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This work presents the analysis of thick anisotropic plate through
exact approach using Third Order Shear Deformation Theory. Total
potential energy was formed based on the refined plate theory
assumptions. Displacement field, kinematic relations, constitutive
relations and stress displacement relations were derived from the
deformed section of a thick rectangular anisotropic plate. Strain
energy was formed by substituting the kinematic relations and stress-
displacement relations into the universal strain energy equation. By
the addition of the external work to the strain energy equation, total
potential energy functional for the analysis of thick anisotropic
rectangular plate was obtained. The total potential energy functional
was minimized by differentiating it with respect to the changes in
out-plane deflection, ow, shear deformation rotation in x direction,
0@, and shear deformation rotation in y direction, 5¢y. This yielded

the governing equation and two compatibility equations of thick
anisotropic rectangular plate. A third order polynomial shear
deformation was employed in the governing and compatibility
equations to obtain the displacement functions (deflection, w, shear
deformation rotation in x direction, ¢ _, and shear deformation
rotation in y direction, ¢y). These displacement functions (w, ¢, ¢y)

obtained satisfied the specified boundary conditions and it gave the
unique displacement functions for each of the four plate boundary
conditions SSSS, SCFS, CCFS and SCFC solved. The stiffness
coefficients (K, K,, K3, K4, K5, Kg, K7, Kg) were calculated for each
of the four plate boundary conditions. The formulas for calculating
the coefficients of the displacements were combined with elastic
equations to determine the formulas which were used in calculating
for displacements (u, v and w) and non-dimensional stresses
(OrR» G- Tro» Trs and Tos) at “0°” angle fiber orientation and
various span to thickness ratio, o(5, 10, 20, 30, 40, 50, 60, 70, 80, 90
and 100) and for all the four boundary conditions. These formulas
were used to analyze some typical anisotropic rectangular thick
plates by the help of a functional excel worksheet program. The
numerical results obtained for displacement (w) and stresses (o,
and a,,) at aspect ratio of 1.0 and span to thickness ratio of, 20.0,
10.0, and 7.14286, in this study, when compared with the results of
Shimpi and Patel showed percentage difference of 0.59, 1.47, 2.70;
0.62, 1.20, 1.91 and 1.31, 0.97, 3.91% which is in good agreement.
Hence the developed method is recommended for analyzing thick
rectangular anisotropic plates.
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1. Introduction

Technological progress is associated with continuous improvement of existing material properties
and this has led to the expansion of structural material classes and types. Usually new materials
emerge due to the need to improve structural efficiency and performance. These new materials in
turn provide opportunities to develop outdated structures and technologies, and also create new
problems and tasks to engineers and material scientists. One of the best manifestations of these
related processes is the development of the composite structural elements which are associated with
the anisotropic structural plate, to which this study is devoted.

Composite materials emerged in the middle of the twentieth century as a promising class of
engineering materials providing new prospects for modern technology. Broadly speaking, any
material consisting of two or more components with different properties and distinct boundaries
between the components can be referred to as a composite [1].

The sudden increase in the use of anisotropic or composite materials in many types of engineering
structures (e.g., high rise structures, aerospace, underwater structures, automotive, electronic circuit
board, medical prosthetic devices and sports equipment) and the number of journals and research
papers published in the last two decades attest to the fact that there has been a major effort to develop
composite material systems, and to analyze and design structural components made from composite
materials [2]. The production of anisotropic material involves chemists, electrical engineers,
chemical engineers, material scientists, mechanical engineers, and structural engineers. Structural
engineers deal mainly with the analysis and design of these anisotropic materials [3].

Anisotropic plates are plates with different resistance to mechanical actions in different directions.
This implies that anisotropic plates are directionally dependent as opposed to isotropic plates that
implies identical properties in all directions. Examples of anisotropic plates are aviation plywood,
delta wood, coated aluminum plate, alloyed metal plates and a number of other materials [4, 5].

Works on refined plate theory have been characterized by the use of trigonometric displacement
function. Many scholars have obtained the closed form solutions and others have obtained
approximate solution using assumed displacement functions in energy method. However, one thing
that is common in them all is the use of trigonometric displacement functions to approximate the
deformed shapes of the plates. Others have applied the assumed polynomial displacement functions
in numerical methods like finite element method and differential quadrature element methods [6, 7,
& 8]. The major flaw in their traditional refined plate theory (i.e. Third order or higher order shear
deformation theory) is the assumption of their displacement functions in thick anisotropic plate
analysis. It is believed that these assumptions have not been solved to ascertain their validity or
correctness in thick anisotropic plate analysis [9].

Because of the complexity involved in handling thick anisotropic plates, engineers usually resort to
thin isotropic plate or even thick isotropic plate despite the numerous shortcomings. Isotropic plate
assumes that the material properties at a point are the same in all directions. However, certain
materials display direction-dependent properties; consequently, these materials are referred to as
anisotropic materials. When an anisotropic material is stressed in one of the principal directions, the
lateral deformations in the other principal directions could be smaller or larger than the deformation
in the direction of the applied stress depending on the material properties. Idealization of a thick
anisotropic plate as a thin isotropic plate always underestimates the stresses in the plate. The
consequence of using these erroneous stresses in design and construction is structural failure and
sometimes total collapse. Also earlier works on thick anisotropic plates are based mainly on
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trigonometric and assumed displacement functions. It is rare to see work on anisotropic thick plate
analysis that determined the exact polynomial shape function from the integration of governing
equation of equilibrium and compatibility equations of thick anisotropic plate [3 &10]. Thus, it can
be said that earlier works on the bending analysis of thick anisotropic plates have yielded
approximate results, since it cannot be said that the displacement functions used are exact [10]. The
need to approach anisotropic thick plate analysis from the perspective of determining the exact
displacement functions through integration of the governing equation prompted the present study.
This inability to arrive at the exact displacement function has been identified as a gap in literature
that has to be filled up. To cover this gap in anisotropic thick plate analysis is the primary motivation
of the present study.

2. Methodology
2.1. Formulation of total potential energy functional

The total potential energy functional for a thick anisotropic rectangular plate has been formulated
as shown. In formulating the total potential energy the work was based on the refined plate theory
assumptions.

a. Determination of Displacement field

In-plane displacements, u and v of refined plate theory are defined as shown:

U =u;+ ug 1
V=v,+ v 2

Aspect ratio, (p = b/a), (R = x/a; Q = y/b; S = z/t) are the non-dimensional forms of the orthogonal
axes

The in-plane displacements, uc, vc and us, Vs, where subscripts “c” and “s” stands for classical and
transverse are as presented in Equations 3, 4, 5 and 6.

dw St dw
e T T 3
_ 9. = dW_ Stdw_ St dw 4
Ve = Ty = T T T hdR T BadQ
us = F(2)6,, 5
Vs = F(2)0sy 6

Also, F(z) stands for the third order shear deformation model presented as:

F() =gz %7 (1_1[512) -
(z2)=z s 2= 2 P a

The model in a non-dimensional form is as defined:

4
F = F(s) =t(S—§S3) 7b
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Where:

F =tH 7c
4

H=S--=-53 7d

3
Equations 3 and 5 can be combined to obtain Equation 8a

- X )0, 8
u= a4 dR V4 a

Also, Equations 4 and 6 can be combined to obtain Equation 8b

St L .0, 8b
V=———— z
BadQ
Equation 7c can be substituted into Equations 8a and 8b to obtain Equations 8c and 8d
= t[ s | Hao ] 8
u= 7 3R a., c
- ! [ s 4 pHa.o ] 8d
“ap| S ag TP
b. Determination of kinematic relations

Equations 9, 10, 11, 12 and 13 as presented are Equations of strain — displacement relations

_Ou_ du ¢t SaZW+H a9, 9
® T 9x @R a2| " orz T %GR
v vt 562W+H 09, 10
@ = 5y~ apag praz| "agz TH¥ 5
ou OJv
Tre = fRe T Er = Got oy
LN LA, a¢ s L g 2] Thai
~ Baz| ° 9RAQ *5az| 7S arag T HP® gy | Thatis:
t s 8% Ly a¢+ a¢ 11
re T gaz| “9RaQ T % Ty
B N _6u+aw_1 6W+ 6H¢] 10w Thati
Trs T RS T ER T G5 T oy TulTar T s x| Taar
oH
Tes = 35 Px 12
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_6H® _8v+8w_1 6w+ 6H® +1 ow That is:

Vs = 55 Y =523y T Bal a0 TFas % T ag - Thatls:
_0H

Tos = 55 %

C. Determination of constitutive relations

[ OR 1 By By B3 0 0 [ ER ]

[ Ce | E By1 Bz Bos 0 0 || e

[Tro | = N Bs; Bs,  Bas 0 0 ||Vre

[ 7z | H12H21 l 0 0 0 0 0 YRS

lTQSJ 0 0 0 0 Bsc lVQSJ

Where:

E, is the reference elastic modulus. It can be E; or E,; m = Cos 8; n = Sin 6

Bi1 = m*dy, + 2m?n?(d, + 2d33) + n'*d,,

By = dip(n* + m*) + m?n?(dy; + dy, — 4d33)

Biz = m*n(dyy — dip — 2d33) + mn®(dy; — dap + 2d33)
By, = n*dyy + 2m?n?(dy, + 2d33) + m*d,,

By3; = mn3dy; — m3nd,, + (m3n — mn3)(d,, + 2d33)
B33 = m?n?(dyy — 2ds; + dyp — 2d33) + d3z(m* +n?)
By = dys; Bss = dss; By = B1z; B3y = Byz; Bz = Bas
di1 = E1/Ep

di; = E; . t2/Eo

dz1 = E1 . U1/Ep

dyz = E52/Ep

d3z = G12(1 — pa2t21) /Eo

dag = G13(1 — pyai21) /Eo

dss = Go3(1 — piapa1)/Eo

Substituting Equations 9 to 13 into Equation 14 gives each stress component as:
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Eot ( l SaZW+H a<|> B12 l 562W+H ﬁad)
o N a. . -— a
: [1 — MizHzq]a?’ H dR? ,32 2Q? aQ
B13 6¢x + ﬁ-ﬁ
aRaQ 2Q oR
29, ] B,, l 92w a9,
o +H . —S—+Ha —
Q= [1— pizkz4]a ( l ,32 9Q? g aQ
B G 0¢
23 ¢ +ﬁ
aRaQ
Eot <B l 562W+H a¢ 4 Baz [ 562W+H Bad)
T = . M . -— a
RQ [1— uyzmzq]a? 3 oR? ﬁz 0Q* aQ
158 |6 0w +H a<|> 30" ¢
g | *9Rrag T "% Ty
E, [ ] o Eot . a? aHl 5
T = . )=
A TR HizMa1 [1— pappnla® |t "as| ™"
[ ] p la aH
T
R T MizHo1 v [1— pizMzila t as
d. The total potential energy functional

The total potential energy functional is given as:

1 1
_abt.”f
_2

00

.5

0
f (GR’SR + ORER + TRQYRQ + TRS'YRS + TQS'YQS) dR dQ dsS
-0.5

1 1
—qabj J wdR dQ
0o Jo

Substituting Equations 9 to 13 and Equations 29 to 33 into Equations 34 gives:
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11 2 2
=2 'ff{{B”'KaRZ) ~ 2020 aR2 3R T 94\ 3R
00

B, ) 0w ad?w 09, ,0%w 09, ¢, 0*w
2 <6R6Q> 9550750 92 3R R T 9% 5k a2
O, 00, O,
— 92 ﬁ ARz OQ gsa ﬁﬁ%
B3 ’w 9%w 0¢ 6¢ 0*w 09,
+-22 14 — o83
g '|*oraqQ arz ~ “92¢ aRZ 49205050 3R
9, 04,\ 99,
+ 2g5a’. <6Q . ) aRl
By, [[0%w 92w 99 99,\”
" [(ﬁ) ‘Zgzaﬁ-a—oz-a—oy*gﬂzﬁz-(a—oy)]
323 A 0w Oz_w_ 6¢ ﬁa¢ 4g,ap. 0w 09,
T 53 "|*3rag a0z ~ “92*\ 3¢ aQZ 92%P-5Ra0 30

0 ag,\ 09,
+2g3a2,8.< 2 +B > an

B33 0*w 09, N 0w 09,
' "\0RAQ 0Q ﬁaRaQ' OR
a¢, 99, 04) a2 )
2 _x 2 | Y 2 —
+g3a.<<aQ> +2 6Q ‘3R + [~ +a B44.(t) 4Dy
5 a2 ) qa*
+a 1355.(?) 94:0"( =2 5w rdRdQ 35
Where:
D = Eot3 36
0 12[1 — pyzm24]
e. The governing equation and compatibility equations

Differentiating Equation 35 with respect to w, 6x and 6y gives the governing equation and
compatibility equations respectively.

dil _ dIT _ dIT _ 37
dw do, B do, B
That is:
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11
ﬂsz 84W B22 64 n 4B13 64 4% 64
dw Bur. 6R4 By orz a2 aQ2 B 0Q* B "OR3 aQ B3 "9RAQ3
00
g4 agq)x g4 63¢X B13 63¢
2 [2Bu + Bul 5og =557 By 3ra02 ~ 3822 3Rz ag
822 B,, + 2B ]a3¢y _ 822 63¢ _3g, st 3¢ AB 63¢y
Tops 12 T P22l e T e Py Rz 9 g2 aRaQ2 828 P13 s
g2a 0°¢, qa*
— 5 23'W3X_D0 dRdQ =0 38
dI1 93w 20.] Bi, , 03w 93w L. 0%,
dg,  bu- [ 92055z + 930> aRZl topr | T929F" Gpz T 920 g0z T 2954 B Gpa,
B 93 93 92 0%4,
== —gza.—WZ—Zgza—W2+Zg3a Iy + 930°. B.—=3
B dQ OR 30 R "ORAQ IR
By | 3w 9%,
+F._—gza 0Q3+g3aﬁa—Q2]
B33 3w tg 62 x 0° 1 a?B (a)2 p
,32 " gza' aR aQZ aQZ g3 BaRaQ a 44+ t 'g4' X
= 39
dll _ By, ad’w o'w 0%9,
do,  2p2 | P2paq? 9208 5pa50 + 2954 F-3r30
By 93w , 9%.] By 23w , 0%,
+ 5 I gza.ﬁ.aR3+g3a.ﬁ. 3R +ﬁ4 .|—g2ap. OQ3+g3a'B 302
B 93 a3 G , 0%¢
= —gza.ﬁ.—W—Zgzaﬁ.—W+g a’p. X + 2g;a? Y
B3 dR 0Q>2 dRAQ? 902 aRaQ
B33 63W 2 62 ) 52 ) a 2
F —gza.ﬁm+g3a .ﬁaRaQ+g3a P W + a“Bss. (t) '.94'@31

= 40

Equations 38, 39 and 40 are the governing equation of equilibrium of forces, compatibility equation
of displacements in x-z plane and compatibility equation of displacements in y-z plane respectively.

f. Solutions of governing equation and compatibility equations

Solving Equations 38, 39 and 40 gives:

w = Ah 41a
w = (ay + ;R + a,R? + a3R3 + a,RH) (A + 1,Q + 1,Q% + 13Q3 + 1,QY) 41b
A, oh
_A2 Oh 42
X a 0R
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5 A oh
1= 3850

Satisfying the boundary condition for SSSS plates gives their distinct deflection equation
respectively as:

43

w = A;h = aza,(R— 2R3+ RH)(Q-2Q% + 1,Q*)  {for §555} 41c
Substituting Equations 41a, 42 and 43 into Equation 35 gives:

ab

[1= 2a* {{Bn [Al 292A1A2-+93A22]k1

(By2 + 2B33)
p?
[By + Bss] By, AiAz

+2B—93A2A3 ky + a3 92 “Tp7

2 [+93A2 + 93A; ]kz

[2A1 — 92A14A; — 92A1A3]-k2

ks — AuAsB7k, |

ﬁ
+ 7 [4A1% — 2g,(A1A; + A1A3) — 49,A1A; + 2g5(A,° + ALA3) ]k,
B
,84 [A1% — 29,4185 + g3A3% ks

B
,83 [4A1 —29,(A1A; + AjA3) — 49,A1A5 + 293(A2A3 + Az )]ks

a N qa*
+ B44.(t) g4_ A22k6 BZ .(_) .g4A32k7}_2A1D_0k8} 44‘

Note:

-
N4
Il

[ (8 arawic= [ [ (o) awasi= [ [ (&2 anag
f f < )(deQ>deQ ks = f f <dQ2> <deQ>deQ
ke = folft)l(j—g)zdeQ;kﬁ f:f:(%)zdeQ;kS: folfolhdeQ

To obtain the quasi equations of equilibrium of forces and quasi compatibility equations, Equation
44 must be differentiated with respect to A1, A2 and A3. That is:

dll _ dIT _ dIl
dA, dA, dA,

=
KS
Il

=0 45
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dI1 qa*
d_Al = L11Aq — L12A; — Li3Az — D_o kg =0
dl'1
d_AZ = L12A; — LyzA; — Ly3A3 =0
dl'1
d_A3 = L13A; — Ly3A; — L33A3 =0
Where:
2{2B33 + Bj,} Bzz B3 B3
L11:B11k1+ ﬁZ k B‘l’ k3+3 B k 3ﬁ3k

2B;; + B B3
L1z = Byygoky + {3}—212}821(2 +2.25—

B3
B g2k4 + 0. 75—g2k5

B
_ {2B33 + By,}

B,,
Li3 57 g2k, + B —22g,ks + 0. 75 [)’ > gk, + 2. 25 /3 > g,ks
{2B33 + BlZ} B B
L1, = Byig2ky + B—gzkz + 2.25— B g2k4 + 0. 757821(5

Bss B,
Ly2 = B1183ks + —- g g3k, + 1.5— B g3k4 + Byg &% g4kg

L23 — EgSkZ B g3k2 + 0. 75 g3k4 + 0. 75 g3k5 +OC2 84 B45 k8
'32 '32 [j’ ﬁ3 B
{2Bs; + By,) By, Bi3 Bas

Lig = =2 gk, 4 gakea + 0752 gokky +2.25 -2 gk

Bi2 B33 B13 B
Lz = P2 — 83k + p? — 83k, + 0-75Tg3k4 + 0. 75—g3k5 +oc? g4Tk8

B33 By B3 Bss
L3z = p? — 83k, + D — 83ks + 1.5?g3k5 +oc? 84Fk7

Solving Equations 47 and 48 simultaneously gives:

Li,L22 — L;3L
A2=(1233 13L23

A, =P, A
L22L33—L23L23) rooe

_ (L13L22 — LipLa3
g =

A, =P A
L22L33—L23L23) .

Substituting Equations 57 and 58 into Equation 46 gives:

70

46

47

48

49

50

51

52

53

54

55

56

57

58

59



Anya, U.C. et al. / Advances in Engineering Design Technology
3, 2021 pp. 61-85

4 4
qa kg qa
A, = . = .k 60
Y7 Dp "(Lyy —LypPy —LyzP3) ~ Dy

g. Development of formulas for thick anisotropic plate analysis

Substituting Equation 60 into Equation 41a and substituting Equation 36 into the resulting equation
and simplifying gives:

W = 12[1 — pyopz1] koh 61

Substituting Equations 41a, 42 and 43 into Equations 8c, 8d, 29, 30, 31, 32 and 33, where
appropriate and simplifying gives:

_ doh
u= 12[1_u12u21].k9. [_S+HP2 ].a_R 62
_ [-S+H.P3] oh
vV = 12[1_“.12”21]T3% .kg 63
_ 0°h B 9°h B
o7 = 12.Ko (Buy [HP, = S 1555 + 22 [HPy —S1Z2+ 22 H(P, + Py —
25) 1) 64
0RAQ
__ 9%h B 9%h B
5 = 12.k. (Baa[HP, = S5 + "2 [HPy — S] 505 + "2 H(P, + P3) —
28 "Zh) 65
dROQ
_ 0°h B 0°h B
Trg = 12ke. (331. [HP, = S1525 + 22 [HPy = S| S5 + 22 H(P, +P; —
9%h
25) 3130) 66
Trs = 12k (B P aH) oh 67
Trs = 9\ Pae-2-5¢ |50
o P, 9H\ oh
TQS = 12k9 (855?§> E 68
h. Determination of stiffness coefficients

The stiffness coefficients (k) extracted from Equation 44 were solved for four boundary conditions
and the unique stiffness coefficient values were obtained for each of the four plate boundary
condition and the values are shown on Table 1.

I. Numerical analyses of typical thick anisotropic rectangular plates

The numerical values for typical thick anisotropic rectangular plate in-plane displacements (u and

V), out-plane displacement - central deflection (w), in-plane stresses (ox, oy and txy), and out-plane

stresses (tx; and 1y;) were determined for angles fiber orientations of 0°, 159, 30°, 459, 60°, 75°

and 90° at span to thickness ration (o) of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 for the twelve
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boundary conditions considered in this work. The materials were analyzed for in-plane displacement
(u,v) atx=0.5,y =0.5, z=0; transverse displacement (w) at x = 0.5, y = 0.5, z = 0); in-plane normal
stresses (o, o) at Xx = 0.5,y = 0.5, 2= 0.5 or z = 0.25; in-plane shear stress (ty,) atx =0,y =0, z
= 0.5; out-plane shear stress (t4,) at x =0,y = 0.5, z = 0 and out-plane shear stress (t,,) at x = 0.5,
y =0, z=0. The plate was subjected to uniformly distributed load.

The material properties used are as follows: E,/E, = 25, G1,/E, = 0.5, G3/E, = 0.5, G,3/E, = 0.2,
vip = 0.25. Given data by [11]; E,/E; = 0.52500, G,,/E; = 0.26293, G,3/E; = 0.15991, G,3/E; =
0.26681, p,, = 0.44046, p,, =0.23124, (1 — u,,u,,) =0.89815. {Taken from [11]}.

The plate parameters employed here are similar to the one employed by [13]. The following non-
dimensionalizations they applied were also used in this work:

_ Eot Eot Ox Oy Txyt?, .\ _ TxzTyzt
W= w2 X100 0V=u v -, (6% Oyy: Toy) = e ) G Ty = (55
3. Results and Discussion

a. Total potential energy functional for a thick anisotropic rectangular plate

The total potential energy functional for a thick anisotropic rectangular plate was derived in
Equation (35) and is as shown in Equation (69):

equations
The governing equation of equilibrium and two compatibility equations for thick anisotropic

rectangular plate which are derived in this study as Equations 38, 39 and 40 are presented in
Equations 70, 71 and 72.

11
0*w B,, 0w B3 0*w B,; 0*w
ff B11 LY BXY p2amz2 T i a0z T Y7 am3 +4_3' 3
) J aR ﬂ dRZ 002 T B* ' 9Q B "OR0Q « ' B® RaQ
gaa 63¢x goa 63¢x B13 a° ¢
2 12Bu+Bulgps =257 By grgoz ~ 39205 9R?3Q
a3 a3 a3 a3
_ g2 [B12 + 2B, ¢y_g2a X d)y — 39 323 ¢ .9261-1313-ﬁ
T2 90° 28 Y 9R?3Q %87 3RAQ? FRE
_g2a ¢, qa*

7B g5 ~ o dRAQ =0 70
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B., 63W+ , 00, N B, , 03w 3w o 0%9,,
920555 + 930" G | + g7 +| 79208 Gz ~ 92055507 T 2939 B 55
+Bl3 3w 03w to 0%¢, N 0° 9,
g | 92%50arz ~ “92%3q ar? gsa*. "ORAQ 930°-B-5pz
VB [ 0w %0, Bss w0, 829,
,33 . gza an g3a’ B aQZ ’82 ' gza' aR aQZ g3a’ an g3 ﬁaRaQ
-
+ a2B44- (?) .g4. Q)
=0 71
B, addw 23w o 0%¢, LBis B13 23w N 0%,
zﬁz " gZBaQ3 gzaﬁ'aRzaQ g3a B aRaQ ﬁ gzaﬁ aRg g3a ﬁ aRz
B,, 3w 2¢y
a —gzaﬁ.a—Q3+g3a2ﬁ2 302
BZ3 03 3 2 a2¢x 202 62¢y
Bss w 2 az(I)x 2 p2 624)3’ 2 ?
+F —gza.ﬁaRzaQ gza "BaRaQ+93a B R +a B55.(—) .94- Dy
= 72
C. Stiffness coefficients of the four plate boundary conditions
The stiffness coefficients for the four plate boundary conditions are as listed in Table 1.
Table 1: Stiffness value (k) for rectangular plate
Plate K, K, Ks K, Ks K K, Kg
type
SSSS  0.23619 0.23592 0.23619 0 0 0.02390 0.02390  0.04000
SCFS 150967 0.1823129 0.02872 0.11111 O 0.071889  0.016033 0.0625
CCFS 0.67096 0.040514 0.006047 O 0 0.0159753 0.003376 0.027778
SCFC 4.16000 0.8816327 0.217985 05625 O 0.198095 0.077531 0.09000
Table 2: Numerical values of displacements and stresses for SSSS thick anisotropic

rectangular plate for 0° @ o.= 5 to 100, =1

o

5

w

0.0180

u A

0.32005 0.60615

O-XX

0.980772
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o

0.0364545

Txy

5

TXZ

Tyz

0.059276 0.59966 0.06820



10

20

30

40

50

60

70

80

90

100

Table 3:

o

5

10
20
30
40
50
60

0.01005

0.00775

0.00731

0.00715

0.00708

0.00704

0.00701

0.0070

0.00699

0.00698

Numerical values of displacements and stresses
rectangular plate for 0° @ a.=5to 100, B =1

w

0.01142

0.00464

0.00287

0.00253

0.00242

0.00236

0.00233
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;..15660
-4.4924
;.0.0509
;.7.8329
-27.8382
;10.0669
-54.5190
-71.1945
-90.0934

111.216

u
-0.04699
-0.13268
-0.47306
-1.04010
-1.83393
-2.85455

-4.10198

;L.51589
;1.87597
;L0.4394
;L8.2231
-28.2292
;10.4583
-54.9107
-71.5863
-90.4853

111.608

\
-0.17713
-0.29131
-0.72846
-1.45500
-2.47189
-3.77925

-5.37710

0.881023

0.853597

0.848404

0.846577

0.845730

0.845270

0.844992

0.844811

0.844688

0.844599

GXX

0.56898

0.40058

0.35664

0.34842

0.34554

0.34420

0.34348

74

0.0259871

0.0222705

0.0215162

0.0212470

0.0211214

0.0210529

0.0210115

0.0209846

0.0209662

0.0209530

Oyy
0.02061
0.01014
0.00740
0.00689
0.00671
0.00662

0.00658

0.042759
9

0.037473
4

0.036427
4

0.036056
0

0.035883
2

0.035789
0

0.035732
1

0.035695
2

0.035669
9

0.035651
y

for SCFS

Ty

-0.01066
-0.00518
-0.00375
-0.00348
-0.00338
-0.00334

-0.00332

0.67721

0.70067

0.70524

0.70686

0.70761

0.70802

0.70827

0.70843

0.70854

0.70862

0.05531

0.05011

0.04903

0.04864

0.04846

0.04836

0.04830

0.04826

0.04823

0.04821

thick anisotropic

TXZ

0.14369
0.14867
0.14997
0.15021
0.15030
0.15034

0.15036

Tyz
0.00346
0.00336
0.00333
0.00332
0.00332
0.00332

0.00332



70
80
90

100

Table 4:

a

5

10

20

30

40

50

60

70

80

90

100

0.00232
0.00231

0.00230

0.00229

Numerical values of displacements and stresses
rectangular plate for 0° @ a.=5 to 100, =1

w

0.00159

0.00066

0.00041

0.00036

0.00035

0.00034

0.00033

0.00033

0.00033

0.00033

0.00033
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-5.57622
-1.27725

-9.20509

11.35974

u

-0.00652

-0.01882

-0.06750

-0.14858

-0.26207

-0.40799

-0.58634

-0.79711

-1.04031

-1.31594

-1.62399
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-71.26545 0.34304 0.00655

-9.44431

11.91369

14.67358

v

-0.03598

-0.06116

-0.15426

-0.30860

-0.52455

-0.80217

-1.14147

-1.54246

-2.00513

-2.52949

-3.11555

0.34275 0.00653

0.34256 0.00652

0.34242 0.00651

Oxx

0.07930

0.05696

0.05097

0.04984

0.04945

0.04926

0.04916

0.04910

0.04906

0.04904

0.04902

75

Oyy

0.00404

0.00195

0.00138

0.00127

0.00123

0.00122

0.00121

0.00120

0.00120

0.00120

0.00119

-0.00330
-0.00329

-0.00329

-0.00328

for CCFS

Txy

-0.00159

-0.00080

-0.00058

-0.00054

-0.00052

-0.00052

-0.00051

-0.00051

-0.00051

-0.00051

-0.00051

0.15037
0.15038

0.15039

0.15039

0.00332
0.00332

0.00332

0.00332

thick anisotropic

TXZ

0.01999

0.02114

0.02145

0.02151

0.02153

0.02154

0.02154

0.02154

0.02155

0.02155

0.02155

Tyz

0.0010
y

0.0008
8

0.0008
1

0.0008
0

0.0008
0

0.0008
0

0.0007
9

0.0007
9

0.0007
9

0.0007
9

0.0007
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Table 5: Numerical values of displacements and stresses for SCFC thick anisotropic
rectangular plate for 0° @ a. =5 to 100, = 1.5

@ W u v O [ Ty T T,
5  0.00020 -0.00257 -0.00509 -0.00045 -0.00003 0.00063 0.00786 0.00007
10  0.00008 -0.00722 -0.00827 -0.00031 -0.00001 0.00030 0.00808 0.00008
20  0.00005 -0.02569 -0.02060 -0.00028 -0.00001 0.00022 0.00814 0.00009
30 0.00004 -0.05646 -0.04112 -0.00027 -0.00001 0.00020 0.00815 0.00009
40  0.00004 -0.09955 -0.06984 -0.00027 -0.00001 0.00020 0.00815 0.00009
50 0.00004 -0.15494 -0.10677 -0.00027 -0.00001 0.00019 0.00815 0.00009
60  0.00004 -0.22264 -0.15191 -0.00027 -0.00001 0.00019 0.00816 0.00009
70  0.00004 -0.30266 -0.20525 -0.00027 -0.00001 0.00019 0.00816 0.00009
80  0.00004 -0.39498 -0.26680 -0.00027 -0.00001 0.00019 0.00816 0.00009
90 0.00004 -0.49961 -0.33655 -0.00027 -0.00001 0.00019 0.00816 0.00009

100 0.00004 -0.61655 -0.41451 -0.00026 -0.00001 0.00019 0.00816 0.00009

d. Discussion of results
I. Total potential energy functional

The total potential energy functional for the thick anisotropic rectangular plate derived in this work
can be used to analyze rectangular thick anisotropic plate of any boundary condition and it was used
here to solve for rectangular plate subjected under pure bending loading. Although, it can also solve
buckling loading and vibration loading when the external work is substituted appropriately. It is
presented here in the expanded form to accommodate the exact displacement functions unlike that
of other works like [11, 12, 13] that assumed their displacement functions and had no need for such
expansion. Hence it is similar when compare with other works in a minimized form but exhibit some
level of differences when compared in the expanded form. The above statements can be relied on to
confirm the efficiency of this Equation (69) for the analysis of thick anisotropic rectangular plate.
The equation is a combination of differential of central deflection (w), in-plane rotational
displacement (¢, ) on x-axis and in-plane rotational displacement (¢y ) on y-axis. Previous work on

thick anisotropic rectangular plate did not care to separate the two rotational in-plane displacements
(2, ¢y) because they assumed their displacement functions and has no need for further expansion.

ii. Governing equation and compatibility equations

The total potential energy was minimized with displacements to obtain the governing equation of
equilibrium and the two compatibility equations of thick anisotropic plate. The governing equation
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obtained in Equation 143 is similar to those obtained by [11, 12], etc, but their various works were
able to obtained one compatibility equation in addition to their governing equation unlike the present
work that obtained two compatibility Equations (71) and (72) The governing equation comprises
the external work (pure bending loading), differentials of out-plane displacement (W), differential
of in-plane rotational displacement in x-axis and differential of in-plane rotational displacement in
y-axis. The compatibility equations contain the differentials of out-plane displacement (W),
differential of in-plane rotational displacement in x-axis, differential of in-plane rotational
displacement in y-axis, whole in-plane rotational displacement in x-axis and whole in-plane
rotational displacement in y-axis.

iii. Polynomial stiffness values (k) of the rectangular plates

The polynomial stiffness values (k) of the rectangular plate for the four boundary conditions
considered here were the product of closed form integral of the displacement functions. The
Equations and the values obtained are similar to those obtained by [13]. Table 1 showed that the
polynomial stiffness values obtained for the various rectangular plate boundary conditions (SSSS
and CCFC) yielded the same value, zero for, (k, and ks). SCFS and SCFC rectangular plate
boundary conditions yielded 0.1111 and 0.5625 for its (k,) stiffness values. Thus, for the four
boundary conditions considered, the stiffness values of ks, yielded zero in all boundary conditions
while k, yielded values for only two boundary conditions as stated above. These yield of the same
values for (ks) and most (k,) confirmed the similarities in its Equations.

iv. SSSS plate at angle fiber orientation of 0°

From Table 2, it is observed that out-plane displacement values w decreases as the thickness of the
plate decreases. The decrease was very high at the thick plate zone (o = 5 to 10) but becomes very
small at the thing plate zone (oo = 50 to 100). This is a confirmation that the out-plane displacement
act more on thick plate zone than thin plate zone in rectangular thick anisotropic plate. The in-plane
displacements, # and 7, also decrease as the thickness of the plate decreases and become more
noticeable at the thin plate section (o = 50 to 100). This shows that the in-plane displacements have
a minimal effect on SSSS thick anisotropic plate.

The in-plane stresses, o4, 6, and T, decrease as the plate decreases in thickness. A close look
will reveal a sharp decrease at thick and moderately thick plate section (o = 5 to 20) while at the
thin plate section (oo = 50 to 100), they decreased lightly. The out-plane stress, T,, increases as the
plate thickness decreases while the out-plane stress, 7,,,, decreases as the plate thickness decreases.
This divergence in the progressive order of the plate values can be explained from the fact that
anisotropic plates are plates with different resistance to mechanical actions in different directions.
That is, they possess different properties in different directions.

V. SCFS plate at angle fiber orientation of 0°

Table 3, shows that the values of out-plane displacement, (w), increases as the thickness of the plate
decreases while the values of the in-plane displacement, (i and ¥), decrease as the thickness of the
plate decreases and becomes more noticeable at the thin plate section, (a = 50 to 100). Also, the
values of the in-plane stresses, (G, and G,), and out-plane stresses, (T, and T,,), increase as the
thickness of the plate decreases while the values of the in-plane stress, (T ), decreases as the plate
thickness decreases. This increase or decrease in stresses as the plate thickness decreases are very
obvious at the thick plate section, (a = 5 to 10), but gradually decreases as the thickness of the plate
decreases.
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Vi. CCEFS plate at angle fiber orientation of 0°

Table 4, shows that the values of out-plane displacement, (w), and in-plane displacements, (u and
V), decrease as the thickness of the plate decreases. The decrease is more obvious at the thick plate
section, (o= 5 to 10). Hence, displacements have more effect on thick plate than on thin plate. Also,
the values of the in-plane stresses, (o and Gy,), and out-plane stress, (G,,), decrease as the
thickness of the plate decreases while the values of the in-plane stresses, (T ), out-plane stress,
(Tez), increase as the plate thickness decreases. This increase or decrease in stresses as the plate
thickness decreases are very obvious at the thick plate section, (=5 to 10), but gradually decrease
as the thickness of the plate decreases. Hence, the impact from stresses are felt more on thick plate
than thin plate.

vii.  SCFC plate at angle fiber orientation of 0°

From Table 5, it is observed that the values of displacements, (w, 1, V), and the in-plane stress,
(Txy), decrease as the thickness of the plate decreases while the in-plane stresses, (0, Gyy), and the

out-plane stresses, (Ty;, Txz), increase as the thickness of the plate decreases. However, the out-

plane displacement, (W), and stresses, (Gyy, Oyy, Txy: Txz: Tyz), ShOwed a very unique sequence
between preceding values starting from moderate thick plate zone, (a = 20 to 40), the increase or
decrease between two successive preceding values, becomes very small and even diminishes to
infinitesimal difference at the thin plate zone (a = 50 to 100). The decrease or the increase of the
displacements and stresses have a wider margin between the preceding values at the thick plate
zone, (o0 =5 to 10), but gradually diminishes towards moderate thick and thin plate zone, (o = 20 to
minimum span to thickness ratio of (5) are, (0.00020, -0.00257, -0.00509) and (-0.00045, -0.00003,
0.00063, 0.00786, 0.00007) while at the maximum span to thickness ratio of (100), it yield,
(0.00004, -0.61655, -0.41451) and (-0.00026, -0.00001 -0.00019, 0.00816, 0.00009).

4. Numerical problems comparisons

In this section, the present study results were compared with the existing literature results obtained
by some other scholars by calculating the percentage difference between the present study and the
existing literature results by the scholar.

The percentage difference is calculated as follows:

% difference = (present study value—comparing author value) X 100%
present study value
Table 6: Comparison of results of non-dimensional deflection, w, from present study with that

of [13] or rectangular anisotropic plate at 0° angle fiber orientation. And aspect ratio of 1 (b/a = 1)

alt  Author w

10  Atashipour et.al.(2017) 0.9520
Present study 1.0051
%odifference 5.28%
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20  Atashipour et.al.(2017) 0.7262
Present study 0.7749
%odifference 6.28%

100 Atashipour et.al.(2017) 0.6528
Present study 0.6981
%odifference 6.49%

From Table 6, it is observed that, present study deflections (w), have considerable similarity with
the deflections obtained by [13] in their single layer orthotropic square plate solutions with
percentage differences of 5.28%, 6.28% and 6.49% at span to thickness ratios (a/t) of 10, 20 and
100 and aspect ratio of, 1, respectively. The following factors may have contributed to the mild
differences between the present study results and that of [13];

i. [13] applied Levy type solution in Fourier differential quadrature while present study
used Ritz energy method through exact approach.

ii. [13] employed modification factor of 5/6 while present study does not require
modification factor.

iii. [13] adopted first order shear deformation theory while present study adopted third order
shear deformation theory.

iv. [13] employed assumed displacement functions while present study used exact
displacement functions.

Table 7: Comparison of present study non-dimensional out-plane displacement (w) of simply
supported orthotropic rectangular plate under uniformly distributed transverse load with that of [11]

Plate dimensional parameters w,atx=al2,y=b/2,z=1/2
Present study Shimpi & Patel | % difference
(2006)
b/a alt

2.0 20.0 22034 21542 2.22%
10.0 1451.90 1408.5 2.98%
7.14286 402.76 387.23 3.86%
1.0 20.0 10,382 10443 0.59%
10.0 678.57 688.57 1.47%
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7.14286 186.05 191.07 2.70%
0.5 20.0 2054.06 2048.7 0.26%
10.0 139.46 139.08 0.27%
7.14286 39.86 39.79 0.18%

Nondimensional out-plane displacement (w) of simply supported orthotropic rectangular plate
under uniformly distributed transverse load was analyzed through exact approach by applying Ritz
energy method using polynomial shear deformation functions. The results were presented in Table
7. The table also present results obtained by [11] using refined plate theory. This refined plate theory
results by [11] were used as basis for comparison of the results obtained in the present study.

The present study exact approach results converged well with the results obtained by [11] with
maximum percentage difference being 3.86% for rectangular plate of width/length ratio (b/a = 2),
span/thickness ratios (a/t = 7.14286). The minimum percentage difference (0.18%) occurred in the
rectangular plate of width/length ratio (b/a = 0.5), span/thickness ratios (a/t = 7.14286). The average
percentage difference for the three plates with three span to thickness ratios each is 1.614%. This
serves as a complimentary result to the earlier submission that the obtained orthotropic thick plate
displacement shows good accuracy with that of [11]. From Table 7, it can be stated that the lesser
the aspect ratio the better the out-plane displacement results.

Table 8: Comparison of present study non-dimensional in-plane stress (G.) of simply-supported
orthotropic rectangular plate under uniformly distributed transverse load with that of [11].

Plate dimensional parameters O atx=al2,y=b/2,z=1/2
Present study | Shimpi & Patel | % difference
(2006)

b/a alt

2.0 20.0 262.05 262.67 0.24%
10.0 65.89 65.975 0.13%
7.14286 33.863 33.862 0.003%

1.0 20.0 143.425 144.31 0.62%
10.0 35.59 36.021 1.20%
7.14286 18.002 18.346 1.91%

Table 8 shows the comparison of present study results with that of [11] for non-dimensional in-
plane stress (o4,) of simply-supported orthotropic rectangular plate under uniformly distributed
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transverse load. The results shows high level of convergence with very low percentage difference
for rectangular plate with aspect ratio 2 (b/a = 2) and span to thickness ratios (a/t = 20, 10 and
7.14286). The percentage differences obtained for these aspect ratio and span to thickness ratios are;
0.24%, 0.13% and 0.003%. Square plate also showed high level of convergence with low
percentage differences of 0.62, 1.20% and 1.91% for span to thickness ratios (a/t = 20, 10 and
7.14286). From Table 8, it is observed that for in-plane stress (o4), the higher the aspect ratio (b/a)
the better the results.

Table 9: Comparison of present study non-dimensional in-plane stress (o) of simply-supported
orthotropic rectangular plate under uniformly distributed transverse load with that of [11].

Plate dimensional parameters Gyy,atx=al2,y =b/2,z=1/2
Present study | Shimpi & Patel | % difference
(2006)
b/a alt
1.0 20.0 88.24 87.08 1.31%
10.0 21.997 22.21 0.97%
7.14286 11.178 11.615 3.91%

Table 9 presented the values of non-dimensional in-plane stress (Gyy) of simply-supported
orthotropic rectangular plate under uniformly distributed transverse load as obtained by present
study and [11]. The present study results were compared with the results obtained by [11] and it
shows lower percentage differences for the square plate at a/t = 20, 10 and 7.14286 with percentage
differences of 1.32%, 0.97% and 3.91%. It is observed from Table 9 that, the present study results
converges very well with those from [11] when solving in-plane stress (Gyy) for square plate.

Table 10: Comparison of present study non-dimensional out-plane stress (Ty,) of simply-supported
orthotropic rectangular plate under uniformly distributed transverse load with those from [15, 12,
16 & 11].

Plate dimensional | T, ,atx=a/2,y =b/2,z=1/2
parameters
Present study Srinivas et al. (1970) | % difference
b/a alt
2.0 20.0 13.635 14.048 3.03%
10.0 6.8082 6.9266 1.74%
7.14286 4.8544 4.8782 0.49%
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Plate dimensional | T, ,atx=a/2,y =b/2,z=1/2
parameters
Present study Reddy (1984) % difference
b/a alt
2.0 20.0 13.635 13.98 2.53%
10.0 6.8082 6.958 2.20%
7.14286 4.8544 4.944 1.85%
Plate dimensional | T, ,atx=a/2,y =b/2,z=1/2
parameters
Present study Reissner (1945) % difference
b/a alt
2.0 20.0 13.635 14.114 3.51%
10.0 6.8082 7.0611 3.71%
7.14286 4.8544 5.0445 3.92%
Plate dimensional | T, ,atx=a/2,y =b/2,z=1/2
parameters
Present study Shimpi & Patel (2006) | % difference
b/a alt
2.0 20.0 13.635 14.03 2.89%
10.0 6.8082 6.78 0.41%
7.14286 4.8544 4.70 3.18%

Table 10, shows the results comparison for out-plane stress (T,,) of simply-supported orthotropic
rectangular plate under uniformly distributed transverse load as obtained by various authors with
various theories. [15] used exact theory, [12] used higher order shear deformation plate theory, [16]
used first order shear deformation plate theory while [11] used refined plate theory. It is interesting
to note that all the methods presented in Table 10 in exception to present study solution are either
moments or stress based approach or both. Also, the shear deformation function they applied were
different from the shear deformation function of the present study. Their shear deformation
3
functions are stated herein: [15] and [11]used f(z) = [1 (5) —g(f) ] Reddy (1984) applied

4 \t
fi(2) = =Coz = C32° and f,(2) = —Cz — C2°, Reissner (1945) used f(2) = £|% | while
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2
present study used f(z) = z (1 - g [%] ) as shear deformation function. All the solutions yielded

close values for stress T,, even with different shear deformation functions. The work by [15]
presented the lowest percentage differences when compared with the present study with percentage
differences of, 3.03%, 1.74% and 0.49% for b/a =2, a/t = 20, 10 and 7.14286 while the solution from
[16] had highest percentage difference on comparing with the present study with differences of
3.51%, 3.71% and 3.92% for the same geometric properties. However, other solutions gave values
that are still below 3.2% percentage difference which also is a prove of good agreement between
them and present study. Reddy percentage differences with present study are 2.53%, 2.20% and
1.85% while [11] results yielded 2.89%, 0.41% and 3.18% respectively. The rectangular plate
considered has the following geometric parameters; b/a = 2, a/t = 20, 10 and 7.14286 for all the
authors considered on Table 10.

5. Conclusion and recommendations
a. Conclusion

The study presents a solution for the analysis of thick rectangular anisotropic plates based on third
order shear deformation theory and assumptions. Ritz energy method was employed for the analysis.
The solution derived the general orthogonal polynomial displacement functions for a rectangular
plate from the governing equation of equilibrium and compatibility equations of a rectangular thick
anisotropic plate based on third order shear deformation theory. The shear deformation function
used was determine from the first principle. Deflection at the center of the anisotropic rectangular
plate was determined at “0°” angle fiber orientation, various span to thickness ratios, a (5, 10, 20,
30, 40, 50, 60, 70, 80, 90 and 100) and for all the four boundary conditions considered in this work,
namely: SSSS, SCFS, CCFS and SCFC. In-plane displacements (u and v), in-plane stresses (ox, oy
and 1xy) and out-plane stresses (txz and ty;) were also determined for the same angles of orientation
of fibers, span-depth-ratios and boundary conditions as applied to central deflection. Finally, a
functional excel worksheet program was developed for easy analysis of thick anisotropic plates.

The total potential energy functional developed for the rectangular thick anisotropic plate using third
order shear deformation theory, the formulated governing equation of equilibrium and the
compatibility equations of anisotropic plate, the stiffness coefficients, the orthogonal polynomial
shear deformation and the exact displacement functions developed in this work can be used to
provide satisfactory solution to anisotropic thick rectangular plate problems.

b. Recommendations

This research work used third order shear deformation theory to analyze thick anisotropic
rectangular plate through exact approach with twelve boundary conditions. Thus; it is recommended
that:

I. The method shall be used when analyzing thick anisotropic rectangular plate due to it
suitability and usability.

ii. Further studies shall use exact approach in third order shear deformation theory in
solving other related anisotropic plate problems like thin laminated anisotropic plate,
thin layered anisotropic plate and laminated functionally graded anisotropic plate.
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iii. Further studies shall use exact approach in third order shear deformation theory in other
methods than the Ritz energy method, such as in the Galerkin method, the Kantorovich
method, the Trefftz method and the method of least squares.

Iv. Further studies shall use exact solution in third order shear deformation theory to analyze
thick anisotropic non-rectangular plate problems.

V. Further studies shall use exact approach in third order shear deformation theory to solve
thick anisotropic plate with different laminars.
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