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 Compaction is a very important aspect of civil engineering practice 

but is a very laborious and time-consuming process that equally 

consumes enormous amounts of natural resources. The effort to 

reduce the time, labour, and resources wastage associated with 

traditional compaction processes led to the effort in the 

development of some models to predict compaction parameters: 

maximum dry unit weight (MDUW) and optimum moisture content 

(OMC), however, there has been no unified model developed for this 

purpose. Each developed model presents a lot of limitations largely 

bordering on data used for calibrating the models and region of 

sample collection. In this work, 18 soil models developed for fine-

grained and coarse-grained models were comparatively validated 

using neutral compaction soil data. The study showed the developed 

models and the most important soil index properties influencing 

each model for fine-grained and coarse-grained soils. It also 

showed the biases in each model and the comparative performance 

of the model against one another while adducing the possible 

reasons behind that. Recommendations were made on the most 

important considerations and decisions to be taken in subsequent 

efforts toward developing more unified models for the prediction of 

soil compaction parameters of soils. 
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1. Introduction 

Soil compaction is an essential aspect of geotechnical engineering practice that is employed in most 

civil engineering construction projects to improve important engineering properties of soils. Soil 

compaction has been used in construction works as far back as the ancient times of earth road and 

rammed earth construction works for buildings [1] and most recently in the construction of dams, 

buildings, bridges, roads, embankments, offshore platforms, modern rammed earth construction, etc 

[2]. Soil compaction aims to improve the shear strength and the bearing capacity of the foundation 

soil in the field as well as reduce soil compressibility through adequate control of compaction 

parameters:  maximum dry unit weight (MDUW) and optimum moisture content (OMC).  

While compaction is a beneficial process that helps to achieve more dense interlocking of soil 

particles in the field, it can also conduce to loss of particle size and strength due to breakages, hence 

it is expedient that the required degree of compaction is achieved and not beyond. This means that 

compaction control in the field is essential. Field compaction control in most cases depends on the 

outcome of laboratory compaction processes using one of the popular methods such as Proctor, 

British standard methods, etc. In some laboratory compaction operations, the determination of 

MDUW and OMC for field compaction control is the main aim, however, compaction operations 

are equally pre-requisite for the determination of California bearing ratio (CBR) of soils, soil 
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permeability tests and laboratory determination of soil shear strength parameters, hence compaction 

is a widespread and continuous operation in civil engineering practice.  

Laboratory compaction processes are laborious, time-rending, and resources-consuming 

indispensable geotechnical processes [3], [4], [5], [6], [7]. The time and cost implications of 

obtaining compaction parameters: MDUW and OMC especially at the early stages of a project such 

as testing the suitability of a borrow pit [8] led to ongoing efforts to develop model equations that 

can be used to obtain these parameters from the easily measured index or physical properties of the 

same soil. This is owing to the observed relationship between MDUW/OMC as functions of soil 

type, grain-size distribution, index properties, specific gravity, and mineralogical content of the soil 

[9], [10], [11], [12], [13], [14], [15]. 

The development of models for prediction of MDUW/OMC has been ongoing for over 4 decades. 

Pioneers in this field include [9], [10], [16], [17], [18], [19]. Although several models have been 

developed covering fine-grained soils and coarse-grained soils, there have been limitations in their 

applications largely bordering on calibration, the number of samples used in the model development, 

the variability of the samples used, etc.[3], [20]. Evidence from literature shows that there are more 

models for fine-grained soils when compared to coarse-grained soils. 

Further research has continued in this field with researchers employing more sophisticated 

techniques to effectively capture the theoretical relationship between MDUW/OMC and index 

properties, however, there is yet no agreement on a unified model or approach which is invariably 

the ultimate target of these model development efforts. Many techniques that are broadly classified 

into graphical methods, statistical methods, and soft computing techniques [21] has been applied in 

the prediction of compaction parameters. Many of these models are specific for either fine-grained 

or coarse-grained soils while some attempted to develop unified models for both soil groups. These 

techniques include but are not limited to Simple Linear Regression (SLR) [22]; Multi-linear 

Regression (MLR) [2], [4], [5], [6], [23], [24], [25], [26], [27]; numerical analysis [28], [29], 

Artificial Neural Network (ANN) [5], [6], [30], [31], [32], [33], [34], Least Squares – Support 

Vector Machine (LS-SVM) [30], [31], Multivariate Adaptive Regression Splines (MARS) [30], 

[31]; Support Vector Regression (SVR) [5], [35], [36], Multi-gene Expression Programming [3], 

[6], [37]; Gene Expression Programming (GEP) [37]; ANN and Grey Wolf Optimizer (GWO) [38]; 

Gaussian Process Regression (GPR)[20], [32]; Support Vector Machine (SVM) [32], [33] Least 

Squares Boost Randon Forest (LSBoostRF)[32] Long Short-term Memory (LSTM) [32]; non-linear 

regression [8]; Deep Neural Network (DNN) [27]; Group Method of Data Handling (GmDH) type 

Neural Network (NN) [39]; Genetic Algorithm (GA) and particle swarm optimization (PSO) 

relevance vector machine [40]; Random Forest (RF)[33], Extreme Gradient Boosting Tree 

(XGBoost) [33]; AdaBoost[34], and Tree[34]. The techniques outlined above have been applied 

singly, complementarily, simultaneously, or comparatively to develop prediction equations, 

however, there is no agreement on a unified prediction model with subsequent authors employing 

new models often citing limitations in previous models [7], [20]. 

This study is intended to assess how the different models perform against each other in prediction. 

The study tends to examine models where two or more dependent variables are used [15]. The plan 

of study is first, to outline the methods employed in the development of the models, together with 

the most significant index properties for the developed models based on the author’s views. Second, 

to collect soil experimental data comprising compaction parameters and soil index properties from 

literature to make comparative validation of prediction models developed for MDUW/OMC for 

both fine-grained and coarse-grained soils. The essence of using comparative validation is to mimic 

strategies used by authors to judge the performance of their models. Through the outcome of the 

comparative validation, comments would be made on strategies to develop more unified compaction 

prediction models. It is intended that the outcome of the study would provide good reference 

material for development of subsequent prediction models and practical applications.  
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1.1 Model Development Tools 

Statistical and soft computing techniques have been employed in model development for 

compaction parameters. Two statistical tools in the literature are simple linear regression (SLR) and 

multi-linear regression (MLR). The difference between the two lies in the number of independent 

variables. While SLR takes only one independent variable, MLR takes 2 or more dependent 

variables. Various authors have shown that using more than one independent variable is more 

beneficial in developing compaction prediction models [21], [29], [37], [41]. 

Soft computing techniques are generally built on artificial intelligence or machine learning. Many 

authors have made an effort to classify soft computing techniques, however, in each of the 

classifications, variants of fuzzy logic, evolutionary intelligence, swarm intelligence, artificial 

neural network, chaos theory, and non-linear process [42], [43] are found. Soft computing 

techniques are employed to seek solutions to complex problems through approximation of functions, 

partial truth, and uncertainty as well as learning and adaptation to new data [44], [45]. In many 

compaction prediction model developments, many soft computing techniques have been employed, 

however, the commonest among them are the ANN, SVR, MARS, SVM, LS-SVM, MEP, and GPR. 

 

1.2 Robustness and Statistical Significance Evaluation Tools 

Several statistical tools are used to evaluate the accuracy or significance of model equations 

developed with statistical or soft computing tools. The commonest among these tools is the 

coefficient of determination, otherwise known as (R2). Other statistical accuracy tools employed are 

the coefficient of correlation (R), the root mean square error (RMSE), the mean absolute error 

(MAE), the mean squared error (MSE), and the standard error of estimate (SEE). 

According to [20], R2 measures the goodness of fit of a regression model with values between 0 and 

1; 1 represents perfect fit while 0 represents no fit. The value of R ranges between 1 and -1 with 1 

indicating strong positive correction and -1 indicating strong negative correlation. An R-value of 0 

indicates no correlation. RMSE gives the average distance between actual and predicted values 

while MAE measures the average magnitude of errors with no significant input of directions. The 

values of RMSE and MAE range from 0 to ∞ with values closer to 0 indicating high accuracy [20]. 

The SEE performs a similar function by giving an idea of the variance between the output 

experimental and predicted data [23]. Although many of these techniques have some input on 

informing the viability of a regression model, [46] highlighted that R2 is more informative than all 

because it generates a high positive score only if the model performs excellently in predicting the 

ground truth elements or positive low score or negative score if the model performs poorly. In lieu 

of this, the R2 was used to explain the results obtained from the comparative validation. 

 

 

2. Prediction Model Equations 

This section presents a summary of some model equations found in the literature which can aid 

reference purposes. In the development of model equations, different researchers use different 

notations for index properties of soils (independent parameters), however, for the sake of uniformity, 

Table 1 outlines the dependent and independent parameters used in this study, and their notations. 

These notations may differ from the original works; however, they have the same meaning and 

application.  
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Table 1: Notations for dependent and independent parameters 

Properties Notations 

Maximum dry unit weight MDUW 

Optimum moisture content OMC 

Gravel content CG 

Sand content CS 

Fines content CF 

Clay content C 

Silt content S 

Liquid limit LL 

Plastic limit PL 

Shrinkage limit SL 

Plasticity index PI 

Compaction energy E 

Specific gravity Gs 

Soil type index STI 

Coefficient of uniformity Cu 

Coefficient of curvature Cc 

Percentage finer than 50% D50 

Percentage finer than 10% D10 

Final sediment volume FSV 

Swell percent Sp 

Unified Soil Classification System USCS 

 

Although efforts towards the development of models for the prediction of compaction parameters 

of soils have been on as early as 1962, the author would limit the models presented here to 2014 

which would in effect capture the efforts towards model development in the last decade and to show 

the recent progress in that regard. In the reviewed literature the method used in the studies, the 

number of samples used, and the models that were developed if any were highlighted. Letters A – 

S were used to identify the different authors (18) whose works were reviewed: 2013 (2), 2014 (2), 

2015 (2), 2017 (1), 2018 (1), 2019 (2), 2020 (2), 2021 (3), 2023 (3), 2024 (1). The purpose of 

introducing the letters (A-S) is for reference purposes. The reviews are outlined alphabetically 

below. 

 

[A.] Dokovic et al. [41] developed models to estimate soil compaction parameters based on 

Atterberg limits using the MLR method. Seventy-two (72) samples of fine-grained soils that were 

obtained from the core of earth dams: Rovni (CH – inorganic clays of high plasticity), Selova (CI-

CL – inorganic clays of intermediate-low plasticity), Prvonek (CI-CH), and Barje (CL) in Serbia 

were used in the study. The regression models were developed using the liquid limit (LL), plastic 

limit (PL), plasticity index (PI), and LL-PL combination and it was shown the LL-PL models were 

more viable. The model equations obtained are outlined below: 

 

MDUW = 2.14 – 0.007LL – 0.005PL   [R2 = 0.73]    (1) 

OMC = 4.18 + 0.16LL + 0.323PL    [R2 = 0.73]    (2) 

The models are basically for fine-grained soils. 

 

[B.] Mujtaba et al. [23] employed MLR to model the relationship between MDUW/OMC and 

index parameters for 110 samples of sandy soils that belong to groups: SM (silty sands), SP-SM 

(poorly graded – silty sands interface), SP (poorly graded sands), SW-SM (well-graded – silty sands 
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interface), and SW (well-graded sands). The initial independent parameters used were compaction 

energy (E), coefficient of uniformity (Cu), coefficient of curvature (Cc), percent finer than 50% 

(D50), percent finer than 10% (D10), gravel content (CG), and fines content (CF). Initial stepwise 

regression analysis showed that the parameters Cu and E have a more significant effect on 

MDUW/OMC and hence were used to develop the models outlined below: 

 

MDUW = 4.49 LogCu + 1.51 LogE + 10.2   [R = 0.9; SEE = 0.51]   (3) 

OMC = 10(1.67 – 0.193 LogCu – 0.153 LogE)    [R = 0.84; SEE = 0.042]  (4) 

The authors recommended the limitation of the models to medium-fine sands with gravel content 

not exceeding 5% and a maximum of 45% of non-plastic to low fines. 

 

[C.] Oren [47] developed models to predict compaction parameters from sediment volume tests 

using the SLR technique. The study was conducted using sediment volumes of 9 soil samples. The 

developed models are: 

 

MDUW = 19.7 – 2.52FSV     [R2 = 0.88]    (5) 

OMC = 5.42 + 9.63FSV     [R2 = 0.87]    (6) 

Where: 

FSV = final sediment volume 

 

[D.] Xia [48] applied numerical analysis to simulate soil compaction to predict soil compaction 

parameters using the Cap model. Though no models were created, he argued that finite element 

numerical analysis is more suited to capture the dynamic nature of the compaction process which 

analytical models do not capture properly. 

 

[E.] Farooq et al. [49] developed empirical relationships for estimating MDUW/OMC with fine-

grained soils collected from the Punjab province of Pakistan. Sixty-eight (68) soil samples were 

collected, tested and used in developing the models. The USCS classes of the samples are ML (17), 

CL-ML (10), CL (36), and CH (5). Stepwise regression analyses were used in developing the models 

outlined below: 

 

MDUW = -0.055LL + 0.014PI + 2.21 logE + 12.84   [R = 0.89, SEE = 0.29] (7) 

OMC = 0.133LL + 0.02PI – 5.99 logE + 28.60   [R = 0.88, SEE = 0.86] (8) 

 

[F.] Khuntia et al. [30] consolidated the work of [23] through a comparative analysis using ANN, 

LS-SVM, and MARS. One hundred and ten (110) soil samples comprising largely of sands (fines 

content < 50%) were used in the study. Model empirical equations were developed based on the 

MARS system using CS, CF, Cu, and E as input or independent parameters. Optimization in MARS 

follows two unique processes: the forward selection procedure and the backward pruning procedure. 

The first procedure iterates with a constant term in the model to determine the best pairs of truncated 

spline functions (BFs) to improve the global model. BFs are usually complex and overfitted models 

with poor prediction capabilities. In the second procedure, the lack of fit criterion, such as the 

generalized cross-validation (GCV) criterion, was used to sort and delete BFs with the lowest 

contribution to generate the best model. BF values are defined in Table 2. 
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Table 2: Basis function of BFs for MARS model [24] 

Basis functions MDUW OMC 

BF1 Max (0, Cu – 5.33) Max (0, E - 592) 

BF2 Max (0, 5.33 - Cu) Max (0, Cu – 3.29) x max (0, CF – 2) 

BF3 Max (0, 2700 - E) Max (0, Cu – 3.29) x max (0, 2 – CF) 

BF4 Max (0, CF - 5) BF2 x max (0, Cu – 3.53)  

BF5 Max (0, 5 - CF) BF2 x max (0, 3.53 - Cu) 

BF6 BF5 x max (0, Cu – 2.93) Max (0, Cu – 3.29) x max (0, Cu – 3.64) 

BF7 BF5 x max (0, 2.93 - Cu) Max (0, Cu – 3.29) x max (0, 3.64 – Cu) 

BF8 BF1 x max (0, CF - 38) Max (0, 3.29 - Cu) x max (0, CF – 2) 

BF9 BF5 x max (0, CS – 94) Max (0, 3.29 - Cu) x max (0, 2 - CF) 

BF10 BF5 x max (0, 94 – CS) Max (0, 3.29 - Cu) x max (0, CS – 95) 

BF11 BF9 x max (0, 2.23 - Cu) Max (0, 3.29 - Cu) x max (0, 95 – CS) 

BF12 BF4 x max (0, Cu – 4.17)  

BF13 BF4 x max (0, 4.17 - Cu)  

 

The following models were developed by employing the BF values: 

 

MDUW = 18.2 + 0.438BF1 – 0.377BF2 – 0.000473BF3 + 0.0327BF4 + 0.19BF5 – 0.0857BF6 – 

0.766BF7 + 0.0411BF8 + 0.0461BF9 + 0.603BF10 + 0.173BF11 – 0.00906BF12 – 0.0478BF13  

 [R = 0.94]          (9) 

OMC = 13.6 – 0.00131BF1 – 0.0203BF2 – 0.516BF3 + 0.00271BF4 + 21.7BF5 – 0.0304BF6 – 41.2 

BF7 + 0.743BF8 – 1.37BF9 + 0.592BF10 – 0.858BF11    [R = 0.9] 10) 

Higher R2 and R values were reported for this model when compared to the MLR, ANN, and LS-

SVM models. Good prediction ranges of ±4 for MDUW and ±13% for OMC were also observed. 

 

[G.] Saikia et al. [2] developed empirical models for predicting MDUW/OMC using MLR. The 

tests were conducted specifically for fine-grained soils using 40 samples collected from different 

parts of Assam (India). The developed models are shown below: 

MDUW = 21.07 – 0.119LL – 0.02PL   [R2 = 0.90]    (11) 

OMC = 0.35LL + 0.163PL + 6.26    [R2 = 0.86]    (12) 

They reported limitations in the use of the models only for clayey soils of Assam (India). 

 

[H.] Omar et al. [5] made a comparative investigation of the three most common methods recently 

employed in the process of model development: MLR, ANN, and SVR owing to the conflict on the 

different methods of developing prediction models bordering on their reliability. The study showed 

that the same strategy is not suitable for both MDUW and OMC. While SVR was adjudged the best 

for predicting MDUW with R2 of 0.84, MSE of 0.36, and accuracy of 73%, ANN of one-hidden 

layer appeared to be more suitable for predicting OMC with R2 of 0.85, MSE of 0.45, and accuracy 

of 74.2%. MLR yielded the least significant results for R2, and MSE, as well as percentage accuracy 

for both MDUW/OMC.  

 

[I.] Hasnat et al. [35] developed models for the prediction of MDUW/OMC for some 40 soil 

samples using SVR and was able to show that correlation using both LL and PL in the equation was 

more significant. It was also shown that LL correlated more strongly with MDUW than OMC which 

agrees with the work of [2]. The developed models are outlined below: 

 

MDUW = 21.07 – 0.119LL – 0.02PL    [R2 = 0.90]   (13) 

OMC = 0.34LL + 0.17PL + 6.3     [R2 = 0.86]   (14) 
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[J.] Karimpour-Fard et al. [6] employed 728 soil samples from compaction tests coming from 

both fine-grained and coarse-grained soils to predict the MDUW/OMC of soils using ANN and 

MLR methods. The ANN is known to powerfully correlate independent variables with dependent 

variables but does not produce any equation for rule-of-thumb applications, hence, MLR was also 

employed to develop empirical relationships. The ratio of fine-grained soils to coarse-grained soils 

was 3:2. The independent variables used in the study were CG, CS, CF, LL, PL, PI, Gs, E, and STI. 

STI (soil type index) was a designation of different soil classes by a numeral scale based on the 

Unified Soil Classification System (USCS); for instance, well-graded gravel or GW as 1 (see Table 

3). 

 

Table 3: Soil type index based on USCS 

USCS class STI 

Well-graded gravel (GW) 1 

Poorly-graded gravel (GP) 2 

Well-graded sand (SW) 3 

Poorly-graded sand (SP) 4 

Silty gravel (GM) 5 

Silty sand (SM) 6 

Clayey gravel (GC) 7 

Clayey sand (SC) 8 

Silt (ML) 9 

Lean clay (CL) 10 

Silt of high plasticity (MH) 11 

Fat clay (CH) 12 

For boundary conditions, average values of STI 

is used e.g. CL-ML 

9+10

2
 = 9.5 

 

The essence of the STI was to take into account the variability of the soil type used in the study in 

the model. This development appears to address the concern of [21] on the effect of soil type on the 

accuracy and efficiency of developed models, however, using simple numeral values for the scales 

may not represent the most efficient method to do this. From the model development, they observed 

that CF and Gs have the most significant effect on MDUW/OMC while CG has the least effect. They 

also observed that using a product of two or more individual parameters instead of single parameters 

in modelling could generate more efficient models. Though the efficiency of the ANN models was 

slightly higher than that of MLR at 92% against 89% for MDUW, both compared favourably and 

the developed models below were recommended by the authors to be used for preliminary 

investigation. 

 

MDUW = 18.2 – 0.3STI – 0.1PL + 1.1lnE + 0.4LnPI + 3.3 [STI × 
𝐺𝑠

𝐿𝐿
 ] – 0.2 (

𝐶𝐹

𝐺𝑠
2) [RMSE = 3.86]

            (15) 

OMC = 797.9 – 829.1 (1 - 
1

𝑀𝐷𝑈𝑊
 ) + (5 x 10-5 (CF. PL))   [RMSE = 11.24] (16) 

 

[K.] Chindaprasirt et al. [26] developed empirical relationships for predicting MDUW/OMC of 

fine-grained soils using the plastic limit water content (wPL) due to the linear correlation between 

OMC and PL that passed through the origin for all the 7 tested samples collected from the Khon 

Kaen province, located in Northeast of Thailand. Additional 49 fine-grained soil samples collected 

from different literature were used in developing the models outlined below: 
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MDUW = (1.88 – 0.15 lnE) MDUWPL  [R2 = 0.795]    (17) 

OMC = (0.63 + 0.06 lnE) wPL    [R2 = 0.934]    (18) 

Where: 

MDUWPL = 
𝐺𝑠 .𝛾𝑤

1+ 𝐺𝑠 .𝑤𝑃𝐿
 

wPL = plastic limit water content 

 

[L.] Wang and Yin [3] employed MEP to develop models for estimating compaction parameters. 

In the study, they used 226 soil test results obtained from varying literature covering a wide range 

of soils [lean clay (CL), silty clay (CL-ML), fat clay (CH), elastic silt (MH), silt (ML), clayey sand 

(SC), poorly graded sand with clay (SP-SC), well-graded sand with clay (SW-SC), silty sand (SM), 

clayey gravel (GC), poorly graded gravel with clay (GP-GC), well-graded gravel with clay (GW-

GC) and silty gravel (GM)]. This data was integrated into a form of genetic algorithm based on the 

principles of genetic and natural selection to develop models. The independent soil parameters used 

to build the models were CG, CS, CF, LL, PL, E, OMC, and MDUW. Through the study, they were 

able to develop the following models:  

 

MDUW = (
2

𝐵3
)

𝐵3

 + 
2𝐵3

2𝐵4

𝐶𝐹
 - 

𝐶𝐹

𝐵6
 + 

4𝐶𝑆𝐵3

𝐶𝐹 (𝐶𝐹+2𝐿𝐿−2𝐸)
 [MAE = 0.05; RMSE = 0.069; R2 = 0.872]    (19) 

Where: 

B1 = B4 + E + 
𝐶𝑆𝐵3

𝐶𝐹
 

B2 = 
𝐵4+𝐸

𝐵3
 + LL – E 

B3 = Log (PL) 

B4 = Log (CF) 

B5 = 
𝐶𝐹

𝐵3
 -  

2𝐶𝑆𝐵3
2𝐵4

𝐶𝐹
 - 

𝐵1

𝐵2
 - PL – E – B4 

B6 = B3 (
𝐵1

𝐵2
−  𝐵2 −  𝐵5) 

 

OMC = 
32

𝑃𝐿
 + 

𝐴1+ 𝐴2

𝐴3
 + 

2𝐴1

𝑃𝐿+𝐸
   [MAE = 1.206; RMSE = 1.574; R2 = 0.916]  (20) 

Where: 

A1 = 
𝑃𝐿2

1+ 𝐶𝑆
 - 

2𝐴3

𝐿𝐿
 + CS – CF + 6 

A2 = 
𝑃𝐿+𝐸

64
 + CF + PL + 9 

A3 = (5 + CF) (5 + PL) 

Through the monotonicity analysis, the authors showed that the trend corresponds with the 

monotonicity of the actual database in laboratory measurements. The authors argued that the models 

have wide application over a range of soils covering both fine-grained and coarse-grained soils that 

were used in the development of the models. Although the authors did not report limitations with 

the application of the models, it is unclear the effect having more fine-grained soils in the database 

would have on the applicability of the models to coarse-grained soils. 

 

[M.] Fondjo et al. [29] employed MLR to develop models for MDUW/OMC from some 15 fine-

grained soil samples belonging to classes, CL and CH. Different correlations were done for 

MDUW/OMC and index properties: Cu, Cc, CG, Gs, CS, CF, LL, PI. It was shown that LL, PI, CF, Gs 

are strong predictors of MDUW/OMC achieving R2 > 0.9, with LL, CF, and Gs being the most 

significant input parameters based on a P-value of 0.00 to 0.001. It was unclear the basis for using 

CS and CG further in the models instead of PI which was shown to be a strong predictor of 

MDUW/OMC. The developed models are shown below: 
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MDUW = 12.246 - 0.101 LL + 0.137 CF + 0.136 CS + 0.131 CG – 0.874 Gs [R
2 = 0.9714] (21) 

OMC = 14.6 – 0.052 LL + 0.622 CF + 0.274 CS + 0.056 CG – 13.675 Gs  [R2 = 0.9919] (22) 

 

[N.] Jalal et al. [37] applied two genetic programming-based algorithms: GEP and MEP to predict 

the compaction parameters of expansive soils. A total of 195 soil samples were employed in building 

the model and the input parameters were CF, PL, PI, and Gs for MDUW and the addition of MDUW 

and swell percent (Sp) to the other parameters for OMC. More than 84% of the datasets have PI > 

20% showing the presence of low to very high expansive soils in the existing database. Though the 

models developed were quite complex, they generally showed better accuracy and performance than 

models developed with MLR tools with GEP slightly performing better than MEP, however, the 

authors still reported calibration limitations on the use of the models.  

 

[O.] Nwaiwu and Mezie [4] developed empirical models for the prediction of MDUW/OMC of 

coarse-grained lateritic soils using MLR. The soils were largely lateritic soils drawn from different 

parts of Anambra state, Nigeria. All the soils contain significant fines content (19.79 – 42.43%), 

sand content (57.57 – 80.21%), and insignificant gravel content of less than 1%. The models 

developed as outlined below were adjudged to be robust but were limited to soils having fines 

content – sand content ratio of 0.246 – 0.737 and fines content less than 50%. The first model applies 

to any compactive energy once the fines content – sand content ratio is known while the second 

model is more transferable from a known compactive energy to an unknown one: 

 

Models 1: 

MDUW = [1.73 (
𝐶𝐹

𝐶𝑆
) + 1.6] log E + 15.83 – 8.58 (

𝐶𝐹

𝐶𝑆
)  [RMSE ≤ 0.213 kN/m3] (23) 

OMC = [3.07 (
𝐶𝐹

𝐶𝑆
) − 5.26] log E + 23.59 – 0.39 (

𝐶𝐹

𝐶𝑆
)  [RMSE ≤ 0.424%]  (24) 

Models 2: 

MDUWunknown = MDUWknown+ [1.73 (
𝐶𝐹

𝐶𝑆
) + 1.6] log (

𝐸𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝐸𝑘𝑛𝑜𝑤𝑛
)[RMSE ≤ 0.371 kN/m3] (25) 

OMCunknown = OMCknown + [3.07 (
𝐶𝐹

𝐶𝑆
) − 5.26] log (

𝐸𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝐸𝑘𝑛𝑜𝑤𝑛
) [RMSE ≤ 0.206%]  (26) 

 

[P.] Bardhan and Asteris [38] employed hybrid ANN paradigms built with nature-inspired meta-

heuristics to model soil compaction parameters. The hybrid model comprises ANN and grey wolf 

optimizer (GWO). They employed 126 soil samples belonging to both fine-grained (CL, CH, MH, 

MI, ML) and coarse-grained (GM, GC, SC) soils collected from different parts of India. The ANN-

GWO was found to produce the highest level of accuracy with [R2 = 0.8103; RMSE = 0.0800]; [R2 

= 0.7273; RMSE = 0.0986]; and [R2 = 0.9491; RMSE = 0.8415], in the training, testing, and 

experimental validation phase of OMC prediction. In addition, they produced accuracy with [R2 = 

0.8161; RMSE = 0.0805]; [R2 = 0.7147; RMSE = 0.1017] and [R2 = 0.9751; RMSE = 0.1977], in 

the training, testing, and experimental validation phase for MDUW prediction. The primary 

limitation of the suggested ANN-GWO is the particle position restriction brought about by the 

predefined search space of the GWO parameters. As there are no thumb rules, it took several runs—

another time-consuming task—to find the optimal suitable searching space for the estimation of 

final outputs. Moreover, only four soil types from a total of 20 datasets were taken into account for 

experimental validation, and modeling did not take into account the impact of compaction energy 

or the parental significance of soils. No particular models were developed in the process. 

 

[Q.] Khatti and Grover [32] performed a comparative study of deep learning and standalone 

models for the prediction of compaction parameters of fine-grained soils. The methods employed 
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include SVM, GPR, LSBoostRF, ANN, and LSTM. The standalone models are the SVM, GPR, and 

LSBoostRF while the deep learning models are the LSTM and ANN. A total of 243 soil samples 

were used for the analysis while CF, CS, Gs, LL, and PI were used as input parameters. The soils 

belong to USCS classes: CH, CL, CI, MH, ML, MI, OL, OI, and OH soils. The sensitivity analysis 

illustrates that fine content (CF), specific gravity (Gs), and liquid limit (LL) highly influence the 

prediction of compaction parameters. Among all the employed methods, the LSTM model stands 

out for achieving the best performance when compared to other models, being potent for computing 

the desired compaction parameters of the soil, being easy to implement, achieving better accuracy, 

performance, and less over-fitting ratio, with the small dataset having moderate multi-collinearity. 

The research was adjudged the first to study the impact of multi-collinearity on predicting 

compaction parameters of fine-grained soil. Hence, it recommends that LSTM deep learning tools 

should be employed in subsequent studies to develop compaction prediction models. 

 

[R.] Soltani et al. [50] promulgated reservations over all the developed models irrespective of the 

tool or technique used in the development of the model because of their limitations to calibration 

information. They studied how to convert optimum compaction properties of fine-grained soils 

between rational energy levels (energy conversion (EC) type models) which they presented as a 

method that would not be influenced by calibration limitations. However, they reported the 

possibility of overestimation of MDUW/OMC above the zero-air-voids (ZAV) line, especially 

outside the calibration zone which is impossible in a normal compaction process. Very large soil 

databases of 242 samples were used for the study. The developed models are as follows: 

 

MDUWR = MDUWSP (
𝐸𝑅

𝐸𝑆𝑃
)

0.068

   [R2 = 0.970]    (27) 

OMCR = OMCSP (
𝐸𝑅

𝐸𝑆𝑃
)

−0.178

    [R2 = 0.975]    (28) 

ER = arbitrary compaction energy 

ESP = compaction energy at standard Proctor 

To overcome the possibility of obtaining the degree of saturation at optimum compaction exceeding 

100%, the authors proposed a new model for the estimation of MDUW which incorporated the 

specific gravity of the soils, thus: 

 

MDUWR = 
𝐺𝑠𝛾𝑤

1+ [𝐺𝑠(
𝛾𝑤

𝑀𝐷𝐷𝑆𝑃
)] (

𝐸𝑅
𝐸𝑆𝑃

)
−0.178    [R2 = 0.976]    (29) 

This method appears great but may be more suitable when working between different compaction 

energies and using the same class of soil. 

 

[S.] Polo-Mendoza et al. [27] employed both mathematical models, MLR and computational 

model, DNN to predict the MDUW/OMC of 90 coarse-grained soil samples. The MLR model 

achieved R2 of 0.735 and 0.726 for MDUW and OMC respectively while the DNN achieved R2 of 

0.9804 and 0.9999 for MDUW and OMC showing that computational models are more precise than 

mathematical models in making predictions. The developed models are as follows: 

 

MDUW = 24.1 − 0.7D60 − 6.1A + 0.2B + 2.2C + 1.2D     (30) 

[
𝑀𝐿𝑅: 𝑅2 = 0.7354; 𝑀𝑆𝐸 = 0.41619; 𝑀𝑆𝐿𝐸 = 0.00100 

𝐷𝑁𝑁: 𝑅2 = 0.9804; 𝑀𝑆𝐸 = 0.03326; 𝑀𝑆𝐿𝐸 =  0.00008
] 

 

OMC = 34.3 − 58.2D10 + 38.9A − 3.9C + 3.8D      (31) 

[
𝑀𝐿𝑅: 𝑅2 = 0.7258; 𝑀𝑆𝐸 = 1.29188; 𝑀𝑆𝐿𝐸 = 0.00915 

𝐷𝑁𝑁: 𝑅2 = 0.9992; 𝑀𝑆𝐸 = 0.00381; 𝑀𝑆𝐿𝐸 =  0.00003
] 
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Where:  

A = 𝐷10
2  

B = D50*ln (D30 + Cu + Cc + A)  

C = log10(D50 + D60)  

D = ln(A) 

 

It has been shown in this section that soft computing techniques are more viable based on values of 

coefficient of determination (R2) to develop models for the prediction of compaction parameters of 

soils. It was also shown that Atterberg limits have a stronger correlation with MDUW/OMC for 

fine-grained soils while gradational parameters have a stronger correlation with MDUW/OMC of 

coarse-grained soils which agrees with [21]. In most of the developed models, there were still 

records of calibration limitations bordering on soil classes, location, model development tools, range 

of particle sizes, etc. Although some authors tried to evade these limitations by combining coarse-

grained and fine-grained soils (eg. [3], [38]) or using soil type index (e.g. [6]), there was no scientific 

basis for their decisions. For reference purposes, it is necessary to outline the most significant 

parameters influencing model development for each class of soils (section 3.0). To advise on 

strategies for subsequent model development efforts, it is necessary to carry out a comparative 

model validation for the developed models (section 4). 

 

3. Most Important Index Parameters for Model Development 

Table 4 presents an attempt to distinguish the index properties of the soils used in the developed 

models based on the most significant and the least significant ones. The classification was based on 

the report by the authors of the works that were reviewed. Recall that before developing prediction 

models, it is usually an important step to investigate the soil index properties that correlated most 

strongly with MDUW/OMC, hence, the data presented in Table 4 can serve for reference purposes 

and can be investigated further. 

 

Table 4: Classification of important index properties in developed models 

Authors Classification Model 

development 

tool 

Dependent 

variables tested 

Most 

important 

Least 

important 

A Fine-grained MLR LL, PL, PI LL-PL 

(OMC), LL-PI 

(MDUW) 

PL 

(MDUW) 

PI (OMC) 

B Coarse-

grained 

MLR E, Cu, Cc, D50, D10, 

CG and CF 

Cu, E No comment 

E Fine-grained MLR LL, PI, CF, Gs, E LL, PI, E Gs, CF 

F Coarse-

grained 

ANN, LS-SVM, 

MARS 

CS, CF, Cu, E CS and Cu E and CF 

G Fine-grained MLR LL, PL LL PL 

H Fine-grained MLR, ANN, 

SVR 

CS, CF, C, S, LL, 

PL, PI, SL, Gs 

LL and PL (for 

MDUW) and 

LL, PL and CF 

(for OMC) 

C 

I Fine-grained SVR LL, PL, PI LL, PL PI 

J Fine-grained ANN, MLR CG, CS, CF, LL, 

PL, PI, Gs, E, STI 

CF, Gs CG 
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L Fine-grained 

and coarse-

grained 

MEP CG, CS, CF, LL, 

PL, E, 

PL and CF LL 

M Fine-grained Numerical 

analysis 

Cu, Cc, CG, Gs, CS, 

CF, LL, PI 

LL, PI, CF, Gs Cu, Cc, CG, 

CS 

 

 

 

N 

Fine-grained  GEP, MEP CF, PL, PI and Gs 

for MDUW 

CF, PL, PI 

(GEP) 

Gs (MEP) 

Gs (GEP) 

CF, PL, PI 

(MEP) 

 

Fine-grained GEP, MEP CF, PL, PI, Sp, 

MDUW and Gs for 

OMC 

PL, PI, 

MDUW 

(GEP) 

PI, MDD and 

Gs (MEP) 

Sp and 

Gs(GEP) 

PL and CF 

(MEP) 

O Coarse-

grained 

MLR 𝐶𝐹

𝐶𝑆
, log E No comment No comment 

P Fine-grained ANN-GWO CF, CS, CG, LL, 

PL, Gs 

No comment No comment 

Q Fine-grained SVM, GPR, 

LSBoostRF, 

ANN, LSTM 

CF, CS, Gs, LL, PI CF, Gs, LL CS, PI 

S Coarse-

grained 

MLR, DNN D10, D30, D50, D60, 

Cu, Cc 

D10, D30, Cu, 

Cc 

D50, D60 

 

The data shown in Table 4 equally shows that the method of developing prediction models, the 

amount of input data, the input index properties, and the percentage of fines and sands in soils 

generally have some level of interaction and influence on the outcome of the model development. 

 

4. Comparative Validation of Developed Models 

Wang and Yin [3] and [6] opined that using a larger number of databases and employing more 

sophisticated soft computing techniques tends to improve the accuracy and efficiency of the 

prediction models. Although this principle aligns with machine learning techniques, there is yet no 

comparative validation of such for the physical properties of soils. Even though their developed 

models showed good prospects in prediction, there is no comparative evidence to show that using a 

smaller number of databases produces less efficient models. For the study by [6], the usual claim 

that MLR is not efficient enough was partly invalidated by the fact that the difference in accuracy 

between prediction by ANN and MLR is quite small (≈ 3%).  

It appears that incorporating more independent variables improves the validity of developed models, 

however, it is expedient that the dependent variables (MDUW and OMC) should have a strong 

correlation with the independent variables This was evident in the model developed by [2] where 

the use of two dependent variables of LL and PL yielded RMSE of 2.1% and 7% for MDUW and 

OMC against 7.4 – 7.5% and 17.5 – 28.2% in the predicted versus measured results, respectively, 

of authors that used only one independent variable in their models. To critically investigate these 

scientific opinions, it is necessary to conduct comparative validation for fine-grained and coarse-

grained soils using the different models available in the literature. 
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4.1 Fine-grained Soils 

Table 5 shows the validation of the various prediction models of fine-grained soils with neutral soil 

data obtained from M. The data in M was chosen because it contains all the essential soil properties 

applicable to the different models used in the validation. The first two columns show the measured 

values for MDUW and OMC, respectively, while the other columns show the predicted values for 

the different model equations. Figures 1 and 2 show the predicted versus measured values for 

MDUW and OMC for each of the models. Figures 3 and 4 show the degree of the departure of 

prediction outcomes of the models from the measured values. From Figures 1 and 2, high correlation 

values were obtained for A, E, G, J, M, and R, showing the importance of using only index properties 

that correlate with the compaction parameters in the development of the models. In the validation 

of developed models, it is expected that the predicted values should not only have high correlation 

coefficients but should be as close as possible to the measured values. These were investigated 

further in Figures 3 and 4 and it was shown that only A, E, K, M, and R come closest to the measured 

values. Checking what may have affected these trends; there was no evidence of the effect of the 

methods used in developing the models such as MLR, ANN, etc. Models A and E were developed 

with MLR but showed good prediction outcomes. Interpretation of the comparative validation 

outcome has shown that while the use of sophisticated tools may be recommended, subsequent 

models must consider the most important parameters affecting the soil properties as outlined in 

Table 4. The compaction energy should be employed in the models and the models should be 

developed from a similar class of soils or boundary class based on the USCS chart irrespective of 

where the soils exist. It is not necessary to combine both fine-grained and coarse-grained soils unless 

there is a more effective way to capture the soil type index in the model, probably by involving the 

soil sensitivity factor. 

 

Table 5: Validation of models of fine-grained soils 

Measured 
MDUW 

Measured 
OMC 

A E G J K L M R 

MDUW OMC MDUW OMC MDUW OMC MDUW OMC MDUW OMC MDUW OMC MDUW OMC MDUW OMC 

18.5 18.2 16.76 17.76 16.71 19.11 14.89 26.28 22.03 6.49 16.07 18.07 17.97 17.17 18.47 18.29 18.52 18.14 

18.21 19.01 16.57 18.37 16.61 19.43 14.62 27.17 21.62 7.20 15.97 18.87 17.78 16.38 18.26 19.46 18.23 18.95 

17.99 20.38 16.25 19.39 16.44 19.97 14.15 28.67 21.32 7.748 15.71 20.23 17.46 15.36 17.98 21.02 18.01 20.31 

17.58 20.07 15.86 20.77 16.24 20.57 13.61 30.52 20.92 8.50 15.06 22.46 17.09 14.01 17.45 21.06 17.60 20.00 

17.16 22.61 15.66 21.42 16.14 20.89 13.32 31.46 20.79 8.75 14.99 23.32 16.97 13.53 17.29 21.77 17.18 22.53 

16.95 23 15.37 22.35 15.98 21.38 12.89 32.83 20.56 9.19 14.79 24.59 16.64 12.86 16.99 23.32 16.97 22.92 

16.85 24.03 15.57 21.27 16.06 21.32 13.05 32.06 20.88 8.58 15.61 21.58 17.03 14.97 16.95 23.56 16.87 23.95 

16.71 24.58 15.36 21.92 15.95 21.67 12.75 33.04 20.74 8.86 15.50 22.41 16.84 14.46 16.77 24.61 16.73 24.49 

16.45 26.05 14.98 23.11 15.74 22.32 12.19 34.83 20.42 9.47 15.18 23.91 16.52 13.89 16.35 26.06 16.47 25.96 

16.29 26.14 15.26 21.62 15.85 22.22 12.41 33.76 20.83 8.68 16.09 19.84 17.16 16.75 16.38 25.64 16.31 26.05 

16.05 26.52 14.86 22.84 15.62 22.94 11.81 35.68 20.58 9.17 15.89 21.22 16.83 16.16 15.82 26.54 16.07 26.43 

15.65 27.75 14.48 24.00 15.42 23.62 11.23 37.52 20.36 9.610 15.70 22.55 16.53 15.67 15.48 27.83 15.67 27.66 

19.6 17.23 17.19 17.43 17.02 17.73 15.85 23.79 21.87 6.77 15.00 21.34 17.53 13.14 19.56 20.84 19.63 17.17 

19.2 18.13 16.88 18.52 16.86 18.1 15.42 25.23 21.64 7.16 14.73 23.09 17.27 12.18 19.18 19.908 19.23 18.07 

18.76 18.24 16.43 20.85 16.63 18.80 14.81 27.31 21.31 7.77 14.29 25.61 16.92 11.09 18.63 18.63 18.79 18.18 

R2 0.963 0.851 0.980 0.952 0.986 0.945 0.820 0.808 0.168 0.174 0.476 0.127 0.992 0.922 1 1 
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Figure 1: Measured MDUW versus predicted MDUW for all the samples 

 

 

 

 
Figure 2: Measured OMC versus Predicted OMC for all samples 
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Figure 3: Departure of predicted MDUW from measured values 

 

 
 

 
Figure 4: Departure of predicted OMC from measured values 
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4.2 Coarse-grained soils 

Table 6 shows the validation of the various prediction models of coarse-grained soils with neutral 

soil data obtained from F. Similar to 4.1, the data was obtained from sources that contain all the 

required soil index properties. The first two columns show the measured values for MDUW and 

OMC, respectively, while the other columns show the predicted values for the different model 

equations. Figures 1 and 2 show the predicted versus measured values for MDUW and OMC for 

each of the models. Figures 3 and 4 show the degree of departure of prediction outcomes of the 

models from the measured values. Predictions B and F gave favourable outcomes because the data 

used in validating the models were drawn from their database. The other two models, O and S, 

didn’t perform well, probably because of calibration limitations and the use of diverse soil classes 

in the prediction models. Similar to fine-grained soils, it is recommended that the most important 

index properties outlined in Table 4, in addition to E and unified soil class or boundary class should 

be employed in the development of subsequent models. 

 

 

Table 6: Validation of models of coarse-grained soils 

Measured 

MDUW 
Measured OMC 

B F O S  

MDUW OMC MDUW OMC MDUW OMC MDUW OMC 

17.2 14 16.944 13.632 16.982 13.308 17.955 13.002 14.326 8.864 

19.1 12 18.985 11.139 18.818 11.793 17.868 13.189 12.517 3.332 

15.4 16.5 15.107 16.350 15.361 13.377 19.444 9.8039 16.299 13.111 

15.2 16.5 15.107 16.350 15.458 14.0788 19.489 9.707 16.2996 13.111 

17 16 16.708 13.954 16.371 15.627 19.080 10.586 16.285 11.250 

17.1 15 17.499 12.904 17.356 13.136 19.098 10.547 15.338 9.255 

18.9 11 19.080 11.0344 19.074 11.869 18.261 12.346 14.335 5.859 

18.9 11.5 18.946 11.182 18.852 11.795 18.197 12.483 13.781 4.972 

19.3 12 19.136 10.973 19.149 11.906 18.305 12.250 13.678 4.597 

18.9 12 18.320 11.896 18.732 11.430 16.965 15.129 13.469 6.016 

15.4 18 15.151 16.279 14.947 16.351 19.660 9.339 16.532 13.187 

15.4 18 14.982 16.555 15.612 15.578 19.577 9.519 16.449 13.341 

18.8 12.5 18.472 11.719 18.464 12.682 19.489 9.707 18.149 10.481 

15.6 17.5 15.956 15.033 15.874 13.868 19.489 9.707 16.643 12.451 

19.5  18.732 11.421 19.574 11.360 16.546 16.032 12.924 4.703 

R2 0.941 0.8915 0.9723 0.8112 0.5853 0.6393 0.4608 0.8451 
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Figure 5: Predicted versus measured for MDUW of coarse-grained soils 

 

 

 

 
Figure 6: Predicted versus measured for OMC of coarse-grained soils 
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Figure 7: Departure of predicted MDUW from measured values 

 
Figure 8: Departure of predicted OMC from measured values 
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the model is applied to an entirely different soil and compared to the prediction outcome from 

another model, the biases would be more apparent as was shown in preceding sections, hence, gaps 

still exist on the most important parameters, tools and strategies to be employed in the development 

of more unified soil prediction models. 

In the prediction of fine-grained models, significant coefficient of determination values was 

obtained for A, E, K, M, and R even though most of these models were developed with MLR. This 

may not invalidate the claim that tools such as GEP, ANN, and SVR are better tools, however, it 

may be necessary to examine what may have contributed to the strength of these models. First, the 

models identified the soil index properties that correlate well with MDUW and OMC and only used 

that in the model development; secondly, the models that used particular types and classes of soil 

seem to have a stronger correlation than those that combined different types and classes of soil. For 

instance, J developed its models with a very large soil database (728) and sophisticated ANN tool 

but did not achieve much significance probably due to the combination of fine-grained and coarse-

grained soil in one model. Even though the soil type index was employed to capture this variability, 

numeral values do not seem to suffice for the soil type index. In Figures 3 and 4, it can be seen that 

J over-predicted MDUW and under-predicted OMC which seem not acceptable while the models 

developed around the soil types have better correlation and prediction outcomes closer to the 

measured values. Collected information has shown that the method of model development seems to 

not have much significant effect on the performance of the models, however, it seems to have more 

ability to integrate numerous and varying soil properties into a unified model.  

In summary, the work outlined different techniques employed in the development of model 

prediction equations for soil compaction parameters, some developed model equations and their 

limitations, the most important index properties for fine-grained and coarse-grained soils, and 

finally evidence of the limitations of the model equations through comparative validation. 

 
 

5. Conclusion and Recommendations 

In this work, the comparative validation of 18 soil prediction models for MDUW and OMC was 

studied. This is considered necessary for reference purposes and to investigate how the different 

models perform comparatively through which to judge the performance of model development tools 

and strategies. 

A brief literature review was done outlining previous efforts towards model developments, key 

techniques especially soft computing techniques employed in these efforts, model equations that 

were developed, and the most important/least important index properties. The review also showed 

that more model equations exist for fine-grained soils when compared to coarse-grained soils. The 

model equations were further employed in comparative validation. 

In all the developed models seen, the USCS class is always present showing that it may have some 

impact in developing more reliable model equations. Since soil classification is the language of the 

geotechnical engineer, it is recommended that subsequent models should be developed drawn from 

a wide range of literature around the world for soils belonging to a particular USCS soil class for 

instance; model based only on soils belonging to CL soil class or its boundary, CI soil class or its 

boundary, ML soil class or its boundary, etc for fine-grained soils and then SC or its boundary, SM 

or its boundary, GM or its boundary for coarse-grained soils. Each soil class should possess similar 

contents of aggregate percentages, quantities, and similar behaviour irrespective of where available 

around the world. This can be drawn from a wide range of literature around the world for each class 

of soil and integrated into models. If the result comes out positive, it will be possible in this way to 

develop models that have wide application, thus, once the soil class is determined based on index 

properties tests, the suitable model should be employed to determine the compaction parameters of 

the soil across any part of the world. 
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Based on the outcome of this review, the author recommends that further studies should involve 

soils (as many as possible) belonging to a unified soil class irrespective of where the soil is present 

around the world in developing models instead of using variable types of soils from one region. This 

is in agreement with [21] who recommended proper categorization of fine-grained and coarse-

grained soils for the improvement of the reliability of the models as well as developing models 

incorporating more extended ranges of soil index properties. In developing these models, 

sophisticated tools such as SVR, ANN, or numerical analysis should be employed to examine the 

correlation of MDUW/OMC and index properties while a minimum of 3 physical properties of soils 

in addition to the compaction energy should be used for model development. For fine-grained soils, 

fines content, liquid limit, plastic limit, and compaction energy should be included; for coarse-

grained soils, fines content-sand content ratio, sand content, specific gravity, and compaction energy 

should be employed as these have been shown in most of the reviewed models to have a stronger 

correlation with MDUW/OMC. In situations where adequate data cannot be obtained for a particular 

soil class, then the soil type index should be employed for the soil classes available, however, it may 

be necessary to employ soil sensitivity to capture the soil type index instead of numeral values.  

Further research may also be carried out to determine how to integrate the effect of weather 

conditions, room temperature, sample collection techniques, etc in developing models, thus, authors 

may need to also state these conditions when reporting their compaction data from different parts 

of the globe. 
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List of Abbreviations (also see Table 1) 

CBR - California bearing ratio  

SLR - Simple Linear Regression  

MLR - Multi-linear Regression  

ANN - Artificial Neural Network  

LS-SVM - Least Squares – Support Vector Machine  

MARS - Multivariate Adaptive Regression Splines  

SVR - Support Vector Regression  

MEP - Multi-gene Expression Programming  

GEP - Gene Expression Programming  

GWO - Grey Wolf Optimizer  

GPR - Gaussian Process Regression  

SVM - Support Vector Machine  

LSBoostRF - Least Squares Boost Randon Forest  

LSTM - Long Short-term Memory  

DNN - Deep Neural Network 

GmDH - Group Method of Data Handling  

NN - Neural Network  

GA - Genetic Algorithm  

PSO - Particle Swarm Optimization  

RF - Random Forest  

XGBoost - Extreme Gradient Boosting Tree  
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R2 - Coefficient of Determination 

R - coefficient of correlation  

RMSE - root mean square error  

MAE - mean absolute error  

MSE - mean squared error  

SEE - standard error of estimate  

CH – inorganic clays of high plasticity or fat clay 

CI – inorganic clays of intermediate plasticity 

CL – inorganic clays of low plasticity or lean clay 

SM - silty sands 

SP - poorly graded sands interface 

SW - well-graded sands interface 

ML – low plasticity silt 

SC – clayey sands 

GC – clayey gravel 

GM – silty gravel 

GP – poorly graded gravel 

GC – clayey gravel 

MH – high plasticity silt or elastic silt 

GCV - generalized cross-validation 

wPL– plastic limit water content 

Sp – swell percent 

ER - arbitrary compaction energy 

ESP - compaction energy at standard Proctor 

ZAV – zero air voids line 
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