

Advances in Engineering Design Technology Vol. 3, 2021 pp. 53-60 ISSN-2682-5848

53

Enhancement of a Synthesized Single Cycle MIPS Processor on Altera DE2

FPGA Development Board

S.U. Mustaphaa, S.S. Ahmadb

aBayero University, Kano, No. 2 Hassan Gwarzo Road, Kano, Nigeria.
bKing Fahad University of Petroleum and Minerals, Dammam, Saudi Arabia

Corresponding Author: sumustapha.phy@buk.edu.ng

ARTICLE INFORMATION ABSTRACT

Article history:

Received 04 May 2021

Revised 02 July 2021

Accepted 09 August 2021

Available online 31 August 2021

The MIPS processor continues to be one of the most popular

processors in the field of embedded systems mainly because of its

speed and reduced instructions. This work presents a single cycle

MIPS synthesized on Altera DE2 development board. It is further

enhanced by developing extra sets of instructions. The design is

tested by running Mips Assembly Language (MAL) programs on the

model. Results indicate that the enhanced model has more

executable instructions and has an on board maximum frequency of

25MHz which is good for softcore processor.

Keywords:

Altera, DE-2, MIPS, Synthesis, Verilog

https://doi.org/10.37933/nipes.a/3.2.2021.6

https://nipesjournals.org.ng

© 2021 NIPES Pub. All rights reserved

1. Introduction

The Microprocessor without Interlocked Pipeline Stages (MIPS) is highly popular in field of a

embedded systems design. It is a Reduced Instruction Set Computer (RISC) processor that supports

fewer and simpler instructions than their counter parts (Complex Instruction Set Computer (CISC)

processors). The idea behind the reduction of instruction is to reduce hardware size and increase the

speed of operation as shown by research [1, 2]. The MIPS processor has a load-store architecture

and has a 5-Stage instruction execution stage [3]. This means that it requires two instructions to be

executed in order to access memory. Although it is pipelined, it solves the problem of hardware

interlocking by implementing solutions in software leaving a user with a fast system that has a

simple instruction set [4].

MIPS processors are designed to be deployed as VLSI softcore processors [5]. A primary target

hardware for deploying it is a Field Programmable Gate Array (FPGA) such as Altera DE-2. MIPS

being softcore, needs to be synthesized onto a chosen hardware. This is achieved by translating the

whole architecture using a hardware description language. The beauty of this is that both 32bit and

64bit MIPS can be synthesized on an FPGA. Although this has been attempted and done by some

researchers, there is a still a gap in the number of instructions that can be performed by the

synthesized processor [6]. A key thing to keep in mind is that when a processor is successfully

synthesized onto a hardware, the native programming language of the synthesized processor can be

on the hardware. For example, if an arduino is synthesized on an FPGA, one can use C++ programs

mailto:sumustapha.phy@buk.edu.ng

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology

3, 2021 pp. 53-60

54

written to be used by an arduino. The input and output pins mapping and architectural design will

be carried using the destination language (Verliog). The only difference is that the hardware will be

an FPGA. In a nutshell, it is just simply implementing a software based arduino on an FPGA.

In this work, a detailed implementation ANDI (AND Immediate), NOR (NOR), and LHW (Load

Half Word) will be presented and discussed. The new set of instructions were written in verilog

HDL and simulated using Signal-Tap analysis tool in Quartus-II software. The improved system

was tested by verifying both hardware and software functionality. The design details and results will

be discussed next sections.

2. Methodology

The MIPS design presented only implements a limited number of MIPS instructions. The

instructions NOR, LH and ANDI were added to the existing design file by making some

modifications in the supplied design file. The changes done for implementing each instruction will

be presented. The MIPS processors has three prominent instruction types [7], the R-type which

passes values within registers, the I-type which takes a register and an immediate value and a J-type

instruction which are used when a jump is to be performed.

2.1 ANDI (AND Immediate) Instruction

The instruction ANDI is an I-type instruction that uses a source register (Rs), target register (Rt)

and immediate value (Imm). It has the structure.

andi $Rt, $Rs, Imm #Rt:= Rs & Imm (1)

It performs a logical and with the contents of the source register and the immediate value and place

the result in the target register. The additions were made to implement the andi instruction are

shown in Figures 1 and 2.

Figure 1: Decoding the opcode of the andi instruction

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology

3, 2021 pp. 53-60

55

Figure 2: Adding the andi instruction to the ALU decoder

For the andi instruction, the result should be 0 extended, written to a register and sent to the ALU

for computation. This is why the control signals are written as 12’b001010000011. The last three

LSB of the control signal denote the ALU operation to be performed.

2.2 NOR Instruction

The instruction nor is an R-type instruction that uses a source register (Rs), target register (Rt) and

a destination register (Rd), shift amount and function code (100111). All R-type instructions have

and opcode of 000000. The nor instruction has the structure

nor $Rd, $Rs, $Rt #Rd:= ~ (Rs | Rt) (2)

It performs a nor with the contents of the source register and the target register and place the result

in the destination register. The changes made to implement the nor instruction are shown in Figures

3 and 4

Figure 3: Decoding the opcode of the andi instruction

The function code of the nor instruction was added to the given instructions function codes as

indicated in Figure 3. It utilizes the unused combination in the given ALU decoder (011).

Figure 4: Utilizing the decoder to create a nor instruction.

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology

3, 2021 pp. 53-60

56

For all R-type instructions, the result is 0 extended, written to the destination register and the

operation to be performed depends on the function code. Thus, all control signals will have the

12'b001100000100.

2.3 LH (Load Half word) Instruction

The LH is an I-type instruction that uses a source register (Rs), target register (Rt) and an immediate

offset. It loads half of word (16bits) from any memory address specified and sign extends it. It has

the opcode of 100001. The LH instruction has the structure.

lh $Rt, Imm($Rs) # Rt:= [Mem$Rs + Imm] (3)

2.3.1 Adding the LH instruction

A new module was created to extract half word from a word and sign extend it based on the trigger

of a newly added control signal. It was also designed to support loading either the upper half or the

lower half word based on the instruction. The ASM chart of the module is shown in Figure 5.

Figure 5: ASM chart of the Load Half module

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology

3, 2021 pp. 53-60

57

2.3.2 Verilog code of the LH module and other changes

Figure 6: Verilog code of the load half word module

The load half word module was then connected to the existing datapath and controller after it was

instantiated. The module instantiation is shown in Figure 7 while the RTL view is shown in Figure

8.

Figure 7: load half word module instantiation in mips.v file

Figure 8: Partial part RTL view of the load half module (lhw)

3. Results and Discussion

3.1 Signal Tap Result for Testing the functionality of the synthesized MIPS Processor

Signal tap was used to verify the result for correctness. It was also used to view the signals from the

MIPS system. The signals that were used to analyse the written code are Program Counter (PC),

instruction register (Instr) and Hex0 – Hex7. In addition, a reset signal was used to trigger the data

acquisition. The setup is shown Figure 9 and the result is in Figure 8.

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology

3, 2021 pp. 53-60

58

Figure 9: Signal tap analyser setup for verifying Hex values displayed Figure 10: Signal tap analyser result for displaying ID number

The result displayed in Figure 10 was taken after the MAL instruction was excuted. It shows the

Hex values that display the ID number 00917785 on 8 seven segment displays. The number

displayed is 00917785 and it corresponds to (40h, 40h, 10h, 79h, 78h, 78h, 00h, 12h). The

photograph of the board as shown in Figure 11 proves the functionality of the written program.

 Figure 12: Memory Instantiation file setup for

displaying the ID number

Figure 11: Photograph of ID number displayed

The result obtained when the machine code was written into memory instantiation file and

programmed to the DE2 board meets the requirement as shown in Figure 11. The memory

instantiation file in Figure 12 consists of 18 machine codes that contain 18 instructions after decoded

by the processor. Each instruction is word aligned and the program counter is incremented by 4 after

each instruction is executed.

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology

3, 2021 pp. 53-60

59

3.2 Signal Tap Test Result for andi instruction

Figure 13: Test result for andi instruction

The signals used for testing the andi instruction are Program Counter (PC), instruction register

(Instr), value a, value b, ALU output and reset. The values (a&b) used are 0xFFFF_3C3C and

0x0000_5A5A. The manual computation of the andi result is 0x00001818 and it tallies with the

result obtained for the manual computation as in Figure 13.

3.3 Signal Tap Test Result for nor instruction

Figure 14: Test result for nor instruction

The signals used for testing the or instruction are Program Counter (PC), instruction register (Instr),

value a, value b, ALU output and reset. The values (a&b) used are 0xFFFF_3C3C and

0x0000_5A5A. The manual computation of the NOR is 0x00008181 and it tallies with the result

obtained for the manual computation as in Figure 14.

3.1.1 Signal Tap Logic Load Half Word Test Result

Signal tap logic analyser was used to test the load half word instruction. The design was tested to

verify loading of a sign extended upper half word or lower half. The signals used to test are shown

in Table 5. The functionality test results are shown in Figures 15-16.

Figure 15: Loading the lower half word

The full word as shown in Figure 15 is A5A52008h. The lower half word 2008 is loaded when the

load half signal is given. The result is then sign extended with the MSB of the half word loaded.

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology

3, 2021 pp. 53-60

60

Thus, the memhw indicates 00002008h. The lower half word was loaded because the lhcontrol

signal is low.

Figure 16: loading the upper half word

In figure 16, the full word is A5A52013h. The upper half word A5A5 gets loaded when the load

half signal is given. The result is then sign extended with the MSB of the half word loaded. Thus,

the memhw indicates FFFFA5A5h. The upper half word was loaded because the lhcontrol signal

is high. It was noticed that the maximum attainable of operating frequency was 25MHz which is

greater than the default Xilinx pico-blaze softcore processor that has an operating frequency of

16MHz.

4. Conclusion

In this paper, algorithmic state machines were translated to Verilog HDL to develop new instructions

for a MIPS processor. ANDI, NOR and LHW instructions were added and tested using MIPS

Assembly language. Results show that the synthesized processor works within a single cycle is

capable of performing both R-type instructions where operation is done on two registers and I-type

instructions were a register and immediate value is used. The results obtained also opened doors for

developers and researchers interested in adding custom instructions that will suite their needs.

References

[1] E. d. Vries, "Introduction to the MIPS Processor," Electronic Design, Dublin, 2009.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, Cambridge: Morgan

Kaufmann, 2017.

[3] M. Mano and C. R. Kime, Logic and Computer Design Fundamentals, New Jersey: Prentice Hall, 2008.

[4] G. Kane and J. Heinrich, MIPS RISC Architecture, New York: Prentice Hall, 1992.

[5] J. Hennessy, "MIPS: A Microprosessor Architecture," IEEE, Stanford, 1982.

[6] S. Suresh and R. Ganesh, "FPGA Implementation of MIPS RISC Processor," International Journal of Engineering

Research & Technology, vol. 3, no. 1, pp. 1710-1714, 2014.

[7] MIPS Architecture for Programmers, Vols. I-A, Beijing: Imagination Technologies, 2016, pp. 1-10.

[8] P. Bhardwaj and S. Murugesan, "Design & Simulation Of A 32-Bit Risc Based Mips Processor Using Verilog,"

IJRET: International Journal of Research in Engineering and Technology, vol. 5, no. 11, pp. 166-172, 2017.

 [9] Mohit N. Topiwala, N. Sarawathi, “Implementation of a 32-bit MIPS Based RISC Processor using Cadence”,

International Conference on Advanced Communication Control and Computing Teclmologies (ICACCCT), 2014

IEEE.

