference frames were added, body-fixed frame and the inertial 

frame. The body-fixed frame moves relative to inertial frame, hence simulating the linear and 
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angular velocities. The position and orientation are described in reference to inertial frame thus 

simulating the degree of freedom of vehicle.  

 

Figure 2.6: Vehicle Modelling. 

 

2.3 Hydrodynamic Forces and Collisions  

Scenes in Unity are created using 3D or polygonal meshes. Meshes are the foundational structures 

of all games made in Unity. All objects in a scene are made up of meshes. Each mesh comprises of 

vertices and edges in 3D space that come together to form multiple triangles. Therefore, the surface 

of each Game Object can be considered to be made up of multiple small triangles.  

Simulation of any force on an object requires application of force on the meshes’ triangles. The 

proposed simulation system accounts for the various forces like buoyancy and drag that act on a 

solid body immersed underwater.  

2.3.1 Buoyancy and drag 

To enable a Game Object to experience physics-based forces, Unity provides Rigid body plugin. It 

allows the object to experience mass, velocity, gravity and drag. It can also be used to impose 

constraints on linear and angular movements and to detect collisions. To simulate buoyancy, 

corresponding C# scripts are attached to the Game Object to apply an upward force to the centers 

of all the submerged triangular faces of the vehicle’s mesh.  

B = ρgv -------------------------- (8) 

Where, v = zS---------------------------- (9) 

In (8), the buoyant force B, can be calculated using the Archimedes principle while ρ represents the 

density of the liquid, g represents the gravitational acceleration and v represents the volume of the 

water above an individual triangle in the mesh. As demonstrated in (1) this volume can be calculated 

from (9) using the product of the surface area of the triangle, S, and the distance between the center 
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of the triangle and the surface of the water, z. If this upward force is greater than the gravitational 

force, then the vehicle floats on the surface of the water plane. Simulation of the damping forces, 

drag and angular drag coefficients were specified using the Rigid body interface inside Unity 

platform.  

3. Results and Discussion 

The test of each scene as described in the methodology was carried out by trying out the navigation 

of a virtual Autonomous Vehicle in the respective scenes of the underwater simulation environment. 

This is shown in Figures 7 to 10. The Underwater Vehicle has an aerial and directional lamp added 

to it, to ensure proper navigation, scanning, visibility during voyage in terms of camera feedback 

and picture taking.  

 

Table 1: Parameters for Baked Test Agent in Unity 

PARAMETER VALUES 

Agent Height 2 

Agent Radius 0.5 

Maximum Slope 45 

Step Height 0.4 

 

 

Figure 7: Test Case for Sandbox One 

 

Figure 8: Test Case for Sandbox Two 
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Figure 9: Test Case for Sandbox Three 

 

 

Figure 10a: Test Case for Sandbox Four Water Surface Level 

 

 

Figure 10b: Test Case for Sandbox Four Underwater Cave Level 
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3.2 Discussion 

Figure 7 shows that the vehicle could perform simple navigation functions in the simulated 

environment which is the objective of Sandbox one. Figure 8 shows that the vehicle could perform 

patrol functions in the simulated environment of sandbox two. The vehicle can be seen patrolling 

an underwater piping network. Figure 9 shows that the UV can autonomously navigate through 

green hoops and evades red loops during voyage. This test simply points to the test for best 

voyage/navigation algorithm, to which collision avoidance and mapping training can be ascertained. 

Modulation and recurrent retraining of the UV via the navigation bake function provided by 

Unity3D enables the use of Artificial intelligence algorithms to surf through explicit options and 

concurrently helps in sensor functions whilst deciding which hoop is acceptable for navigation. In 

this scenario, the A* navigation algorithm has been deployed. As shown in Figures 10a and 10b, 

Sandbox four proves different depth navigation for an autonomous underwater vehicle. It navigates 

the water surface and then descends below to lower cave levels. These outcomes thus validate the 

C# codes (shown in Appendix) implemented. 

 

 

4. Conclusion 

This paper describes the simulation of an underwater environment. Such environments serve as low-

cost arenas for experimenting underwater vehicles to ascertain their functionalities before actual 

fabrication. Various tests prove that the simulation environment can serve for testing virtual 

underwater vehicles in terms of navigation, patrol, obstacle avoidance and other functions. It is 

recommended that the academia namely universities and other tertiary centres of learning adopt 

more of these procedures of employing simulation environments to test systems and machines 

before actual deployment. The huge advantage of low cost cannot be overemphasized especially in 

environments where it is seemingly difficult to get adequate equipment for carrying out experiments. 
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Appendix 
AUV PATROL SCRIPT IN C# 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using UnityEngine.AI; 

//AI patrol for AUV simulation. 

 

public class NPCSimplePatrol : MonoBehaviour 

{ 

    //Dictates whether the agent waits on each node 

    [SerializeField] 

    bool _patrolWaiting; 

 

    //The total time we wait at each node 

    [SerializeField] 

    float _totalWaitTime = 3f; 

 

    //The probability of switching direction. 

    [SerializeField] 

    float _switchProbability = 0.2f; 

     

    //The list of all patrol nodes to visit. 

    [SerializeField] 

    List<Waypoint> _patrolPoints; 

 

    //Private variables for base behaviour. 

    [SerializeField] 

    NavMeshAgent _navMeshAgent; 

    int _currentPatrolIndex; 

    bool _travelling; 

    bool _waiting; 

    bool _patrolForward; 

    float _waitTimer; 

 

    // Use this for initialization 

    public void Start() 

    { 

        _navMeshAgent = this. GetComponent<NavMeshAgent> (); 

 

        if (_navMeshAgent == null) 

        { 

            Debug.LogError("The nav mesh agent component is not attached to " + gameObject.name); 

        } 

        else  

        { 

            if(_patrolPoints != null && _patrolPoints.Count >= 2) 

            { 

                _currentPatrolIndex = 0; 
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                SetDestination(); 

            } 

            else 

            { 

                Debug.Log("Insufficient patrol points for basic patrolling behaviour."); 

            } 

 

        } 

    } 

 

    public void Update() 

    { 

        //Check if Robot is close to the destination. 

        if(_travelling && _navMeshAgent.remainingDistance <= 1.0f) 

        { 

            _travelling = false; 

 

            //if the robot is goint to wait, then wait. 

            if(_patrolWaiting) 

            { 

                _waiting = true; 

                _waitTimer = 0f; 

            } 

            else 

            { 

                changePatrolPoint (); 

                SetDestination(); 

            } 

        }     

 

        //Instead if we're waiting. 

        if(_waiting) 

        { 

            _waitTimer += Time.deltaTime; 

            if (_waitTimer >= _totalWaitTime) 

            { 

                _waiting = false; 

 

                changePatrolPoint(); 

                SetDestination(); 

            } 

        } 

    } 

 

    private void SetDestination() 

    { 

        if (_patrolPoints != null) 

        { 

            Vector3 targetvector = _patrolPoints[_currentPatrolIndex].transform.position; 

            _navMeshAgent.SetDestination(targetvector); 

            _travelling = true; 

        } 

    } 

 

    // <summary> 

    // Selects a new patrol point in the available list, but  

    // also with a small probability allows the robot to move forward or backwards. 

    // </summary> 

    private void changePatrolPoint() 

    { 
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        if (UnityEngine.Random.Range(0f, 1f) <= _switchProbability) 

        { 

            _patrolForward = !_patrolForward; 

        } 

 

        if (_patrolForward) 

        { 

            /** 

            _currentPatrolIndex++; 

 

            if(_currentPatrolIndex >= _patrolPoints.Count) 

            { 

                _currentPatrolIndex = 0; 

            } 

            */ 

 

            _currentPatrolIndex = (_currentPatrolIndex + 1) % _patrolPoints.Count; 

        } 

        else 

        { 

            /** 

            _currentPatrolIndex--; 

 

            if(_currentPatrolIndex < 0) 

            { 

                _currentPatrolIndex = _patrolpoints.Count - 1; 

            } 

            */ 

            if (--_currentPatrolIndex < 0) 

            { 

                _currentPatrolIndex = _patrolPoints.Count - 1; 

            } 

        } 

    } 

} 

 

 

UNDERWATER EFFECT SCRIPT IN C# 

using UnityEngine; 

using System.Collections; 

 

public class underwaterEffect : MonoBehaviour 

{ 

    public float waterHeight; 

 

    private bool isUnderwater; 

    private Color normalColor; 

    private Color underwaterColor; 

 

    // Use this for initialization 

    void Start() 

    { 

        normalColor = new Color(0.5f, 0.5f, 0.5f, 0.5f); 

        underwaterColor = new Color(0.22f, 0.65f, 0.77f, 0.5f); 

    } 

 

    // Update is called once per frame 

    void Update(){ 

        if ((transform.position.y < waterHeight) != isUnderwater) 

        { 
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            print(transform.position.y); 

            print(waterHeight); 

            isUnderwater = transform.position.y < waterHeight; 

            if (isUnderwater) SetUnderwater(); 

            if (!isUnderwater) SetNormal(); 

        } 

    } 

 

    void SetNormal() 

    { 

        RenderSettings.fogColor = normalColor; 

        RenderSettings.fogDensity = 0.01f; 

 

    } 

 

    void SetUnderwater() 

    { 

        RenderSettings.fogColor = underwaterColor; 

        RenderSettings.fogDensity = 0.02f; 

 

    } 

} 


