Advances in Engineering Design Technology Vol. 3, 2021 pp. 53-60 ISSN-2682-5848

Advances in Engineering Design Technology

Journal homepage: www.nipesjournals.org.ng

Enhancement of a Synthesized Single Cycle MIPS Processor on Altera DE2
FPGA Development Board

S.U. Mustapha?, S.S. Ahmad®

aBayero University, Kano, No. 2 Hassan Gwarzo Road, Kano, Nigeria.
bKing Fahad University of Petroleum and Minerals, Dammam, Saudi Arabia
Corresponding Author: sumustapha.phy@buk.edu.ng

ARTICLE INFORMATION ABSTRACT

Article history: The MIPS processor continues to be one of the most popular
Received 04 May 2021 processors in the field of embedded systems mainly because of its
Revised 02 July 2021 speed and reduced instructions. This work presents a single cycle
Accepted 09 August 2021 MIPS synthesized on Altera DE2 development board. It is further
Available online 31 August 2021 enhanced by developing extra sets of instructions. The design is

tested by running Mips Assembly Language (MAL) programs on the
model. Results indicate that the enhanced model has more

Keywords: executable instructions and has an on board maximum frequency of
Altera, DE-2, MIPS, Synthesis, Verilog S
25MHz which is good for softcore processor.
d :"' Crossref

https://doi.org/10.37933/nipes.a/3.2.2021.6

https://nipesjournals.org.ng
© 2021 NIPES Pub. All rights reserved

1. Introduction

The Microprocessor without Interlocked Pipeline Stages (MIPS) is highly popular in field of a
embedded systems design. It is a Reduced Instruction Set Computer (RISC) processor that supports
fewer and simpler instructions than their counter parts (Complex Instruction Set Computer (CISC)
processors). The idea behind the reduction of instruction is to reduce hardware size and increase the
speed of operation as shown by research [1, 2]. The MIPS processor has a load-store architecture
and has a 5-Stage instruction execution stage [3]. This means that it requires two instructions to be
executed in order to access memory. Although it is pipelined, it solves the problem of hardware
interlocking by implementing solutions in software leaving a user with a fast system that has a
simple instruction set [4].

MIPS processors are designed to be deployed as VLSI softcore processors [5]. A primary target
hardware for deploying it is a Field Programmable Gate Array (FPGA) such as Altera DE-2. MIPS
being softcore, needs to be synthesized onto a chosen hardware. This is achieved by translating the
whole architecture using a hardware description language. The beauty of this is that both 32bit and
64bit MIPS can be synthesized on an FPGA. Although this has been attempted and done by some
researchers, there is a still a gap in the number of instructions that can be performed by the
synthesized processor [6]. A key thing to keep in mind is that when a processor is successfully
synthesized onto a hardware, the native programming language of the synthesized processor can be
on the hardware. For example, if an arduino is synthesized on an FPGA, one can use C++ programs

53

mailto:sumustapha.phy@buk.edu.ng

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology
3, 2021 pp. 53-60

written to be used by an arduino. The input and output pins mapping and architectural design will
be carried using the destination language (Verliog). The only difference is that the hardware will be
an FPGA. In a nutshell, it is just simply implementing a software based arduino on an FPGA.

In this work, a detailed implementation ANDI (AND Immediate), NOR (NOR), and LHW (Load
Half Word) will be presented and discussed. The new set of instructions were written in verilog
HDL and simulated using Signal-Tap analysis tool in Quartus-I1 software. The improved system
was tested by verifying both hardware and software functionality. The design details and results will
be discussed next sections.

2. Methodology

The MIPS design presented only implements a limited number of MIPS instructions. The
instructions NOR, LH and ANDI were added to the existing design file by making some
modifications in the supplied design file. The changes done for implementing each instruction will
be presented. The MIPS processors has three prominent instruction types [7], the R-type which
passes values within registers, the I-type which takes a register and an immediate value and a J-type
instruction which are used when a jump is to be performed.

2.1 ANDI (AND Immediate) Instruction

The instruction ANDI is an I-type instruction that uses a source register (Rs), target register (Rt)
and immediate value (Imm). It has the structure.

andi $Rt, $Rs, Imm #Rt:= Rs & Imm (1)

It performs a logical and with the contents of the source register and the immediate value and place
the result in the target register. The additions were made to implement the andi instruction are
shown in Figures 1 and 2.

108 reg [11:0] comtrols; // changed from [10:0] |[to support nor instruction
108
110 B assign {signext, shiftllé, regwrite, regdst,
111 E : Ealasrc, branch, memwrite,

112 : Ememtoreg, jump, aluop} = cont
113 =
114 always E(*®)
115 = case (op)
116 &'b0
117 &'

00: controls <=

: controls
118 : controls
118 6'b000100: controls <=
120 &6'b001000,
121
122 €'b001100: controls
123
124
125

1: controls
01: controls
12a 11: controls
127 0010: controls
128 defaultc: controls <= 12'bXxXXEXXXXXxxx; // 277
123 endcase

Figure 1: Decoding the opcode of the andi instruction

54

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology
3, 2021 pp. 53-60

Mracdule aludec (input [5:0] funct,

134 § § § input [2:0] aluop, // changed to support more instructions
135 E E E output reg [2:0] alucontrol):

136 =

137 always @(*)

138 = case (aluop)

138 3 : alucontrol /S add

140 01: alucontrol / sub

141 0: alucontrol f or

142 : alucontrol

Figure 2: Adding the andi instruction to the ALU decoder

For the andi instruction, the result should be 0 extended, written to a register and sent to the ALU
for computation. This is why the control signals are written as 12°b001010000011. The last three
LSB of the control signal denote the ALU operation to be performed.

2.2 NOR Instruction

The instruction nor is an R-type instruction that uses a source register (Rs), target register (Rt) and
a destination register (Rd), shift amount and function code (100111). All R-type instructions have
and opcode of 000000. The nor instruction has the structure

nor $Rd, $Rs, $Rt #Rd:= ~ (Rs | Rt) 2)

It performs a nor with the contents of the source register and the target register and place the result
in the destination register. The changes made to implement the nor instruction are shown in Figures
3and 4

137 always B(*®)
138 [H case (aluop)
139 0O: alucontrol <= 3'b0O10; add
140 alucontrol <= sub
141 alucontrol <= ar
142 3'b011:] alucontrol <= 3 O and ne
143 =] default: case(funct) // RIYPE
144 6'bl00000,
145 6"l 0001: alucontrol <= 3 on difference is exception
146 6’ : alucontrol <= 3 on difference i= exception
147 g’ : alucontrol <= 3
148 6’ : alucontrol <= 3
149 6" 10: alucontrol <= 3
150 6'bl100111: alggontrol <= 3
151 default: alucontrol <= 3
152 m endcase
153 - endcase
E—

Figure 3: Decoding the opcode of the andi instruction

The function code of the nor instruction was added to the given instructions function codes as
indicated in Figure 3. It utilizes the unused combination in the given ALU decoder (011).

34 always@ (%)

35 = | case(alucontc[1:01)

36 : result <= a & b

37 : result <= a | b;

38 : result <= =sum;

39 : result <= (alucont[2]) ? slt : (~(a | b)): // i = slt
40 T

41

45

Figure 4: Utilizing the decoder to create a nor instruction.

55

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology
3, 2021 pp. 53-60

For all R-type instructions, the result is 0 extended, written to the destination register and the
operation to be performed depends on the function code. Thus, all control signals will have the
12'6001100000100.

2.3 LH (Load Half word) Instruction

The LH is an I-type instruction that uses a source register (Rs), target register (Rt) and an immediate
offset. It loads half of word (16bits) from any memory address specified and sign extends it. It has
the opcode of 100001. The LH instruction has the structure.

Ih $Rt, Imm($Rs) # Rt:= [Mem$Rs + Imm] (3)

2.3.1 Adding the LH instruction

A new module was created to extract half word from a word and sign extend it based on the trigger
of a newly added control signal. It was also designed to support loading either the upper half or the
lower half word based on the instruction. The ASM chart of the module is shown in Figure 5.

Load_half

{mem = {16{fword[15])), fword[1 5.01D

Figure 5: ASM chart of the Load Half module

56

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology
3, 2021 pp. 53-60

2.3.2 Verilog code of the LH module and other changes

128 [module lhw (input [31:0] fword,

125 input 1h,

130 input lhcontrol,

131 output reg[3l:0] memhw) ;

132

133 alwaysE (#)

134 [begin

135 [H case ({1lh,lhcontrol})

136 2'b10: memhw «<={{lé{fword[13]}}, Eword[15:0]}; // lower half signed
137 2'bll: memhw <={{l6{fword[31]}}, fword[31:16]}; // upper half signed
138 default: memhw <=fword; // load full word
138 endcase

140 end

141 endmodule

Figure 6: Verilog code of the load half word module

The load half word module was then connected to the existing datapath and controller after it was
instantiated. The module instantiation is shown in Figure 7 while the RTL view is shown in Figure
8.

load half logic
= 1nw 1nw({ .fword {aluout), 1
.1h (1n_1d), nne
.lhcontrol (instr[0]), / ecides on
. memhw (hwmem)) ; f// output is a new wire that connects to result mux
= mux2 #(32) resmux (.40 (hwmemn) , S/ input is halfword output
.dl (readdata), data read from memory
.= (memtoreq) , [/ loads contents from memory to register
.Y (result)); fY result of ALU for calculating address
Figure 7: load half word module instantiation in mips.v file
L [FT] A f—
T I L2 resmux o
— W]
Ih_ld[5 I 5 | —
ieontrol mEmW[IA] [ER | L
word[31.8] d[H8]
i
MUKE WML T
regds! [P
L -
i shift_Jef_16:5l16
=
shift16 [15 shifte
— mips:mips_cpu|datapath:dp| L (318
aquut[Sl..U]:fan-out=?ﬂl)
——

Figure 8: Partial part RTL view of the load half module (Ihw)

3. Results and Discussion

3.1 Signal Tap Result for Testing the functionality of the synthesized MIPS Processor
Signal tap was used to verify the result for correctness. It was also used to view the signals from the
MIPS system. The signals that were used to analyse the written code are Program Counter (PC),
instruction register (Instr) and Hex0 — Hex7. In addition, a reset signal was used to trigger the data
acquisition. The setup is shown Figure 9 and the result is in Figure 8.

57

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology
3, 2021 pp. 53-60

e —

Node Data Enable|Trigger Enable|TriggerConditions Type | Alias Hame I2E. Value 29
Ains| llame o | o |[EscaD < eset |
| J S +-- mips:mips_cpulpc
- mips:mips_cpulpc X000 5—:_§~ - mips:mips_cpu ot
% mipg mips,_cpufinstr X000 c e~ BT

= . _ =% +-- GPID:uGPIOHEXT 40h
|| F ePouGRopex wih . : —
|| choucrope ¥ Z—?\ + - GPID-uGFIOJHEXS B —
| croucnonexs ih Z-‘?;“ H- GPIO:uGPIOHEXS ____10h |
¥ GPID:GRIDHEXE ¥ 3 +- GPIO:uGPIOHEX4 ____7%h
| crouspopec h 53 - GPID:uGPIOJHEXS ____78h

| | & eroucropec i §_§~ +- GPIO:uGPIOHEXZ 75h

| | & couceomext Yh b5 +- GPID:uGPIOHEX1 00h
|| & crnucrope X £ +- GPID:uGPIOHEXD _ 12h

Figure 9: Signal tap analyser setup for verifying Hex values displayed Figure 10: Signal tap analyser result for displaying 1D number

The result displayed in Figure 10 was taken after the MAL instruction was excuted. It shows the
Hex values that display the ID number 00917785 on 8 seven segment displays. The number
displayed is 00917785 and it corresponds to (40h, 40h, 10h, 79h, 78h, 78h, 00h, 12h). The
photograph of the board as shown in Figure 11 proves the functionality of the written program.

Md 4 1 +1 + # 15 1 +7
000 3C020000 3CO3FFFF ICOIFFFF 24832010 AC20004 24420010 ACG20014 24420002

003 ACG20000 24420028 ACG20013 ACG2001C 24420038 ACG20008 ACG2000C 24420001

010 ACE20010 08000110 00000000 00000000 0000000 000O0N0D (00000000 00000N0D

Figure 12: Memory Instantiation file setup for

Figure 11: Photograph of ID number displayed

The result obtained when the machine code was written into memory instantiation file and
programmed to the DE2 board meets the requirement as shown in Figure 11. The memory
instantiation file in Figure 12 consists of 18 machine codes that contain 18 instructions after decoded
by the processor. Each instruction is word aligned and the program counter is incremented by 4 after
each instruction is executed.

58

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology
3, 2021 pp. 53-60

3.2 Signal Tap Test Result for andi instruction

Type Alias| Name |I':' ! 2 3 4
in,_ KEY[0] |

£ +- ___cpuldatapath:dplinstr | 3CO2FFFFh W 24473C3Ch % 30435A5Ah

_-gj +| mips:mips_cpulpc : 00000000h)(000000040 }‘{ 000000080

£ - jdatapath:dpialu:aluja | 00000000h W FFFFOO00R % FFFF3C3Ch

i - |datapath:dpialu:alul | FFFFO000h W 000D3C3Ch % 00005AS5Ah

ts +__pujdatapath:dpjaluout | FFFFO000R W FreEacach ¢ 00001818h 4

Figure 13: Test result for andi instruction

The signals used for testing the andi instruction are Program Counter (PC), instruction register
(Instr), value a, value b, ALU output and reset. The values (a&b) used are OxFFFF_3C3C and
0x0000_5A5A. The manual computation of the andi result is 0x00001818 and it tallies with the
result obtained for the manual computation as in Figure 13.

3.3 Signal Tap Test Result for nor instruction

Type Alias| Name ||4 5 8 7 8 9 1|i
f,_ KEY]0]

&5 +-..cpudatapath:dpiinstr ¢ 3CO2FFFFh J 24423C3Ch 3CO4FFFFh . 24345A5AN 1 00822827h

&5 +- mips:mips_cpulpe {__000000OCh _ 00000010h . 00ODOD14h). 00000018h 4 00000OICH J 00000020h

f5 +- .. |datapath:dpialu:alufa { 00000000 FFFFO00Oh 00000000k) FFFFOD0Oh) FFFF5A5AR

& 4 |datapathdpialcalfb { FFFFO00OR J 00003C3Ch_ FFFF0000N 00005A5A FFFF3C3Ch

f5 +-..puidatapath:dplaluout {_ FFFFO000R) FFFF3C3Ch FFFF0000N J_ FFFF5A5AN 00008181h

Figure 14: Test result for nor instruction

The signals used for testing the or instruction are Program Counter (PC), instruction register (Instr),
value a, value b, ALU output and reset. The values (a&b) used are OxFFFF_3C3C and
0x0000_5A5A. The manual computation of the NOR is 0x00008181 and it tallies with the result
obtained for the manual computation as in Figure 14.

3.1.1 Signal Tap Logic Load Half Word Test Result

Signal tap logic analyser was used to test the load half word instruction. The design was tested to
verify loading of a sign extended upper half word or lower half. The signals used to test are shown
in Table 5. The functionality test results are shown in Figures 15-16.

Type | Alias Name I'J ? 2, % ? ? {f T

C> reset |

&5 +|- mips:mips_cpujpe i 00000000k ' 00000004h 1 00000008h % 0000000Ch) 00000010h , 00000014h } 00000018h
&5 +-__ cpuidatapath:dpfinstr | 3C0200AAh i 24420055h 1 3C03A5A5h _24632008h i AC620000h) 5C620000h } 84620000h
o +-_._pujdatapath:dpaluout | 00AA0000h 00AAD055h), ASAS0000h ¥ A5A52008h | |
t +-- . thdpfihw:hwimemhw | 00AA0000h DDAADOS5h J ASA50000h A5A52008h 00002008h
C> ... puldatapath:dpilhwe: hwilh i |

_C) _..path:dpdlhw:hw|lhcontrol l | | I

Figure 15: Loading the lower half word

The full word as shown in Figure 15 is A5SA52008h. The lower half word 2008 is loaded when the
load half signal is given. The result is then sign extended with the MSB of the half word loaded.

59

S.U. Mustapha, S.S. Ahmad/ Advances in Engineering Design Technology
3, 2021 pp. 53-60

Thus, the memhw indicates 00002008h. The lower half word was loaded because the Ihcontrol
signal is low.

==]

10 11

Type Alias| Name |1D Value 11| i)

S 3 reset 1

f=: +- mipz:mips_cpulpc { 000000240

+-_..cpuldatapath:dpjinstr { 8452000Bh

000000200 000000240
ACE2000Bh &452000Bh
ASASEN13h
ASASZ013h FFFFASASH

ey

[

"y

+- . pujdatapath:dpjaluout] ASAS2013h
- thodpilhwe Thwe memhw{ FFFFASASH

...puldatapath:dpjlhw:lhw IhI 1
... path:dpflhwe:Thw Ihu:untrull 1 Il

Figure 16: loading the upper half word

(e e e

ey

ey e
R o O

J

In figure 16, the full word is A5A52013h. The upper half word A5A5 gets loaded when the load
half signal is given. The result is then sign extended with the MSB of the half word loaded. Thus,
the memhw indicates FFFFA5A5h. The upper half word was loaded because the Ihcontrol signal
is high. It was noticed that the maximum attainable of operating frequency was 25MHz which is

greater than the default Xilinx pico-blaze softcore processor that has an operating frequency of
16MHz.

4. Conclusion

In this paper, algorithmic state machines were translated to Verilog HDL to develop new instructions
for a MIPS processor. ANDI, NOR and LHW instructions were added and tested using MIPS
Assembly language. Results show that the synthesized processor works within a single cycle is
capable of performing both R-type instructions where operation is done on two registers and I-type
instructions were a register and immediate value is used. The results obtained also opened doors for
developers and researchers interested in adding custom instructions that will suite their needs.

References

[1] E. d. Vries, "Introduction to the MIPS Processor," Electronic Design, Dublin, 2009.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, Cambridge: Morgan
Kaufmann, 2017.

[3] M. Mano and C. R. Kime, Logic and Computer Design Fundamentals, New Jersey: Prentice Hall, 2008.
[4] G. Kane and J. Heinrich, MIPS RISC Architecture, New York: Prentice Hall, 1992.
[5] J. Hennessy, "MIPS: A Microprosessor Architecture,” IEEE, Stanford, 1982.

[6] S.Sureshand R. Ganesh, "FPGA Implementation of MIPS RISC Processor," International Journal of Engineering
Research & Technology, vol. 3, no. 1, pp. 1710-1714, 2014.

[7]1 MIPS Architecture for Programmers, Vols. 1-A, Beijing: Imagination Technologies, 2016, pp. 1-10.

[8] P. Bhardwaj and S. Murugesan, "Design & Simulation Of A 32-Bit Risc Based Mips Processor Using Verilog,"
IJRET: International Journal of Research in Engineering and Technology, vol. 5, no. 11, pp. 166-172, 2017.
[9] Mohit N. Topiwala, N. Sarawathi, “Implementation of a 32-bit MIPS Based RISC Processor using ~ Cadence”,

International Conference on Advanced Communication Control and Computing Teclmologies (ICACCCT), 2014
IEEE.

60

