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This work presents the analysis of thick anisotropic plate through 

exact approach using Third Order Shear Deformation Theory. Total 

potential energy was formed based on the refined plate theory 

assumptions. Displacement field, kinematic relations, constitutive 

relations and stress displacement relations were derived from the 

deformed section of a thick rectangular anisotropic plate. Strain 

energy was formed by substituting the kinematic relations and stress-

displacement relations into the universal strain energy equation. By 

the addition of the external work to the strain energy equation, total 

potential energy functional for the analysis of thick anisotropic 

rectangular plate was obtained. The total potential energy functional 

was minimized by differentiating it with respect to the changes in 

out-plane deflection, δw, shear deformation rotation in x direction, 

δ
𝑥
, and shear deformation rotation in y direction, δ

𝑦
. This yielded 

the governing equation and two compatibility equations of thick 

anisotropic rectangular plate. A third order polynomial shear 

deformation was employed in the governing and compatibility 

equations to obtain the displacement functions (deflection, w, shear 

deformation rotation in x direction, 
𝑥
, and shear deformation 

rotation in y direction, 
𝑦

). These displacement functions (w, 
𝑥
, 

𝑦
)   

obtained satisfied the specified boundary conditions and it gave the 

unique displacement functions for each of the four plate boundary 

conditions SSSS, SCFS, CCFS and SCFC solved. The stiffness 

coefficients (𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6, 𝐾7, 𝐾8) were calculated for each 

of the four plate boundary conditions. The formulas for calculating 

the coefficients of the displacements were combined with elastic 

equations to determine the formulas which were used in calculating 

for displacements (u, v and w) and non-dimensional stresses 

(𝜎𝑅𝑅 , 𝜎𝑄𝑄 , 𝜏𝑅𝑄 , 𝜏𝑅𝑆  𝑎𝑛𝑑 𝜏𝑄𝑆) at “00” angle fiber orientation and 

various span to thickness ratio, α(5, 10, 20, 30, 40, 50, 60, 70, 80, 90 

and 100) and for all the four boundary conditions. These formulas 

were used to analyze some typical anisotropic rectangular thick 

plates by the help of a functional excel worksheet program. The 

numerical results obtained for displacement (w) and stresses (𝜎𝑥𝑥̅̅ ̅̅  

and 𝜎𝑦𝑦̅̅ ̅̅̅) at aspect ratio of 1.0 and span to thickness ratio of, 20.0, 

10.0, and 7.14286, in this study, when compared with the results of 

Shimpi and Patel showed percentage difference of 0.59, 1.47, 2.70;  

0.62, 1.20, 1.91 and 1.31, 0.97, 3.91% which is in good agreement. 

Hence the developed method is recommended for analyzing thick 

rectangular anisotropic plates. 
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1. Introduction 

Technological progress is associated with continuous improvement of existing material properties 

and this has led to the expansion of structural material classes and types. Usually new materials 

emerge due to the need to improve structural efficiency and performance. These new materials in 

turn provide opportunities to develop outdated structures and technologies, and also create new 

problems and tasks to engineers and material scientists. One of the best manifestations of these 

related processes is the development of the composite structural elements which are associated with 

the anisotropic structural plate, to which this study is devoted. 

Composite materials emerged in the middle of the twentieth century as a promising class of 

engineering materials providing new prospects for modern technology. Broadly speaking, any 

material consisting of two or more components with different properties and distinct boundaries 

between the components can be referred to as a composite [1]. 

The sudden increase in the use of anisotropic or composite materials in many types of engineering 

structures (e.g., high rise structures, aerospace, underwater structures, automotive, electronic circuit 

board, medical prosthetic devices and sports equipment) and the number of journals and research 

papers published in the last two decades attest to the fact that there has been a major effort to develop 

composite material systems, and to analyze and design structural components made from composite 

materials [2]. The production of anisotropic material involves chemists, electrical engineers, 

chemical engineers, material scientists, mechanical engineers, and structural engineers. Structural 

engineers deal mainly with the analysis and design of these anisotropic materials [3].  

Anisotropic plates are plates with different resistance to mechanical actions in different directions. 

This implies that anisotropic plates are directionally dependent as opposed to isotropic plates that 

implies identical properties in all directions. Examples of anisotropic plates are aviation plywood, 

delta wood, coated aluminum plate, alloyed metal plates and a number of other materials [4, 5]. 

Works on refined plate theory have been characterized by the use of trigonometric displacement 

function. Many scholars have obtained the closed form solutions and others have obtained 

approximate solution using assumed displacement functions in energy method. However, one thing 

that is common in them all is the use of trigonometric displacement functions to approximate the 

deformed shapes of the plates. Others have applied the assumed polynomial displacement functions 

in numerical methods like finite element method and differential quadrature element methods [6, 7, 

& 8]. The major flaw in their traditional refined plate theory (i.e. Third order or higher order shear 

deformation theory) is the assumption of their displacement functions in thick anisotropic plate 

analysis. It is believed that these assumptions have not been solved to ascertain their validity or 

correctness in thick anisotropic plate analysis [9]. 

Because of the complexity involved in handling thick anisotropic plates, engineers usually resort to 

thin isotropic plate or even thick isotropic plate despite the numerous shortcomings. Isotropic plate 

assumes that the material properties at a point are the same in all directions. However, certain 

materials display direction-dependent properties; consequently, these materials are referred to as 

anisotropic materials. When an anisotropic material is stressed in one of the principal directions, the 

lateral deformations in the other principal directions could be smaller or larger than the deformation 

in the direction of the applied stress depending on the material properties. Idealization of a thick 

anisotropic plate as a thin isotropic plate always underestimates the stresses in the plate. The 

consequence of using these erroneous stresses in design and construction is structural failure and 

sometimes total collapse. Also earlier works on thick anisotropic plates are based mainly on 



 
Anya, U.C. et al. / Advances in Engineering Design Technology 

3, 2021 pp. 61-85 

63 

 

trigonometric and assumed displacement functions. It is rare to see work on anisotropic thick plate 

analysis that determined the exact polynomial shape function from the integration of governing 

equation of equilibrium and compatibility equations of thick anisotropic plate [3 &10]. Thus, it can 

be said that earlier works on the bending analysis of thick anisotropic plates have yielded 

approximate results, since it cannot be said that the displacement functions used are exact [10]. The 

need to approach anisotropic thick plate analysis from the perspective of determining the exact 

displacement functions through integration of the governing equation prompted the present study. 

This inability to arrive at the exact displacement function has been identified as a gap in literature 

that has to be filled up. To cover this gap in anisotropic thick plate analysis is the primary motivation 

of the present study.  

2. Methodology 

2.1. Formulation of total potential energy functional  

The total potential energy functional for a thick anisotropic rectangular plate has been formulated 

as shown. In formulating the total potential energy the work was based on the refined plate theory 

assumptions.  

a.  Determination of Displacement field 

In-plane displacements, u and v of refined plate theory are defined as shown: 

𝑢 = 𝑢𝑐 + 𝑢𝑠                                                                                                                                      1 

𝑣 = 𝑣𝑐 + 𝑣𝑠                                                                                                                                        2 

Aspect ratio, (β = b/a), (R = x/a; Q = y/b; S = z/t) are the non-dimensional forms of the orthogonal 

axes 

The in-plane displacements, uc, vc and us, vs, where subscripts “c” and “s” stands for classical and 

transverse are as presented in Equations 3, 4, 5 and 6. 

𝑢𝑐 = −𝑧𝜃𝑐𝑥 = −𝑧
𝑑𝑤

𝑑𝑥
= −

𝑆𝑡

𝑎

𝑑𝑤

𝑑𝑅
                                                                                               3 

𝑣𝑐 = −𝑧𝜃𝑐𝑦 = −𝑧
𝑑𝑤

𝑑𝑦
= −

𝑆𝑡

𝑏

𝑑𝑤

𝑑𝑅
= −

𝑆𝑡

𝛽𝑎

𝑑𝑤

𝑑𝑄
                                                                         4 

𝑢𝑠 = 𝐹(𝑧)𝜃𝑠𝑥                                                                                                                                     5 

 𝑣𝑠 = 𝐹(𝑧)𝜃𝑠𝑦                                                                                                                                    6 

Also, F(z) stands for the third order shear deformation model presented as: 

 𝐹(𝑧) = 𝑧 −
4

3
.
𝑧3

𝑡2
= 𝑧 (1 −

4

3
[
𝑧

𝑡
]
2
)                                                                                               7𝑎 

The model in a non-dimensional form is as defined: 

𝐹 = 𝐹(𝑠) = 𝑡 (𝑆 −
4

3
𝑆3)                                                                                                               7𝑏 
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Where:  

 𝐹 = 𝑡𝐻                                                                                                                                               7𝑐 

𝐻 = 𝑆 −
4

3
𝑆3                                                                                                                                   7𝑑 

Equations 3 and 5 can be combined to obtain Equation 8a 

𝑢 = −
𝑆𝑡

𝑎

𝑑𝑤

𝑑𝑅
+ 𝐹(𝑧). ∅𝑥                                                                                                               8𝑎 

Also, Equations 4 and 6 can be combined to obtain Equation 8b 

𝑣 = −
𝑆𝑡

𝛽𝑎

𝑑𝑤

𝑑𝑄
+ 𝐹(𝑧). ∅𝑦                                                                                                              8𝑏 

Equation 7c can be substituted into Equations 8a and 8b to obtain Equations 8c and 8d 

𝑢 =
𝑡

𝑎
[−𝑆

𝜕𝑤

𝜕𝑅
+ 𝐻𝑎. ∅𝑥]                                                                                                             8𝑐 

𝑣 =
𝑡

𝑎𝛽
[−𝑆

𝜕𝑤

𝜕𝑄
+ 𝛽𝐻𝑎. ∅𝑦]                                                                                                       8𝑑 

 

b. Determination of kinematic relations 

Equations 9, 10, 11, 12 and 13 as presented are Equations of strain – displacement relations 

𝑅  =  
𝜕𝑢

𝜕𝑥
=  

𝜕𝑢

𝑎𝜕𝑅
=

𝑡

𝑎2
[−𝑆

𝜕2𝑤

𝜕𝑅2
+ 𝐻𝑎.

𝜕
𝑥

𝜕𝑅
]                                                                         9 

𝑄  =  
𝜕𝑣

𝜕𝑦
=  

𝜕𝑣

𝑎𝛽𝜕𝑄
=

𝑡

𝛽2𝑎2
[−𝑆

𝜕2𝑤

𝜕𝑄2
+ 𝐻𝑎𝛽.

𝜕
𝑦

𝜕𝑄
]                                                              10 


𝑅𝑄

 =  𝑅𝑄 + 𝑄𝑅 = 
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

=
𝑡

𝛽𝑎2
[−𝑆

𝜕2𝑤

𝜕𝑅𝜕𝑄
+ 𝐻𝑎.

𝜕
𝑥

𝜕𝑄
] +

𝑡

𝛽𝑎2
[−𝑆

𝜕2𝑤

𝜕𝑅𝜕𝑄
+ 𝐻𝛽𝑎.

𝜕
𝑦

𝜕𝑅
] . That is: 


𝑅𝑄

 =
𝑡

𝛽𝑎2
[−2𝑆

𝜕2𝑤

𝜕𝑅𝜕𝑄
+ 𝐻𝑎. (

𝜕
𝑥

𝜕𝑄
+ 𝛽.

𝜕
𝑦

𝜕𝑅
)]                                                                  11 


𝑅𝑆

 =  𝑅𝑆 + 𝑆𝑅 =
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
=

1

𝑎
[−

𝜕𝑤

𝜕𝑅
+ 𝑎

𝜕𝐻

𝜕𝑆
. ∅𝑥] +

1

𝑎

𝜕𝑤

𝜕𝑅
. That is: 


𝑅𝑆

=
𝜕𝐻

𝜕𝑆
. ∅𝑥                                                                                                                                 12 
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
𝑄𝑆

=
𝜕𝐻

𝜕𝑆
. ∅𝑦 =

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
=

1

𝛽𝑎
[−

𝜕𝑤

𝜕𝑄
+ 𝛽𝑎

𝜕𝐻

𝜕𝑆
. ∅𝑦] +

1

𝛽𝑎
.
𝜕𝑤

𝜕𝑄
 . That is: 


𝑄𝑆

=
𝜕𝐻

𝜕𝑆
. ∅𝑦                                                                                                                                  13 

 

c.  Determination of constitutive relations  

[
 
 
 
 
𝑅

𝑄

𝜏𝑅𝑄

𝜏𝑅𝑆

𝜏𝑄𝑆]
 
 
 
 

=
𝐸0

1 − 𝜇12𝜇21

[
 
 
 
 
𝐵11 𝐵12  𝐵13        0             0

𝐵21 𝐵22    𝐵23         0             0  

𝐵31

0
0

𝐵32

0
0

 𝐵33         0           0
    0          𝐵44        0

      0         0           𝐵55 ]
 
 
 
 

 

[
 
 
 
 
𝜀𝑅

𝜀𝑄

𝛾𝑅𝑄

𝛾𝑅𝑆

𝛾𝑄𝑆]
 
 
 
 

                             14 

Where: 

E0 is the reference elastic modulus. It can be E1 or E2;  𝑚 = 𝐶𝑜𝑠 𝜃;  𝑛 =  𝑆𝑖𝑛 𝜃 

𝐵11 = 𝑚4𝑑11 + 2𝑚2𝑛2(𝑑12 + 2𝑑33) + 𝑛4𝑑22                                                                       15 

𝐵12 = 𝑑12(𝑛
4 + 𝑚4) + 𝑚2𝑛2(𝑑11 + 𝑑22 − 4𝑑33)                                                                 16 

𝐵13 = 𝑚3𝑛(𝑑11 − 𝑑12 − 2𝑑33) + 𝑚𝑛3(𝑑12 − 𝑑22 + 2𝑑33)                                                17 

𝐵22 = 𝑛4𝑑11 + 2𝑚2𝑛2(𝑑12 + 2𝑑33) + 𝑚4𝑑22                                                                       18 

𝐵23 = 𝑚𝑛3𝑑11 − 𝑚3𝑛𝑑22 + (𝑚3𝑛 − 𝑚𝑛3)(𝑑12 + 2𝑑33)                                                   19 

𝐵33 = 𝑚2𝑛2(𝑑11 − 2𝑑12 + 𝑑22 − 2𝑑33) + 𝑑33(𝑚
4 + 𝑛4)                                                 20 

𝐵44 = 𝑑44;  𝐵55 = 𝑑55; 𝐵21 = 𝐵12; 𝐵31 = 𝐵13; 𝐵32 = 𝐵23                                                21 

𝑑11 = 𝐸1/𝐸0                                                                                                                                   22 

𝑑12 = 𝐸2 . 𝜇12/𝐸0                                                                                                                         23 

𝑑21 = 𝐸1 . 𝜇21/𝐸0                                                                                                                         24 

𝑑22 = 𝐸22/𝐸0                                                                                                                                25 

𝑑33 = 𝐺12(1 − 𝜇12𝜇21)/𝐸0                                                                                                       26 

𝑑44 = 𝐺13(1 − 𝜇12𝜇21)/𝐸0                                                                                                       27 

𝑑55 = 𝐺23(1 − 𝜇12𝜇21)/𝐸0                                                                                                       28 

Substituting Equations 9 to 13 into Equation 14 gives each stress component as: 
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σR  =
E0t

[1 − μ12μ21]𝑎2
. (B11 . [−𝑆

𝜕2𝑤

𝜕𝑅2
+ 𝐻𝑎.

𝜕
𝑥

𝜕𝑅
] +

B12

𝛽2
 . [−𝑆

𝜕2𝑤

𝜕𝑄2
+ 𝐻𝑎𝛽.

𝜕
𝑦

𝜕𝑄
]

+
𝐵13

𝛽
 . [−2𝑆

𝜕2𝑤

𝜕𝑅𝜕𝑄
+ 𝐻𝑎. (

𝜕
𝑥

𝜕𝑄
+ 𝛽.

𝜕
𝑦

𝜕𝑅
)])                                                            29 

σQ =
E0t

[1 − μ12μ21]𝑎2
. (B21 . [−𝑆

𝜕2𝑤

𝜕𝑅2
+ 𝐻𝑎.

𝜕
𝑥

𝜕𝑅
] +

B22

𝛽2
 . [−𝑆

𝜕2𝑤

𝜕𝑄2
+ 𝐻𝑎𝛽.

𝜕
𝑦

𝜕𝑄
]

+
𝐵23

𝛽
 . [−2𝑆

𝜕2𝑤

𝜕𝑅𝜕𝑄
+ 𝐻𝑎. (

𝜕
𝑥

𝜕𝑄
+ 𝛽.

𝜕
𝑦

𝜕𝑅
)])                                                            30 

τRQ =
E0t

[1 − μ12μ21]𝑎
2
. (B31 . [−𝑆

𝜕2𝑤

𝜕𝑅2
+ 𝐻𝑎.

𝜕
𝑥

𝜕𝑅
] +

B32

𝛽2
 . [−𝑆

𝜕2𝑤

𝜕𝑄2
+ 𝐻𝑎𝛽.

𝜕
𝑦

𝜕𝑄
]

+
B33

𝛽
. [−2𝑆

𝜕2𝑤

𝜕𝑅𝜕𝑄
+ 𝐻𝑎. (

𝜕
𝑥

𝜕𝑄
+ 𝛽.

𝜕
𝑦

𝜕𝑅
)])                                                             31 

τRS =
E0

1 − μ12μ21
. B44. [

𝜕𝐻

𝜕𝑆
] . ∅𝑥  =

E0t

[1 − μ12μ21]𝑎2
. B44. [

𝑎2

t
.
𝜕𝐻

𝜕𝑆
] . ∅𝑥                                        32 

τQS =
E0

1 − μ12μ21
. B55. [

𝜕𝐻

𝜕𝑆
] . ∅𝑦 =

E0t

[1 − μ12μ21]𝑎2
. B55. [

𝑎2

t
.
𝜕𝐻

𝜕𝑆
] . ∅𝑦                                        33 

 

d.  The total potential energy functional 

The total potential energy functional is given as: 

 =
abt

2
∫∫ ∫ (RR + RR + τRQRQ

+ τRSRS
+ τQSQS

)

0.5

−0.5

1

0

1

0

dR dQ dS

− qab∫ ∫ w
1

0

1

0

dR dQ                                                                                            34 

Substituting Equations 9 to 13 and Equations 29 to 33 into Equations 34 gives: 
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 =
abD0

2𝑎4
. ∫∫{{B11 . [(

𝜕2𝑤

𝜕𝑅2
)

2

− 2𝑔2𝑎.
𝜕2𝑤

𝜕𝑅2
.
𝜕

𝑥

𝜕𝑅
+ 𝑔3𝑎

2. (
𝜕

𝑥

𝜕𝑅
)

2

]

1

0

1

0

+
B12

𝛽2
 . [2 (

𝜕2𝑤

𝜕𝑅 𝜕𝑄
)

2

− 𝑔2

𝑎

𝛽

𝜕2𝑤

𝜕𝑄2
.
𝜕

𝑦

𝜕𝑄
− 𝑔2𝑎𝛽2

𝜕2𝑤

𝜕𝑅2
.
𝜕

𝑥

𝜕𝑅
− 𝑔2𝑎.

𝜕
𝑥

𝜕𝑅
.
𝜕2𝑤

𝜕𝑄2

− 𝑔2𝑎𝛽.
𝜕2𝑤

𝜕𝑅2
.
𝜕

𝑦

𝜕𝑄
+ 2𝑔3𝑎

2𝛽.
𝜕

𝑥

𝜕𝑅
.
𝜕

𝑦

𝜕𝑄
]

+
𝐵13

𝛽
 . [4

𝜕2𝑤

𝜕𝑅𝜕𝑄
.
𝜕2𝑤

𝜕𝑅2
− 2𝑔2𝑎. (

𝜕
𝑥

𝜕𝑄
+ 𝛽.

𝜕
𝑦

𝜕𝑅
) .

𝜕2𝑤

𝜕𝑅2
− 4𝑔2𝑎

𝜕2𝑤

𝜕𝑅𝜕𝑄
.
𝜕

𝑥

𝜕𝑅

+ 2𝑔3𝑎
2. (

𝜕
𝑥

𝜕𝑄
+ 𝛽.

𝜕
𝑦

𝜕𝑅
) .

𝜕
𝑥

𝜕𝑅
]

+
B22

𝛽4
 . [(

𝜕2𝑤

𝜕𝑄2
)

2

− 2𝑔2𝑎𝛽.
𝜕2𝑤

𝜕𝑄2
.
𝜕

𝑦

𝜕𝑄
+ 𝑔3𝑎

2𝛽2. (
𝜕

𝑦

𝜕𝑄
)

2

]

+
𝐵23

𝛽3
 . [4

𝜕2𝑤

𝜕𝑅𝜕𝑄
.
𝜕2𝑤

𝜕𝑄2
− 2𝑔2𝑎. (

𝜕
𝑥

𝜕𝑄
+ 𝛽.

𝜕
𝑦

𝜕𝑅
) .

𝜕2𝑤

𝜕𝑄2
− 4𝑔2𝑎𝛽.

𝜕2𝑤

𝜕𝑅𝜕𝑄
.
𝜕

𝑦

𝜕𝑄

+ 2𝑔3𝑎
2𝛽. (

𝜕
𝑥

𝜕𝑄
+ 𝛽.

𝜕
𝑦

𝜕𝑅
) .

𝜕
𝑦

𝜕𝑄
]

+
B33

𝛽2
. [4 (

𝜕2𝑤

𝜕𝑅𝜕𝑄
)

2

− 2𝑔2𝑎. (
𝜕2𝑤

𝜕𝑅𝜕𝑄
.
𝜕

𝑥

𝜕𝑄
+ 𝛽

𝜕2𝑤

𝜕𝑅𝜕𝑄
.
𝜕

𝑦

𝜕𝑅
)

+ 𝑔3𝑎
2. ((

𝜕
𝑥

𝜕𝑄
)

2

+ 2𝛽
𝜕

𝑥

𝜕𝑄
.
𝜕

𝑦

𝜕𝑅
+ 𝛽2. (

𝜕
𝑦

𝜕𝑅
)

2

)] + 𝑎2B44. (
𝑎

𝑡
)
2

. 𝑔4. ∅𝑥
2

+ 𝑎2B55. (
𝑎

𝑡
)
2

. 𝑔4. ∅𝑦
2} − 2

q𝑎4

D0
𝑤}dR dQ                                                     35 

Where: 

D0 =
E0t

3

12[1 − μ12μ21]
                                                                                                                              36 

 
e. The governing equation and compatibility equations 

Differentiating Equation 35 with respect to w, x and y gives the governing equation and 

compatibility equations respectively. 

d

dw
=

d

d∅x
=

d

d∅y
= 0                                                                                                                     37 

That is: 
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d

dw
= ∫∫{B11.

∂4w

∂R4
+

2

β2
. Bxy

∂4w

∂R2  ∂Q2
+

B22

β4
.
∂4w

∂Q4
+  4

B13

β
.

∂4w

∂R3 ∂Q
+  4

B23

β3
.

∂4w

∂R∂Q3

1

0

1

0

−
g2a

2
[2B11 + B12]

∂3
x

∂R3
−

g2a

2β2
. Bxy

∂3
x

∂R ∂Q2
− 3g2a.

B13

β

∂3
x

∂R2 ∂Q

−
g2a

2β3
[B12 + 2B22]

∂3
y

∂Q3
−

g2a

2β
Bxy

∂3
y

∂R2 ∂Q
− 3g2a.

B23

β2

∂3
y

∂R ∂Q2
− g2a. B13.

∂3
y

∂R3

−
g2a

β3
. B23.

∂3
x

∂Q3
−

qa4

D0
} dR dQ = 0                                  38 

d

d∅x
= B11 . [−𝑔2𝑎.

𝜕3𝑤

𝜕𝑅3
+ 𝑔3𝑎

2.
𝜕2

𝑥

𝜕𝑅2
] +

B12

2𝛽2
 . [−𝑔2𝑎𝛽2

𝜕3𝑤

𝜕𝑅3
− 𝑔2𝑎.

𝜕3𝑤

𝜕𝑅 𝜕𝑄2
+ 2𝑔3𝑎

2𝛽.
𝜕2

𝑦

𝜕𝑅𝜕𝑄
]

+
𝐵13

𝛽
 . [−𝑔2𝑎.

𝜕3𝑤

𝜕𝑄 𝜕𝑅2
− 2𝑔2𝑎

𝜕3𝑤

𝜕𝑄 𝜕𝑅2
+ 2𝑔3𝑎

2.
𝜕2

𝑥

𝜕𝑅𝜕𝑄
+ 𝑔3𝑎

2. 𝛽.
𝜕2

𝑦

𝜕𝑅2
]

+
𝐵23

𝛽3
 . [−𝑔2𝑎.

𝜕3𝑤

𝜕𝑄3
+ 𝑔3𝑎

2𝛽.
𝜕2

𝑦

𝜕𝑄2
]

+
B33

𝛽2
. [−𝑔2𝑎.

𝜕3𝑤

𝜕𝑅 𝜕𝑄2
+ 𝑔3𝑎

2.
𝜕2

𝑥

𝜕𝑄2
+ 𝑔3𝑎

2. 𝛽
𝜕2

𝑦

𝜕𝑅𝜕𝑄
] + 𝑎2B44. (

𝑎

𝑡
)
2

. 𝑔4. ∅𝑥

= 0                                                                                  39 

d

d∅y
=

B12

2𝛽2
 . [−𝑔2

𝑎

𝛽

𝜕3𝑤

𝜕𝑄3
− 𝑔2𝑎𝛽.

𝜕3𝑤

𝜕𝑅2𝜕𝑄
+ 2𝑔3𝑎

2𝛽.
𝜕2

𝑥

𝜕𝑅𝜕𝑄
]

+
𝐵13

𝛽
 . [−𝑔2𝑎. 𝛽.

𝜕3𝑤

𝜕𝑅3
+ 𝑔3𝑎

2. 𝛽.
𝜕2

𝑥

𝜕𝑅2
] +

B22

𝛽4
 . [−𝑔2𝑎𝛽.

𝜕3𝑤

𝜕𝑄3
+ 𝑔3𝑎

2𝛽2.
𝜕2

𝑦

𝜕𝑄2
]

+
𝐵23

𝛽3
 . [−𝑔2𝑎. 𝛽.

𝜕3𝑤

𝜕𝑅 𝜕𝑄2
− 2𝑔2𝑎𝛽.

𝜕3𝑤

𝜕𝑅𝜕𝑄2
+ 𝑔3𝑎

2𝛽.
𝜕2

𝑥

𝜕𝑄2
+ 2𝑔3𝑎

2𝛽2.
𝜕2

𝑦

𝜕𝑅𝜕𝑄
]

+
B33

𝛽2
. [−𝑔2𝑎. 𝛽

𝜕3𝑤

𝜕𝑅2𝜕𝑄
+ 𝑔3𝑎

2. 𝛽
𝜕2

𝑥

𝜕𝑅𝜕𝑄
+ 𝑔3𝑎

2. 𝛽2.
𝜕2

𝑦

𝜕𝑅2
] + 𝑎2B55. (

𝑎

𝑡
)
2

. 𝑔4. ∅𝑦

= 0                                                                                  40 

Equations 38, 39 and 40 are the governing equation of equilibrium of forces, compatibility equation 

of displacements in x-z plane and compatibility equation of displacements in y-z plane respectively. 

f. Solutions of governing equation and compatibility equations 

Solving Equations 38, 39 and 40 gives: 

𝑤 = 𝐴1ℎ                                                                                                                                          41𝑎 

𝑤 = (α0 + α1R + α2R
2 + α3R

3 + α4R
4)(𝜆0 + 𝜆1Q + 𝜆2Q

2 + 𝜆3Q
3 + 𝜆4Q

4)              41𝑏 


x

=
A2

a
.
∂h

∂R
                                                                                                                                    42 
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∅y =
A3

aβ
.
∂h

∂Q
                                                                                                                                    43 

Satisfying the boundary condition for SSSS plates gives their distinct deflection equation 

respectively as: 

𝑤 = 𝐴1ℎ = α3α4(R − 2R3 + R4)(Q − 2Q3 + 𝜆4Q
4)       {𝑓𝑜𝑟 𝑆𝑆𝑆𝑆}                                41𝑐 

Substituting Equations 41a, 42 and 43 into Equation 35 gives: 

 =
ab

2𝑎4
. {{B11 . [A1

2 − 2𝑔2A1A2. +𝑔3A2
2]𝑘1 +

(B12 + 2B33)

𝛽2
. [2A1

2 − 𝑔2A1A2 − 𝑔2A1A3]. 𝑘2

+ 2
[B12 + B33]

𝛽2
𝑔3 A2A3. 𝑘2 +

B12

𝛽2
 . 𝑔2  [−

A1A3

𝛽2
𝑘3 − A1A2𝛽

2𝑘1]

+
B33

𝛽2
. [+𝑔3A2

2 + 𝑔3A3
2]𝑘2  

+
𝐵13

𝛽
 . [4A1

2 − 2𝑔2(A1A2 + A1A3) − 4𝑔2A1A2 + 2𝑔3(A2
2 + A2A3)]𝑘4

+
B22

𝛽4
 . [A1

2 − 2𝑔2A1A3 + 𝑔3A3
2]𝑘3  

+
𝐵23

𝛽3
 . [4A1

2 − 2𝑔2(A1A2 + A1A3) − 4𝑔2A1A3 + 2𝑔3(A2A3 + A3
2)]𝑘5

+ B44. (
𝑎

𝑡
)
2

. 𝑔4. A2
2𝑘6 +

B55

𝛽2
. (

𝑎

𝑡
)

2

. 𝑔4A3
2𝑘7} − 2A1

q𝑎4

D0
𝑘8}                            44 

Note: 

k1 =  ∫ ∫ (
d2h

dR2
)

21

0

1

0

dR dQ; k2 =  ∫ ∫ (
d2h

dRdQ
)

21

0

1

0

dR dQ ; k3 =  ∫ ∫ (
d2h

dQ2
)

21

0

1

0

dR dQ  

k4 =  ∫ ∫ (
d2h

dR2
)(

d2h

dRdQ
)

1

0

1

0

dR dQ; k5 =  ∫ ∫ (
d2h

dQ2
)(

d2h

dRdQ
)

1

0

1

0

dR dQ 

k6 =  ∫ ∫ (
dh

dR
)
21

0

1

0

dR dQ; k7 =  ∫ ∫ (
dh

dQ
)
21

0

1

0

dR dQ; k8 =  ∫ ∫ h dR dQ
1

0

1

0

 

 

To obtain the quasi equations of equilibrium of forces and quasi compatibility equations, Equation 

44 must be differentiated with respect to A1, A2 and A3. That is: 

d

dA1
=

d

dA2
=

d

dA3
= 0                                                                                                                  45 
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d

dA1
= L11A1 − L12A2 − L13A3 −

q𝑎4

D0
 k8 = 0                                                                       46 

d

dA2
 = L12A1 − L22A2 − L23A3 = 0                                                                                         47 

d

dA3
 = L13A1 − L23A2 − L33A3 = 0                                                                                         48 

Where: 

L11 = B11k1 +
2{2B33 + B12}

𝛽2
k2 +

B22

𝛽4
k3 + 3

B13

𝛽
k4 + 3

B23

𝛽3
k5                                    49 

L12 = B11g2k1 +
{2B33 + B12}

𝛽2
g2k2 + 2.25

B13

𝛽
g2k4 + 0.75

B13

𝛽
g2k5                          50 

L13 =
{2B33 + B12}

𝛽2
g2k2 +

B22

𝛽4
g2k3 + 0.75

B13

𝛽
g2k4 + 2.25

B23

𝛽
g2k5                         51 

L12 = B11g2k1 +
{2B33 + B12}

𝛽2
g2k2 + 2.25

B13

𝛽
g2k4 + 0.75

B13

𝛽
g2k5                          52 

L22 = B11g3k1 +
B33

𝛽2
g3k2 + 1.5

B13

𝛽
g3k4 + B44 ∝2 g4k6                                                 53 

L23 =
B12

𝛽2
g3k2 +

B33

𝛽2
g3k2 + 0.75

B13

𝛽
g3k4 + 0.75

B23

𝛽3
g3k5 +∝2 g4

B45

𝛽
k8               54 

L13 =
{2B33 + B12}

p2
g2k2 +

B22

p4
g2k3 + 0.75

B13

p
g2k4 + 2.25

B23

p
g2k5                         55 

L23 =
B12

p2
g3k2 +

B33

p2
g3k2 + 0.75

B13

p
g3k4 + 0.75

B23

p3
g3k5 +∝2 g4

B45

p
k8              56 

L33 =
B33

p2
g3k2 +

B22

p4
g3k3 + 1.5

B23

p3
g3k5 +∝2 g4

B55

p2
k7                                                57 

Solving Equations 47 and 48 simultaneously gives: 

A2 = (
L12L33 − L13L23

L22L33 − L23L23
)A1 = 𝑃2 A1                                                                                      58 

A3 = (
L13L22 − L12L23

L22L33 − L23L23
)A1  = 𝑃3 A1                                                                                     59 

Substituting Equations 57 and 58 into Equation 46 gives: 
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 A1 =
q𝑎4

D0
.

k8

(L11 − L12𝑃2  − L13𝑃3)
 =

q𝑎4

D0
. k9                                                                 60 

g. Development of formulas for thick anisotropic plate analysis 

Substituting Equation 60 into Equation 41a and substituting Equation 36 into the resulting equation 

and simplifying gives: 

w̅ = 12[1 − μ12μ21]. k9ℎ                                                                                                        61 

Substituting Equations 41a, 42 and 43 into Equations 8c, 8d, 29, 30, 31, 32 and 33, where 

appropriate and simplifying gives: 

  u̅ = 12[1 − μ12μ21]. k9. [−𝑆 + 𝐻𝑃2 ].
∂h

∂R
                                                                         62 

 v̅ = 12[1 − μ12μ21].
[−𝑆+𝐻.𝑃3]

𝛽
.
𝜕ℎ

𝜕𝑄
 . k9                                                                                63 

 σR̅̅̅̅ = 12. k9 (B11 [𝐻𝑃2 − 𝑆 ]
𝜕2ℎ

𝜕𝑅2 +
B12

𝛽2  [𝐻𝑃3  − 𝑆]
𝜕2ℎ

𝜕𝑄2 +
𝐵13

𝛽
𝐻(𝑃2  + 𝑃3 −

2𝑆)
𝜕2ℎ

𝜕𝑅𝜕𝑄
)                                                                                                                                   64 

 σQ̅̅̅̅ = 12. k9. (B21[𝐻𝑃2 − 𝑆]
𝜕2ℎ

𝜕𝑅2 +
B22

𝛽2
[𝐻𝑃3 − 𝑆]

𝜕2ℎ

𝜕𝑄2 +
𝐵23

𝛽
𝐻(𝑃2 + 𝑃3) −

2𝑆
𝜕2ℎ

𝜕𝑅𝜕𝑄
)                                                                                                                                     65 

  τRQ̅̅ ̅̅ ̅  = 12k9. (B31. [𝐻𝑃2 − 𝑆]
𝜕2ℎ

𝜕𝑅2 +
B32

𝛽2 . [𝐻𝑃3 − 𝑆]
𝜕2ℎ

𝜕𝑄2 +
B33

𝛽
. 𝐻(𝑃2  + 𝑃3 −

2𝑆)
𝜕2ℎ

𝜕𝑅𝜕𝑄
)                                                                                                                                   66 

τRS̅̅ ̅̅  = 12 k9 (B44. 𝑃2.
𝜕𝐻

𝜕𝑆
 ) .

∂h

∂R
                                                                                          67 

τQS̅̅ ̅̅̅ = 12. k9. (B55.
𝑃3 

β
.
𝜕𝐻

𝜕𝑆
) .

∂h

∂Q
                                                                68 

 

h.  Determination of stiffness coefficients 

The stiffness coefficients (k) extracted from Equation 44 were solved for four boundary conditions 

and the unique stiffness coefficient values were obtained for each of the four plate boundary 

condition and the values are shown on Table 1. 

i. Numerical analyses of typical thick anisotropic rectangular plates 

The numerical values for typical thick anisotropic rectangular plate in-plane displacements (u and 

v), out-plane displacement - central deflection (w), in-plane stresses (x, y and τxy),  and out-plane 

stresses (τxz and τyz) were determined for angles fiber orientations of 00, 150, 300, 450, 600, 750 

and 900 at span to thickness ration (α) of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 for the twelve 
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boundary conditions considered in this work. The materials were analyzed for in-plane displacement 

(u,v) at x = 0.5, y = 0.5, z = 0; transverse displacement (w) at x = 0.5, y = 0.5, z = 0); in-plane normal 

stresses (σx, σy) at x = 0.5, y = 0.5, z = 0.5 or z = 0.25; in-plane shear stress (τxy) at x = 0, y = 0, z 

= 0.5; out-plane shear stress (τxz) at x = 0, y = 0.5, z = 0 and out-plane shear stress (τyz) at x = 0.5, 

y = 0, z = 0. The plate was subjected to uniformly distributed load.  

 

The material properties used are as follows: E1/E2 = 25, G12/E2 = 0.5, G13/E2 = 0.5, 𝐺23/E2 = 0.2, 

v12 = 0.25. Given data by [11]; E2/E1 = 0.52500, G12/E1 = 0.26293, G13/E1 = 0.15991, G23/E1 = 

0.26681, μ12 = 0.44046, μ21 = 0.23124, (1 − u12u21) = 0.89815. {Taken from [11]}. 

 The plate parameters employed here are similar to the one employed by [13]. The following non-

dimensionalizations they applied were also used in this work: 

w̅  =  w
E0t3

q𝑎4 x100, u̅, v̅ = u, v
E0t2

q𝑎3 , (σxx̅̅ ̅̅ , σyy̅̅ ̅̅ , τxy̅̅ ̅̅ ) = (
σx,σy,τxyt2

q𝑎2 ), (τxz̅̅ ̅̅ , τyz̅̅ ̅̅ ) = (
τxz,τyzt

q𝑎
). 

3. Results and Discussion 

a.  Total potential energy functional for a thick anisotropic rectangular plate 

The total potential energy functional for a thick anisotropic rectangular plate was derived in 

Equation (35) and is as shown in Equation (69): 

 equations 

The governing equation of equilibrium and two compatibility equations for thick anisotropic 

rectangular plate which are derived in this study as Equations 38, 39 and 40 are presented in 

Equations 70, 71 and 72.  

∫∫{B11.
𝜕4𝑤

𝜕𝑅4
+

2

𝛽2
. Bxy

𝜕4𝑤

𝜕𝑅2 𝜕𝑄2
+

B22

𝛽4
.
𝜕4𝑤

𝜕𝑄4
+  4

𝐵13

𝛽
.

𝜕4𝑤

𝜕𝑅3𝜕𝑄
+  4

𝐵23

𝛽3
.

𝜕4𝑤

𝜕𝑅𝜕𝑄3

1

0

1

0

−
𝑔2𝑎

2
[2B11 + B12]

𝜕3
𝑥

𝜕𝑅3
−

𝑔2𝑎

2𝛽2
. Bxy

𝜕3
𝑥

𝜕𝑅 𝜕𝑄2
− 3𝑔2𝑎.

𝐵13

𝛽

𝜕3
𝑥

𝜕𝑅2𝜕𝑄

−
𝑔2𝑎

2𝛽3
[B12 + 2B22]

𝜕3
𝑦

𝜕𝑄3
−

𝑔2𝑎

2𝛽
Bxy

𝜕3
𝑦

𝜕𝑅2𝜕𝑄
− 3𝑔2𝑎.

𝐵23

𝛽2

𝜕3
𝑦

𝜕𝑅𝜕𝑄2
− 𝑔2𝑎. 𝐵13.

𝜕3
𝑦

𝜕𝑅3

−
𝑔2𝑎

𝛽3
. 𝐵23.

𝜕3
𝑥

𝜕𝑄3
−

q𝑎4

D0
} dR dQ = 0                                           70 
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B11 . [−𝑔2𝑎.
𝜕3𝑤

𝜕𝑅3
+ 𝑔3𝑎

2.
𝜕2

𝑥

𝜕𝑅2
] +

B12

2𝛽2
 . [−𝑔2𝑎𝛽2

𝜕3𝑤

𝜕𝑅3
− 𝑔2𝑎.

𝜕3𝑤

𝜕𝑅 𝜕𝑄2
+ 2𝑔3𝑎

2𝛽.
𝜕2

𝑦

𝜕𝑅𝜕𝑄
]

+
𝐵13

𝛽
 . [−𝑔2𝑎.

𝜕3𝑤

𝜕𝑄 𝜕𝑅2
− 2𝑔2𝑎

𝜕3𝑤

𝜕𝑄 𝜕𝑅2
+ 2𝑔3𝑎

2.
𝜕2

𝑥

𝜕𝑅𝜕𝑄
+ 𝑔3𝑎

2. 𝛽.
𝜕2

𝑦

𝜕𝑅2
]

+
𝐵23

𝛽3
 . [−𝑔2𝑎.

𝜕3𝑤

𝜕𝑄3
+ 𝑔3𝑎

2𝛽.
𝜕2

𝑦

𝜕𝑄2
] +

B33

𝛽2
. [−𝑔2𝑎.

𝜕3𝑤

𝜕𝑅 𝜕𝑄2
+ 𝑔3𝑎

2.
𝜕2

𝑥

𝜕𝑄2
+ 𝑔3𝑎

2. 𝛽
𝜕2

𝑦

𝜕𝑅𝜕𝑄
]

+ 𝑎2B44. (
𝑎

𝑡
)
2

. 𝑔4. ∅𝑥
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B12

2𝛽2
 . [−𝑔2

𝑎

𝛽

𝜕3𝑤

𝜕𝑄3
− 𝑔2𝑎𝛽.

𝜕3𝑤

𝜕𝑅2𝜕𝑄
+ 2𝑔3𝑎

2𝛽.
𝜕2

𝑥

𝜕𝑅𝜕𝑄
] +

𝐵13

𝛽
 . [−𝑔2𝑎. 𝛽.

𝜕3𝑤

𝜕𝑅3
+ 𝑔3𝑎

2. 𝛽.
𝜕2

𝑥

𝜕𝑅2
]

+
B22

𝛽4
 . [−𝑔2𝑎𝛽.

𝜕3𝑤

𝜕𝑄3
+ 𝑔3𝑎

2𝛽2.
𝜕2

𝑦

𝜕𝑄2
]

+
𝐵23

𝛽3
 . [−𝑔2𝑎. 𝛽.

𝜕3𝑤

𝜕𝑅 𝜕𝑄2
− 2𝑔2𝑎𝛽.

𝜕3𝑤

𝜕𝑅𝜕𝑄2
+ 𝑔3𝑎

2𝛽.
𝜕2

𝑥

𝜕𝑄2
+ 2𝑔3𝑎

2𝛽2.
𝜕2

𝑦

𝜕𝑅𝜕𝑄
]

+
B33

𝛽2
. [−𝑔2𝑎. 𝛽

𝜕3𝑤

𝜕𝑅2𝜕𝑄
+ 𝑔3𝑎

2. 𝛽
𝜕2

𝑥

𝜕𝑅𝜕𝑄
+ 𝑔3𝑎

2. 𝛽2.
𝜕2

𝑦

𝜕𝑅2
] + 𝑎2B55. (

𝑎

𝑡
)
2

. 𝑔4. ∅𝑦

= 0                                                                                              72 

c. Stiffness coefficients of the four plate boundary conditions 

The stiffness coefficients for the four plate boundary conditions are as listed in Table 1. 

Table 1: Stiffness value (k) for rectangular plate 

Plate 

type 
𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6 𝐾7 𝐾8 

SSSS 0.23619 0.23592 0.23619 0 0 0.02390 0.02390 0.04000 

SCFS 1.50967 0.1823129 0.02872 0.11111 0 0.071889 0.016033 0.0625 

CCFS 0.67096 0.040514 0.006047 0 0 0.0159753 0.003376 0.027778 

SCFC 4.16000 0.8816327 0.217985 0.5625 0 0.198095 0.077531 0.09000 

 

Table 2: Numerical values of displacements and stresses for SSSS thick anisotropic 

rectangular plate for 00 @ α = 5 to 100, β = 1  

  α 𝐰̅      𝐮̅ 𝐯̅ 𝛔𝐱𝐱̅̅ ̅̅  𝛔𝐲𝐲̅̅ ̅̅̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  𝛕𝐲𝐳̅̅ ̅̅  

5 0.0180 -

0.32005 

-

0.60615 

0.980772 0.0364545 0.059276

5 

0.59966 0.06820 
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10 0.01005 -

1.15660 

-

1.51589 

0.881023 0.0259871 0.042759

9 

0.67721 0.05531 

20 0.00775 -4.4924 -

4.87597 

0.853597 0.0222705 0.037473

4 

0.70067 0.05011 

30 0.00731 -

10.0509 

-

10.4394 

0.848404 0.0215162 0.036427

4 

0.70524 0.04903 

40 0.00715 -

17.8329 

-

18.2231 

0.846577 0.0212470 0.036056

0 

0.70686 0.04864 

50 0.00708 -

27.8382 

-

28.2292 

0.845730 0.0211214 0.035883

2 

0.70761 0.04846 

60 0.00704 -

40.0669 

-

40.4583 

0.845270 0.0210529 0.035789

0 

0.70802 0.04836 

70 0.00701 -

54.5190 

-

54.9107 

0.844992 0.0210115 0.035732

1 

0.70827 0.04830 

80 0.0070 -

71.1945 

-

71.5863 

0.844811 0.0209846 0.035695

2 

0.70843 0.04826 

90 0.00699 -

90.0934 

-

90.4853 

0.844688 0.0209662 0.035669

9 

0.70854 0.04823 

100 0.00698 -

111.216 

-

111.608 

0.844599 0.0209530 0.035651

7 

0.70862 0.04821 

 

Table 3: Numerical values of displacements and stresses for SCFS thick anisotropic 

rectangular plate for 00 @ α = 5 to 100, β = 1 

  α 𝐰̅      𝐮̅ 𝐯̅ 𝛔𝐱𝐱̅̅ ̅̅  𝛔𝐲𝐲̅̅ ̅̅̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  𝛕𝐲𝐳̅̅ ̅̅  

5 0.01142 -0.04699 -0.17713 0.56898 0.02061 -0.01066 0.14369 0.00346 

10 0.00464 -0.13268 -0.29131 0.40058 0.01014 -0.00518 0.14867 0.00336 

20 0.00287 -0.47306 -0.72846 0.35664 0.00740 -0.00375 0.14997 0.00333 

30 0.00253 -1.04010 -1.45500 0.34842 0.00689 -0.00348 0.15021 0.00332 

40 0.00242 -1.83393 -2.47189 0.34554 0.00671 -0.00338 0.15030 0.00332 

50 0.00236 -2.85455 -3.77925 0.34420 0.00662 -0.00334 0.15034 0.00332 

60 0.00233 -4.10198 -5.37710 0.34348 0.00658 -0.00332 0.15036 0.00332 
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70 0.00232 -5.57622 -7.26545 0.34304 0.00655 -0.00330 0.15037 0.00332 

80 0.00231 -7.27725 -9.44431 0.34275 0.00653 -0.00329 0.15038 0.00332 

90 0.00230 -9.20509 -

11.91369 

0.34256 0.00652 -0.00329 0.15039 0.00332 

100 0.00229 -

11.35974 

-

14.67358 

0.34242 0.00651 -0.00328 0.15039 0.00332 

Table 4: Numerical values of displacements and stresses for CCFS thick anisotropic 

rectangular plate for 00 @ α = 5 to 100, β = 1 

  α 𝐰̅      𝐮̅ 𝐯̅ 𝛔𝐱𝐱̅̅ ̅̅  𝛔𝐲𝐲̅̅ ̅̅̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  𝛕𝐲𝐳̅̅ ̅̅  

5 

0.00159 -0.00652 
-0.03598 0.07930 0.00404 -0.00159 0.01999 

0.0010

7 

10 

0.00066 -0.01882 
-0.06116 0.05696 0.00195 -0.00080 0.02114 

0.0008

8 

20 

0.00041 -0.06750 
-0.15426 0.05097 0.00138 -0.00058 0.02145 

0.0008

1 

30 

0.00036 -0.14858 
-0.30860 0.04984 0.00127 -0.00054 0.02151 

0.0008

0 

40 

0.00035 -0.26207 
-0.52455 0.04945 0.00123 -0.00052 0.02153 

0.0008

0 

50 

0.00034 -0.40799 
-0.80217 0.04926 0.00122 -0.00052 0.02154 

0.0008

0 

60 

0.00033 -0.58634 
-1.14147 0.04916 0.00121 -0.00051 0.02154 

0.0007

9 

70 

0.00033 -0.79711 
-1.54246 0.04910 0.00120 -0.00051 0.02154 

0.0007

9 

80 

0.00033 -1.04031 
-2.00513 0.04906 0.00120 -0.00051 0.02155 

0.0007

9 

90 

0.00033 -1.31594 
-2.52949 0.04904 0.00120 -0.00051 0.02155 

0.0007

9 

100 

0.00033 -1.62399 
-3.11555 0.04902 0.00119 -0.00051 0.02155 

0.0007

9 
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Table 5: Numerical values of displacements and stresses for SCFC thick anisotropic 

rectangular plate for 00 @ α = 5 to 100, β = 1.5 

α 𝐰̅ 𝐮̅ 𝐯̅ 𝛔𝐱𝐱̅̅ ̅̅  𝛔𝐲𝐲̅̅ ̅̅̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  𝛕𝐲𝐳̅̅ ̅̅  

5 0.00020 -0.00257 -0.00509 -0.00045 -0.00003 0.00063 0.00786 0.00007 

10 0.00008 -0.00722 -0.00827 -0.00031 -0.00001 0.00030 0.00808 0.00008 

20 0.00005 -0.02569 -0.02060 -0.00028 -0.00001 0.00022 0.00814 0.00009 

30 0.00004 -0.05646 -0.04112 -0.00027 -0.00001 0.00020 0.00815 0.00009 

40 0.00004 -0.09955 -0.06984 -0.00027 -0.00001 0.00020 0.00815 0.00009 

50 0.00004 -0.15494 -0.10677 -0.00027 -0.00001 0.00019 0.00815 0.00009 

60 0.00004 -0.22264 -0.15191 -0.00027 -0.00001 0.00019 0.00816 0.00009 

70 0.00004 -0.30266 -0.20525 -0.00027 -0.00001 0.00019 0.00816 0.00009 

80 0.00004 -0.39498 -0.26680 -0.00027 -0.00001 0.00019 0.00816 0.00009 

90 0.00004 -0.49961 -0.33655 -0.00027 -0.00001 0.00019 0.00816 0.00009 

100 0.00004 -0.61655 -0.41451 -0.00026 -0.00001 0.00019 0.00816 0.00009 

 

d. Discussion of results 

i. Total potential energy functional 

The total potential energy functional for the thick anisotropic rectangular plate derived in this work 

can be used to analyze rectangular thick anisotropic plate of any boundary condition and it was used 

here to solve for rectangular plate subjected under pure bending loading. Although, it can also solve 

buckling loading and vibration loading when the external work is substituted appropriately. It is 

presented here in the expanded form to accommodate the exact displacement functions unlike that 

of other works like [11, 12, 13] that assumed their displacement functions and had no need for such 

expansion. Hence it is similar when compare with other works in a minimized form but exhibit some 

level of differences when compared in the expanded form. The above statements can be relied on to 

confirm the efficiency of this Equation (69) for the analysis of thick anisotropic rectangular plate. 

The equation is a combination of differential of central deflection (w), in-plane rotational 

displacement (
𝑥
 ) on x-axis and in-plane rotational displacement (

𝑦
 ) on y-axis. Previous work on 

thick anisotropic rectangular plate did not care to separate the two rotational in-plane displacements 

(
𝑥
, 

𝑦
) because they assumed their displacement functions and has no need for further expansion. 

ii. Governing equation and compatibility equations 

The total potential energy was minimized with displacements to obtain the governing equation of 

equilibrium and the two compatibility equations of thick anisotropic plate. The governing equation 
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obtained in Equation 143 is similar to those obtained by  [11, 12], etc, but their various works were 

able to obtained one compatibility equation in addition to their governing equation unlike the present 

work that obtained two compatibility Equations (71) and (72) The governing equation comprises 

the external work (pure bending loading), differentials of out-plane displacement (W), differential 

of in-plane rotational displacement in x-axis and differential of in-plane rotational displacement in 

y-axis. The compatibility equations contain the differentials of out-plane displacement (W), 

differential of in-plane rotational displacement in x-axis, differential of in-plane rotational 

displacement in y-axis, whole in-plane rotational displacement in x-axis and whole in-plane 

rotational displacement in y-axis.  

iii. Polynomial stiffness values (k) of the rectangular plates 

The polynomial stiffness values (k) of the rectangular plate for the four boundary conditions 

considered here were the product of closed form integral of the displacement functions. The 

Equations and the values obtained are similar to those obtained by [13]. Table 1 showed that the 

polynomial stiffness values obtained for the various rectangular plate boundary conditions (SSSS 

and CCFC) yielded the same value, zero for, (𝑘4 and 𝑘5). SCFS and SCFC rectangular plate 

boundary conditions yielded 0.1111 and 0.5625 for its (𝑘4) stiffness values. Thus, for the four 

boundary conditions considered, the stiffness values of 𝑘5, yielded zero in all boundary conditions 

while 𝑘4 yielded values for only two boundary conditions as stated above. These yield of the same 

values for (𝑘5) and most (𝑘4) confirmed the similarities in its Equations.  

iv. SSSS plate at angle fiber orientation of 𝟎𝟎 

From Table 2, it is observed that out-plane displacement values 𝑤̅ decreases as the thickness of the 

plate decreases. The decrease was very high at the thick plate zone (α = 5 to 10) but becomes very 

small at the thing plate zone (α = 50 to 100). This is a confirmation that the out-plane displacement 

act more on thick plate zone than thin plate zone in rectangular thick anisotropic plate. The in-plane 

displacements, 𝑢̅ and 𝑣̅, also decrease as the thickness of the plate decreases and become more 

noticeable at the thin plate section (α = 50 to 100). This shows that the in-plane displacements have 

a minimal effect on SSSS thick anisotropic plate. 

The in-plane stresses, σxx̅̅ ̅̅ , σyy̅̅ ̅̅  and 𝜏𝑥𝑦̅̅ ̅̅ , decrease as the plate decreases in thickness. A close look 

will reveal a sharp decrease at thick and moderately thick plate section (α = 5 to 20) while at the 

thin plate section (α = 50 to 100), they decreased lightly. The out-plane stress, 𝜏𝑥𝑧̅̅ ̅̅ , increases as the 

plate thickness decreases while the out-plane stress, 𝜏𝑦𝑧̅̅ ̅̅ , decreases as the plate thickness decreases. 

This divergence in the progressive order of the plate values can be explained from the fact that 

anisotropic plates are plates with different resistance to mechanical actions in different directions. 

That is, they possess different properties in different directions. 

 v. SCFS plate at angle fiber orientation of 𝟎𝟎 

Table 3, shows that  the values of out-plane displacement, (w̅), increases as the thickness of the plate 

decreases while the values of the in-plane displacement, (u̅ and v̅), decrease as the thickness of the 

plate decreases and becomes more noticeable at the thin plate section, (α = 50 to 100). Also, the 

values of the in-plane stresses, (σxx̅̅ ̅̅  and σyy̅̅ ̅̅ ), and out-plane stresses, (τxz̅̅ ̅̅  and τyz̅̅ ̅̅ ), increase as the 

thickness of the plate decreases while the values of the in-plane stress, (τxy̅̅ ̅̅ ), decreases as the plate 

thickness decreases. This increase or decrease in stresses as the plate thickness decreases are very 

obvious at the thick plate section, (α = 5 to 10), but gradually decreases as the thickness of the plate 

decreases. 
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vi. CCFS plate at angle fiber orientation of 𝟎𝟎 

Table 4, shows that the values of out-plane displacement, (w̅), and in-plane displacements, (u̅ and 

v̅), decrease as the thickness of the plate decreases. The decrease is more obvious at the thick plate 

section, (α = 5 to 10). Hence, displacements have more effect on thick plate than on thin plate. Also, 

the values of the in-plane stresses, (σxx̅̅ ̅̅  and σyy̅̅ ̅̅ ), and out-plane stress, (σyz̅̅ ̅̅ ), decrease as the 

thickness of the plate decreases while the values of the in-plane stresses, (τxy̅̅ ̅̅ ), out-plane stress, 

(τxz̅̅ ̅̅ ), increase as the plate thickness decreases. This increase or decrease in stresses as the plate 

thickness decreases are very obvious at the thick plate section, (α = 5 to 10), but gradually decrease 

as the thickness of the plate decreases. Hence, the impact from stresses are felt more on thick plate 

than thin plate. 

vii. SCFC plate at angle fiber orientation of 𝟎𝟎 

From Table 5, it is observed that the values of displacements, (w̅, u̅, v̅), and the in-plane stress, 

(τxy̅̅ ̅̅ ), decrease as the thickness of the plate decreases while the in-plane stresses, (σxx̅̅ ̅̅ , σyy̅̅ ̅̅ ), and the 

out-plane stresses, (τyz̅̅ ̅̅ , τxz̅̅ ̅̅ ),  increase as the thickness of the plate decreases. However, the out-

plane displacement, (w̅), and stresses, (σyy̅̅ ̅̅ , σyy̅̅ ̅̅ , τxy̅̅ ̅̅ , τxz̅̅ ̅̅ , τyz̅̅ ̅̅ ), showed a very unique sequence 

between preceding values starting from moderate thick plate zone, (α = 20 to 40), the increase or 

decrease between two successive preceding values, becomes very small and even diminishes to 

infinitesimal difference at the thin plate zone (α = 50 to 100). The decrease or the increase of the 

displacements and stresses have a wider margin between the preceding values at the thick plate 

zone, (α = 5 to 10), but gradually diminishes towards moderate thick and thin plate zone, (α = 20 to 

100). The values obtained for displacements, (w̅, u̅, v̅),  and stresses, (σxx̅̅ ̅̅ , σyy̅̅ ̅̅ , τxy̅̅ ̅̅ , τxz̅̅ ̅̅ , τyz̅̅ ̅̅ ),  at the 

minimum span to thickness ratio of (5) are, (0.00020, -0.00257, -0.00509) and (-0.00045, -0.00003, 

0.00063, 0.00786, 0.00007) while at the maximum span to thickness ratio of (100), it yield, 

(0.00004, -0.61655, -0.41451) and (-0.00026, -0.00001 -0.00019, 0.00816, 0.00009). 

4. Numerical problems comparisons  

In this section, the present study results were compared with the existing literature results obtained 

by some other scholars by calculating the percentage difference between the present study and the 

existing literature results by the scholar.  

The percentage difference is calculated as follows: 

% difference = (
present study value−comparing author value

present study value
) X 100% 

Table 6: Comparison of results of non-dimensional deflection, w, from present study with that 

of [13] or rectangular anisotropic plate at 00 angle fiber orientation. And aspect ratio of 1 (b/a = 1) 

a/t Author 𝐰̅ 

10 Atashipour et.al.(2017) 0.9520 

 Present study 1.0051 

 %difference 5.28% 
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20 Atashipour et.al.(2017) 0.7262 

 Present study 0.7749 

 %difference 6.28% 

100 Atashipour et.al.(2017) 0.6528 

 Present study 0.6981 

 %difference 6.49% 

 

From Table 6, it is observed that, present study deflections (w), have considerable similarity with 

the deflections obtained by [13] in their single layer orthotropic square plate solutions with 

percentage differences of 5.28%, 6.28% and 6.49% at span to thickness ratios (a/t) of 10, 20 and 

100 and aspect ratio of, 1, respectively. The following factors may have contributed to the mild 

differences between the present study results and that of [13]; 

i.  [13] applied Levy type solution in Fourier differential quadrature while present study 

used Ritz energy method through exact approach.  

ii. [13] employed modification factor of 5/6 while present study does not require 

modification factor.  

iii. [13] adopted first order shear deformation theory while present study adopted third order 

shear deformation theory. 

iv. [13] employed assumed displacement functions while present study used exact 

displacement functions. 

Table 7: Comparison of present study non-dimensional out-plane displacement (w̅) of simply 

supported orthotropic rectangular plate under uniformly distributed transverse load with that of [11] 

Plate dimensional parameters 

 

 

w̅, at x = a/2, y = b/2, z = t/2 

Present study Shimpi & Patel 

(2006) 

% difference 

 b/a  a/t  

 2.0  20.0 22034 21542 2.22% 

 10.0 1451.90 1408.5 2.98% 

 7.14286 402.76 387.23 3.86% 

 1.0  20.0 10,382 10443 0.59% 

 10.0 678.57 688.57 1.47% 
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 7.14286 186.05 191.07 2.70% 

 0.5  20.0 2054.06 2048.7 0.26% 

 10.0 139.46 139.08 0.27% 

 7.14286 39.86 39.79 0.18% 

 

Nondimensional out-plane displacement (w̅) of simply supported orthotropic rectangular plate 

under uniformly distributed transverse load was analyzed through exact approach by applying Ritz 

energy method using polynomial shear deformation functions. The results were presented in Table 

7. The table also present results obtained by [11] using refined plate theory. This refined plate theory 

results by [11] were used as basis for comparison of the results obtained in the present study.  

The present study exact approach results converged well with the results obtained by [11] with 

maximum percentage difference being 3.86% for rectangular plate of width/length ratio (b/a = 2), 

span/thickness ratios (a/t = 7.14286). The minimum percentage difference (0.18%) occurred in the 

rectangular plate of width/length ratio (b/a = 0.5), span/thickness ratios (a/t = 7.14286). The average 

percentage difference for the three plates with three span to thickness ratios each is 1.614%. This 

serves as a complimentary result to the earlier submission that the obtained orthotropic thick plate 

displacement shows good accuracy with that of [11]. From Table 7, it can be stated that the lesser 

the aspect ratio the better the out-plane displacement results. 

Table 8: Comparison of present study non-dimensional in-plane stress (σxx̅̅ ̅̅ ) of simply-supported 

orthotropic rectangular plate under uniformly distributed transverse load with that of [11]. 

Plate dimensional parameters 

 

 

σxx̅̅ ̅̅ , at x = a/2, y = b/2, z = t/2 

Present study Shimpi & Patel 

(2006) 

% difference 

 b/a  a/t  

 2.0  20.0 262.05 262.67 0.24% 

 10.0 65.89 65.975 0.13% 

 7.14286 33.863 33.862 0.003% 

 1.0  20.0 143.425 144.31 0.62% 

 10.0 35.59 36.021 1.20% 

 7.14286 18.002 18.346 1.91% 

 

Table 8 shows the comparison of present study results with that of [11] for non-dimensional in-

plane stress (σxx̅̅ ̅̅ ) of simply-supported orthotropic rectangular plate under uniformly distributed 
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transverse load. The results shows high level of convergence with very low percentage difference 

for rectangular plate with aspect ratio 2 (b/a = 2) and span to thickness ratios (a/t = 20, 10 and 

7.14286). The percentage differences obtained for these aspect ratio and span to thickness ratios are; 

0.24%, 0.13% and 0.003%.  Square plate also showed high level of convergence with low 

percentage differences of 0.62, 1.20% and 1.91% for span to thickness ratios (a/t = 20, 10 and 

7.14286). From Table 8, it is observed that for in-plane stress (σxx̅̅ ̅̅ ), the higher the aspect ratio (b/a) 

the better the results. 

Table 9: Comparison of present study non-dimensional in-plane stress (σyy̅̅ ̅̅ ) of simply-supported 

orthotropic rectangular plate under uniformly distributed transverse load with that of [11]. 

Plate dimensional parameters 

 

 

σyy̅̅ ̅̅ , at x = a/2, y = b/2, z = t/2 

Present study Shimpi & Patel 

(2006) 

% difference 

 b/a  a/t  

 1.0  20.0 88.24 87.08 1.31% 

 10.0 21.997 22.21 0.97% 

 7.14286 11.178 11.615 3.91% 

 

Table 9 presented the values of non-dimensional in-plane stress (σyy̅̅ ̅̅ ) of simply-supported 

orthotropic rectangular plate under uniformly distributed transverse load as obtained by present 

study and [11]. The present study results were compared with the results obtained by [11] and it 

shows lower percentage differences for the square plate at a/t = 20, 10 and 7.14286 with percentage 

differences of 1.32%, 0.97% and 3.91%. It is observed from Table 9 that, the present study results 

converges very well with those from [11] when solving in-plane stress (σyy̅̅ ̅̅ ) for square plate. 

Table 10: Comparison of present study non-dimensional out-plane stress (τxz̅̅ ̅̅ ) of simply-supported 

orthotropic rectangular plate under uniformly distributed transverse load with those from [15, 12, 

16 & 11]. 

Plate dimensional 

parameters 

 

τxz̅̅ ̅̅  , at x = a/2, y = b/2, z = t/2 

Present study Srinivas et al. (1970) % difference 

 b/a  a/t    

 2.0  20.0 13.635 14.048 3.03% 

 10.0 6.8082 6.9266 1.74% 

 7.14286 4.8544 4.8782 0.49% 
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Plate dimensional 

parameters 

 

τxz̅̅ ̅̅  , at x = a/2, y = b/2, z = t/2 

Present study Reddy (1984) % difference 

 b/a  a/t  

 2.0  20.0 13.635 13.98 2.53% 

 10.0 6.8082 6.958 2.20% 

 7.14286 4.8544 4.944 1.85% 

Plate dimensional 

parameters 

 

τxz̅̅ ̅̅  , at x = a/2, y = b/2, z = t/2 

Present study Reissner (1945) % difference 

 b/a  a/t  

 2.0  20.0 13.635 14.114 3.51% 

 10.0 6.8082 7.0611 3.71% 

 7.14286 4.8544 5.0445 3.92% 

Plate dimensional 

parameters 

 

τxz̅̅ ̅̅  , at x = a/2, y = b/2, z = t/2 

Present study Shimpi & Patel (2006) % difference 

 b/a  a/t  

 2.0  20.0 13.635 14.03 2.89% 

 10.0 6.8082 6.78 0.41% 

 7.14286 4.8544 4.70 3.18% 

 

Table 10, shows the results comparison for out-plane stress (τxz̅̅ ̅̅ ) of simply-supported orthotropic 

rectangular plate under uniformly distributed transverse load as obtained by various authors with 

various theories. [15] used exact theory, [12] used higher order shear deformation plate theory, [16] 

used first order shear deformation plate theory while [11] used refined plate theory. It is interesting 

to note that all the methods presented in Table 10 in exception to present study solution are either 

moments or stress based approach or both. Also, the shear deformation function they applied were 

different from the shear deformation function of the present study. Their shear deformation 

functions are stated herein: [15] and [11]used 𝑓(𝑧)  = [
1

4
(
𝑧

𝑡
) −

5

3
(
𝑧

𝑡
)
3

 ], Reddy (1984) applied 

𝑓1(𝑧) = −𝐶0𝑧 − 𝐶3𝑧
3 and 𝑓2(𝑧) = −𝐶1𝑧 − 𝐶3𝑧

3, Reissner (1945) used 𝑓(𝑧) =
𝑧

2
⌊
ℎ2

4
−

𝑧2

3
⌋ while 
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present study used 𝑓(𝑧) = 𝑧 (1 −
4

3
[
𝑧

𝑡
]
2
) as shear deformation function. All the solutions yielded 

close values for stress τxz̅̅ ̅̅  even with different shear deformation functions. The work by [15] 

presented the lowest percentage differences when compared with the present study with percentage 

differences of, 3.03%, 1.74% and 0.49% for b/a =2, a/t = 20, 10 and 7.14286 while the solution from 

[16] had highest percentage difference on comparing with the present study with differences of 

3.51%, 3.71% and 3.92% for the same geometric properties. However, other solutions gave values 

that are still below 3.2% percentage difference which also is a prove of good agreement between 

them and present study. Reddy percentage differences with present study are 2.53%, 2.20% and 

1.85% while [11] results yielded 2.89%, 0.41% and 3.18% respectively. The rectangular plate 

considered has the following geometric parameters; b/a = 2, a/t = 20, 10 and 7.14286 for all the 

authors considered on Table 10. 

5. Conclusion and recommendations 

a. Conclusion 

The study presents a solution for the analysis of thick rectangular anisotropic plates based on third 

order shear deformation theory and assumptions. Ritz energy method was employed for the analysis. 

The solution derived the general orthogonal polynomial displacement functions for a rectangular 

plate from the governing equation of equilibrium and compatibility equations of a rectangular thick 

anisotropic plate based on third order shear deformation theory. The shear deformation function 

used was determine from the first principle. Deflection at the center of the anisotropic rectangular 

plate was determined at “00” angle fiber orientation, various span to thickness ratios, α (5, 10, 20, 

30, 40, 50, 60, 70, 80, 90 and 100) and for all the four boundary conditions considered in this work, 

namely: SSSS, SCFS, CCFS and SCFC. In-plane displacements (u and v), in-plane stresses (x, y 

and τxy) and out-plane stresses (τxz and τyz) were also determined for the same angles of orientation 

of fibers, span-depth-ratios and boundary conditions as applied to central deflection. Finally, a 

functional excel worksheet program was developed for easy analysis of thick anisotropic plates. 

The total potential energy functional developed for the rectangular thick anisotropic plate using third 

order shear deformation theory, the formulated governing equation of equilibrium and the 

compatibility equations of anisotropic plate, the stiffness coefficients, the orthogonal polynomial 

shear deformation and the exact displacement functions developed in this work can be used to 

provide satisfactory solution to anisotropic thick rectangular plate problems.  

b.  Recommendations  

This research work used third order shear deformation theory to analyze thick anisotropic 

rectangular plate through exact approach with twelve boundary conditions. Thus; it is recommended 

that: 

i. The method shall be used when analyzing thick anisotropic rectangular plate due to it 

suitability and usability.  

ii. Further studies shall use exact approach in third order shear deformation theory in 

solving other related anisotropic plate problems like thin laminated anisotropic plate, 

thin layered anisotropic plate and laminated functionally graded anisotropic plate. 
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iii. Further studies shall use exact approach in third order shear deformation theory in other 

methods than the Ritz energy method, such as in the Galerkin method, the Kantorovich 

method, the Trefftz method and the method of least squares. 

iv. Further studies shall use exact solution in third order shear deformation theory to analyze 

thick anisotropic non-rectangular plate problems. 

v. Further studies shall use exact approach in third order shear deformation theory to solve 

thick anisotropic plate with different laminars. 
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